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Preface

The C.I.M.E. School on Viscosity Solutions and Applications held in Monte-
catini from June 12 to June 20, 1995 was designed with the aim to provide
a rather comprehensive and up-to-date account of the theory of viscosity
solutions and some of its applications.

The School comprised the following five series of lectures:

M.G. Crandall: General Theory of Viscosity Solutions

M. Bardi: Some Applications of Viscosity Solutions to Optimal Control
and Differential Games

L.C. Evans: Regularity for Fully Nonlinear Elliptic Equations and Motion
by Mean Curvature

M.H. Soner: Controlled Markov Processes, Viscosity Solutions and Appli-
cations to Mathematical Finance

P.E. Souganidis: Front Propagation: Theory and Applications
as well as seminars by:

L. Ambrosio, M. Arisawa, G. Bellettini, P. Cannarsa, M. Falcone, S. Koike,
G. Kossioris, M. Motta, A. Siconolfi and A. Tourin.

The present volume is a record of the material presented in the above listed
courses. It is our belief that it will serve as a useful reference for researchers
in the fields of fully nonlinear partial differential equations, optimal control,
propagation of fronts and mathematical finance.

It is our pleasure here to thank the invited lecturers, the colleagues who
contributed seminars, all the participants for their active contribution to
the success of the School and the Fondazione CIME for the support in the
organization.

I. Capuzzo Dolcetta, P.L. Lions
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VISCOSITY SOLUTIONS: A PRIMER
by

Michael G. Crandall(t)
Department of Mathematics
University of California, Santa Barbara
Santa Barbara, CA 93106

0. Introduction

These lectures present the most basic theory of “viscosity solutions” of fully
nonlinear scalar partial differential equations of first and second order. Other
contributions to this volume develop some of the amazing range of applications
in which viscosity solutions play an essential role and various refinements of this
basic material.

In this introductory section we describe the class of equations which are
treated within the theory and then our plan of presentation.

The theory applies to scalar second order partial differential equations

(PDE) F(z,u, Du, D*u) =0

on open sets 2 C IRN. The unknown function u : Q@ — IR is real-valued, Du
corresponds to the gradient (us,,...,uzy) of u and D?u corresponds to the
Hessian matrix (ug, ;) of second derivatives of u. Consistently, F' is a mapping

F:QOxRxRN x§(N) - R

where S(IV) is the set of real symmetric N x N matrices. We say that Du
(D?u) “corresponds” to the gradient (respectively, the Hessian) because, as we
shall see, solutions u may not be differentiable, let alone twice differentiable,
and still “solve” (PDE). We write F(z,r,p,X) to indicate the value of F' at
(z,7,p, X) € @ x IR x RY x S(N). (PDE) is said to be fully nonlinear to
emphasize that F(z,r,p, X) need not be linear in any argument, including the

X in the second derivative slot.
F is called degenerate elliptic if it is nonincreasing in its matrix argument:

F(CC’T,P,X)SF(IE,T,P,Y) for YSX
The usual ordering is used on S(NV); that is Y < X means
(XE,6) <(YEE) for €€ RN

where (-,-) is the Euclidean inner product. If F' is degenerate elliptic, we say
that it is proper if it is also nondecreasing in r. That is, F' is proper if

F(z,s,p,X) < F(z,r,p,Y) for Y<X, s<r

(1) Supported in part by NSF Grant DMS93-02995 and in part by the author’s
appointment as a Miller Professor at the University of California, Berkeley for
Fall 1996.



As a first example, F' might be of first order
F(Iv ™D, X) = H(:Ev Tv_p);

every first order F is obviously (very) degenerate elliptic, and then proper if it
is nondecreasing in r. For an explicit example, the equation u; + (uz)? = 0 with
(t,x) € IR? is a proper equation (we are thinking of (¢,z) as (z1,2) above). On
the other hand, the Burger’s equation u; + uu, = 0 is not proper, for it is not
monotone in u. We refer to proper first order equations H(z,u, Du) = 0 and
ut + H(z,u, Du) = 0 as “Hamilton-Jacobi” equations.

Famous second order examples are given by F(z,r,p, X) = —Trace (X) and
F(z,r,p,X) = —Trace (X) — f(z) where f is given; the pdes are then Laplace’s
equation and Poisson’s equation:

N
"Z“ziz‘ =-Au=0 and - Au= f(z)

The equations are degenerate elliptic since X — Trace (X) is monotone increas-
ing on S(IN) . We do not rule out the linear case! Incorporating ¢ as an additional
variable as above, the heat equation u; — Au = 0 provides another famous ex-
ample. The convention used here, that Du, D?u stand for the spatial gradient
and spatial Hessian, will be in force whenever we write “u; + F(z,u, Du, D?u)”.

Note the preference implied by these examples; we prefer —A to A. A
reason is that (in various settings), —A has an order preserving inverse. This
convention is not uniform; for example, Souganidis [35] does not follow it and
reverses the inequality in the definition of degenerate ellipticity.

More generally, the linear equation

—Za”(xux'z]+2b Tyug, + c(z)u— f(z) =0

5,j=1

may be written in the form F' = 0 by setting
(0.1) F(z,r,p, X) = —Trace (A(z)X) + (b(z), p) + c(z)r - f(z)

where A(z) is a symmetric matrix with the elements a;;(z) and
b(z) = (bi(x),...,bn(z)). This F is degenerate elliptic if 0 < A(z) and proper
if also 0 < ¢(z).

In the text we will pose some exercises which are intended to help readers
orient themselves (and to replace boring text with pleasant activities). We vi-
olate all conventions by doing so even in this introduction. Some exercises are
“starred” which means “please do it now” if the fact is not familiar.

Exercise 0.1.* Verify that F given in (0.1) is degenerate elliptic if and only if
A(x) is nonnegative.
The second order examples given above are associated with the “maximum

principle”. Indeed, the calculus of the maximum principle is a fundamental idea
in the entire theory.



Exercise 0.2.* Show that F is proper if and only if whenever p,¢ € C?
and ¢ — 1 has a nonnegative maximum (equivalently, 1 — ¢ has a nonpositive
minimum) at £, then

F(3,9(2), DY(2), D*$(@)) < F(2,0(2), Dp(2), D*¢(2)).

So far, we have presented nonlinear first order examples and linear second
order examples. However, the class of proper equations is very rich. Indeed, if
F,G are both proper, then so is AF' + uG for 0 < A, u. More interesting is the
following simple fact: if F,, g is proper for o € A, § € B (some index sets), then
so is

= o o Fo
provided only it is finite. This generality is essential to applications of the
theory in differential games (see Bardi [2]), while applications in control theory
correspond to the case “F,,” in which there is only one index (see Bardi [2] and
Soner [34]).

For example, max(u; + |Du|? — g(z), —Au— f(z)) = 0 is a proper equation.
The other lecture series will present many examples of scientific significance. We
have only attempted here to indicate that that class of proper equations is broad
and interesting.

Here we aim at a clear and congenial presentation of the most basic ele-
ments of the theory of viscosity solutions of proper equations F' = 0. These are
the notion of a viscosity solution, maximum principle type comparison results
for viscosity solutions, and existence results for viscosity solutions via Perron’s
method. We do not aim at completeness or technical generality, which often
distract from ideas.

The text is organized in sections, many of which are quite brief. The de-
scriptions below contain remarks about the logic of the presentation. By the
numbers, the topics are:

Section 1: An illustration of the need to be able to consider nondifferentiable
functions as solutions of proper fully nonlinear equations is given using first order
examples.

Section 2: The notions of viscosity subsolutions, supersolutions and solutions
are presented. The convention that the modifier “viscosity” will be dropped
thereafter in the text is introduced. It is essential to deal with semicontinuous
functions in the theory, and this generality appears here.

Section 3: Striking general existence and uniqueness theorems are presented
without proof to indicate the success of viscosity solutions in this arena. The
contrast with the examples in Section 1 is dramatic.

Sections 4, 5, 6: A primary test of a notion of generalized solutions is whether
or not appropriate uniqueness results can be obtained (when suitable side con-
ditions - boundary conditions, growth conditions, initial conditions, etc. - are
satisfied). Actually, one wants a bit more here, that is the sort of comparison
theorems which follow from the maximum principle. Basic arguments needed



in proofs of comparison results for viscosity solutions of first order stationary
problems (those without “¢”) are presented here and typical results are deduced.
Section 4 concerns the Dirichlet problem, Section 5 concerns bounded solutions
of a problem in IRY, and Section 6 provides an example of treating unbounded
solutions. The second order case is more complex and is not taken up until Sec-
tion 10. However, nothing is wasted, and all the arguments presented in these
sections are invoked in the second order setting.

Section 7: The notions of Section 2 are recast in a form convenient for use in
the next section and in the comparison theory in Sections 8 and 9.

Section 8: Two related results, each an important tool, are established. One
states roughly that the supremum of a family of subsolutions is again a sub-
solution, and the other that the limit of a sequence of viscosity subsolutions
(supersolutions, solutions) of a converging sequence of equations (meaning the
F,’s converge) is a subsolution (respectively, a supersolution, solution) of the
limiting equation. We call this last theme “stability” of the notion; it is one
of the great tools of the theory in applications. The mathematics involved is
elementary with a “point-set” flavor.

Section 9: Existence is proved via Perron’s Method using a result of the previous
section. The existence theory presupposes “comparison”. At this stage, com-
parison has only been treated in the first order case, and is simply assumed for
the second order case. This does not affect either clarity or the basic argument.
At this juncture, the most basic ideas have been presented with the exception
of comparison for second order equations.

Section 10: The primary difference between the first and second order cases is
explained. Then the rather deep result which is used here to bridge the gap,
called here “the Theorem on Sums” (an analytical result about semicontinuous
functions), is stated without proof. An example is given to show how this tool
theorem renders the second order case as easy to treat as the first order case.

Section 11: The Theorem on Sums is proved.

Section 12: In the preceding sections comparison was only demonstrated for
various equations of the form F(x,u, Du, D?u) = 0. Here the main additional
points needed to treat u; + F(z,u, Du, D*u) = 0 are sketched.

Regarding notation, we use standard expressions like “C%(Q2)” (the twice
continuously differentiable functions on Q) and “|p|” (the Euclidean length of p)
without further comment when it seems reasonable. With some exceptions, we
minimize distracting notation.

Regarding the literature, it is too vast to try to summarize in a work like
this, which aims at presenting basic ideas and not at technical generality or great
precision. We will basically rely on the big brother to this work, the more intense
(and reportedly less friendly) [12] for its extensive references, together with those
in the other contributions to this volume. (We recommend the current work as
preparation for reading [12], especially the topics therein not taken up here.)
We do give some references corresponding to the original works initiating the
themes treated here. A few more recent papers are cited as appropriate. All



references appear at the ends of sections. In addition, we mention the books by
Cabré and Caffarelli [7] and Dong [17] for recent expositions of regularity theory
of solutions, which is not treated here, as well as the classic text of Gilbarg and
Trudinger [23]. Regularity theory is also one of the themes of Evans [20]. The
recent book of Barles [3] presents a complete theory of the first order case (which
itself fills a book that contains 154 references!). The book of Fleming and Soner
[22, Chapters IT and V] also nicely covers the basic theory. There are alternative
theories for first order equations; see, e.g., [9] and [36]. Of course, MathSciNet
now allows one to become nearly current regarding the state of the literature
relatively easily, and one can profitably search on any of the leads given above.

A significant limitation of our presentation is that only the Dirichlet bound-
ary condition is discussed at any length, and this in its usual form rather than
the generalized version. Other boundary conditions appear in the contributions
of Bardi [2] and Soner [34] in an essential way. In addition to the references they
give, the reader may refer for example to [12, Section 7| for a discussion in the
spirit of this work. Another limitation is that singular equations are not treated
at all. Equations with singularities appear in contributions of Evans [20] and
Souganidis [35]. See also [12, Section 9]. Finally, only continuous solutions are
discussed here, while within applications one meets the discontinuous solutions.
The contribution of Bardi [2, Section V] treats this issue, and discontinuous
functions appear quickly in the exposition of Souganidis [35].

1. On the Need for Nonsmooth Solutions

The fact is that it is difficult to give examples of solutions (in any sense) of
equations F' = 0 which are not classical solutions unless the equation is pretty
“degenerate” (roughly, the monotonicity of X — F(z,7,p,X) is not strong
enough) or “singular” (that is, F' may have discontinuities or other types of sin-
gularities). (A “classical” solution of an equation F(z,u(x), Du(z), D*u(x)) = 0
is a twice continuously differentiable function which satisfies the equation point-
wise; if the equation is first order classical solutions are once continuously differ-
entiable; if the equation has the form u; + F(z, u, Du, D?u) = 0, then a classical
solution will possess the derivatives u;, Du, D?u in the classical sense. Simi-
lar remarks apply to subsolutions and supersolutions.) The reason is that the
regularity theory of sufficiently nondegenerate and nonsingular equations is still
unsettled. In particular, it may be that nondegenerate nonsingular equations
F = 0 with smooth F admit only classical solutions, although some suspect that
this is not so. ;

However, if the equation is first order (so very degenerate), then examples
are easy. The next exercise gives a simple problem without classical solutions
and for which there are solutions slightly less regular than “classical”; however
allowing less regular solutions generates “nonuniqueness”.

Exercise 1.1.* Put N =1, Q = (-1,1) and F(z,r,p,X) = |p|> — 1. Verify
that there is no classical (here this means C'(—1,1) N C(|~1,1])) solution u of
F(u') = (u')?—1 = 0 on (0, 1) satisfying the Dirichlet conditions u(—1) = u(1) =
0. Verify that u(z) = 1 — |z| and v(z) = |z| — 1 are both “strong” solutions: in



this case, they are Lipschitz continuous and the equation is satisfied pointwise
except at z = 0 (so almost everywhere).

Of course, the problem in Exercise 1.1 has a unique solution within our
theory, as we will see later (it is u(z) =1 — |z|).

To further establish the desirability of allowing nondifferentiable solutions,
we recall the classical method of characteristics as it applies to the Cauchy
problem for a Hamilton-Jacobi equation u; + H(Du) = 0:

(1.1) {ut—l—H(Du):O for zecRY, t>0

u(0,z) = ¢(z), for zeIRY.
Suppose that H is smooth and that u is a smooth solution of u;+ H(Du) = 0

ont >0,z e IRN. Define Z(t) € IRY to be the solution of the initial value

problem

Z'(t) = %Z(t) = DH(Du(t, Z(t))), Z(0) =2

over the largest interval for which this solution exists. A computation yields

%Du(t, Z(t)) = D%(t, Z(t)) + D*u(t, Z(t))Z'(t)
= D%(t, Z(t)) + D*u(t, Z(t)) DH(Dul(t, Z(t))
=0

where the last equation arises from differentiating u; + H(Du) = 0 with respect
to x.

Remark 1.1. In calculations such as the above, one has to decide whether
the the gradient Dv of a scalar function v is to be a column vector or a row
vector. There is no ambiguity about D?v, for it is to be square and symmetric
in any case. In the introduction we wrote the gradient as a row vector, but above
interpret it as a column vector. This is consistent with interpreting points of IR™
as column vectors while writing row vectors, and with these sloppy conventions
the above is correct.

We conclude that Du is constant on the curve t — (¢, Z(t)). It then would
follow that Z(t) = £ + tDH(Dy(&)). However, the resulting equation Du(t, % +
tDH(D(Z)) = Dy(&) yields contradictions as soon as we have characteristics
crossing, that is y # z but t > 0 such that y+tDH(Dvy(y)) = z +tDH(Dy(2)).
In this case, one says that “shocks form” and there are no smooth solutions u
defined for all t > 0 in general.

Exercise 1.2. (i) Continue the analysis above to find
u(t, Z(t)) = ¥(2) + t((DY(2), DH(DY(%))) — H(DY(%)))

where (-, -) is the Euclidean inner product.
(ii) If N =1, then shocks will form unless  — H'(¢/(z)) is monotone.



Under reasonable assumptions, as is shown in elementary courses, analysis
by characteristics provides a smooth solution of (1.1) until shocks form. When
classical solutions break down, in this area and others, one is led to think of
the problem of finding a way to continue past the breakdown with a less regular
solution. However, one can also immediately think of the problem of finding
solutions in cases where the data does not allow the classical analysis. E.g.,
what does one do if H and/or ¥ above is not smooth? The “breakdown” idea
is not central in this view.

Just as in the case of Exercise 1.1, relaxing the regularity requirement for
a solution just a tiny bit leads to nonuniqueness for (1.1). One does not expect
uniqueness in general for stationary problems, but one does expect uniqueness
for initial-value problems.

Exercise 1.3. Consider the equation u; + (uz)? = 0 for ¢t > 0, z € IR coupled
with the initial condition u(0,z) = 0. Verify that the function

v(t,z) =0 for 0<t< |z,
v(t,z) = —t+|z| for |z|<t,

satisfies the initial condition, is continuous and has all the regularity one desires
off the lines z = 0, t = |z|, and satisfies the equation off these lines. Thus
u = 0 and v are distinct nearly classical - even piecewise linear - solutions of the
Cauchy problem.

We have not given second order examples. However, here is a model equa-
tion which will be covered under the theory to be described and for which the
issue of how smooth solutions are is unsettled. Let A; € S(N), ¢ = 1, 2, 3 satisfy
I<A, <2 for 1=1,2,3,4 and

F(X) = — max(Trace (A;X), min(Trace (A2.X) , Trace (A3X))).

This is a uniformly elliptic equation - here this means that there are constants
0 < A < A such that

F(X 4+ P) < F(X) - ATrace(P) and |F(X)-F(Y) <A|X-Y]|

for X,Y,P € S(N), P > 0. Here || X| can be any reasonable matrix norm of
X; a good one is the sum of the absolute values of the eigenvalues of X, as it
coincides with the trace on nonnegative matrices.

Exercise 1.4. Determine A, A which work above.

It is known that solutions of uniformly elliptic equations typically have
Hélder continuous first derivatives, but it is not known if these solutions are
necessarily C2. If the equation is uniformly elliptic and convex in X, regularity
is known. See Evans [20], Cabré and Caffarelli [7], Dong [17], the references
therein, as well as Trudinger [39] and Swiech [37] for a recent result concerning
Sobolev rather than Hoélder regularity.



2. The Notion of Viscosity Solutions

As we will see, the theory will require us to deal with semicontinuous func-
tions, there is no escape. Therefore, let us recall the notions of the upper semi-
continuous envelope u* and the lower semicontinuous envelope u, of a function
u:Q —IR:

u*(z) = limsup {u(y) : y € R, ly — 7| <)

2.1
(21 u*(x)=lifginf{U(y):yeﬂ,ly—mlsr}.

Recall that u is upper semicontinuous if © = v* and lower semicontinuous
if 4 = wu.; equivalently, u is upper semicontinuous if zx — z implies u(z) >
lim supy,_,, u(xk), etc. Of course, u* is upper semicontinuous and u, is lower
semicontinuous.

Exercise 2.1.* In the above definition Q2 could be replaced by an arbitrary
metric space O if |y — x| is replaced distance between z,y € O. Show in this
generality that u is upper semicontinuous if and only if v = —u is lower semi-
continuous if and only if {x € O : u(z) <7} is closed for each 7 € IR. Show
that a function which is both upper semicontinuous and lower semicontinous is
continuous. Show that if O is compact and u is upper semicontinuous on O,
then u has a maximum point & such that u(z) < u(z) for z € O.

Motivation for the following definition is found in Exercise 0.2; see also
Exercise 2.4 below. The semicontinuity requirements in the definition are partly
explained by the last part of Exercise 2.1 and the fact that we will want to
produce the maxima associated with subsolutions, etc., in proofs.

Definition 2.1. Let F be proper, Q be open and u : Q@ — IR. Then u
is a wviscosity subsolution of F = 0 in Q if it is upper semicontinuous and
for every ¢ € C?*(Q) and local maximum point £ € Q of u — ¢, we have
F(z,u(z), Do(z), D?p(z)) < 0. Similarly, u : @ — IR is a viscosity superso-
lution of F = 0 in Q if it is lower semicontinuous and for every ¢ € C?*(Q) and
local minimum point & € Q of u — ¢, we have F(&,u(&), Dp(&), D*p(z£)) > 0.
Finally, u is a viscosity solution of F = 0 in § if is both a viscosity subsolution
and a viscosity supersolution (hence continuous) of F = 0.

Remark 2.2. Hereafter we use the following conventions: “supersolution”,
“subsolution” and “solution” mean “viscosity supersolution”, “viscosity subso-
lution” and “viscosity solution” — other notions will carry the modifiers (e.g.,
classical solutions, etc.). Moreover, the phrases “subsolution of F = 0” and
“solution of F' < 0” mean the same (and similarly for supersolutions).

Remark 2.3. Explicit subsolutions and supersolutions which are semicontin-
uous and not continuous will not appear in these lectures. They intervene ab-
stractly in proofs, however, in an essential way.



Exercise 2.2.* Reconcile Definition 2.1 with Exercise 0.2 in the following sense:
Show that if F is proper, u € C?(Q) and

F(z,u(z), Du(z), D*u(z)) <0

(F(z,u(x), Du(z), D?u(z)) > 0) for z € (, then u is a solution of F < 0
(respectively F' > 0) in the above sense.

Exercise 2.3.* With F as in Exercise 1.1, verify that u(z) = 1 — |z| is a
solution of F = 0 on (-1,1), but that u(z) = |z|—1 is not. Attempt to show that
u(z) = 1 —|z| is the only solution of F' = 0 in (-1,1) which vanishes at z = —1, 1.
Verify that u(z) = |z| — 1 is a solution of —(u/)2 + 1 = 0. In general, verify that
if F' is proper then u is a solution of F' < 0 if and only if v = —u is a solution
of G > 0 where G(z,r,p, X) = —F(z,-r,—p,—X) and that G is proper. Thus
any result about subsolutions provides a dual result about supersolutions.
Exercise 2.4. In general, if Q is bounded and open in IRY, verify that u(z) =
distance(z, 0Q) is a solution of |Du| =1 in Q.

We mention that the idea of putting derivatives on test functions in this
maximum principle context was first used to good effect in Evans [18, 19]. The
full definitions above in all their semicontinuous glory, evolved after the unique-
ness theory was initiated in [14], [15]. The definition in these works was equiva-
lent to that above, but was formulated differently and all functions were assumed
continuous. The paper [16] comments on equivalences and writes proofs more
similar to those given today. Ishii’s introduction of the Perron method in [24]
was a key point in establishing the essential role of semicontinuous functions in
the theory. Ishii in fact defines a “solution” to be a function u such that u* is a
subsolution and u, is a supersolution. See Bardi’s lectures [2] in this regard.

3. Statements of Model Existence - Uniqueness Theorems

Recalling the discussion of classical solutions of the Cauchy problem (1.1)
and Exercise 1.3, the following results are a striking affirmation that the solutions
introduced in Definition 2.1 are appropriate.

For Hamilton-Jacobi equations we have:

Theorem 3.1. Let H : RN — IR be continuous and ¢ : RN — IR be uniformly
continuous. Then there is a unique continuous function u : [0,00) x RN — IR
with the following properties: u is uniformly continuous in x uniformly in t, u
is a solution of uy + H(Du) = 0 in (0,00) x RN and u satisfies u(0,z) = ()
forz € RN.

Even more striking is the following even more unequivocal generalization to
include second order equations:

Theorem 3.2. Let F : RN x S(N) — IR be continuous and degenerate elliptic.
Then the statement of Theorem 3.1 remains true with the equation uy+ H(Du) =
0 replaced by the equation u; + F(Du, D?u) = 0.
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The analogue of 3.2 for the stationary problem (i.e., without “t”) is

Theorem 3.3. Let F: IRY x S(N) — IR be continuous and degenerate elliptic
and f : RN — IR be uniformly continuous. Then there is a unique uniformly
continuous u : RN — IR which is a solution of u + F(Du,D*u) — f(z) = in
RY

Moreover, the solutions whose unique existence is asserted above are the
ones which are demanded by the theories developed in the other lectures in this
volume. In Bardi [2] and Soner [34] formulas are given for potential solutions of
various problems, in control theoretic and differential games settings, and it is
a triumph of the theory that the functions given by the formulas can be shown
to be the unique solutions given by the theory.

All of the heavy lifting needed to prove these results is done below. However,
some of the details are left for the reader’s pleasure. The proof of Theorem 3.1
is indicated at the end of Section 9, the proof of Theorem 3.3 is completed in
Exercise 10.3 and the proof of Theorem 3.2 is completed in Exercise 12.1.

4. Comparison for Hamilton-Jacobi Equations: the Dirichlet Problem

The technology of the proof of comparison in the second order case is more
complex than in the first order case, so at this first stage we offer some sample
first order comparison proofs. As a pedagogical device, we present a sequence of
proofs illustrating various technical concerns. We begin with simplest case, that
is the Dirichlet problem. The next two sections concern variants. Arguments
are the main point, so we do not package the material as “theorems”, etc. All
of the arguments given are invoked later in the second order case so no time is
wasted by passing through the first order case along the way.

Let © be a bounded open set in IR, The Dirichlet problem is:

(DP) H(z,u,Du)=0 in Q, u=g on OQ.

Here H is continuous and proper on & x IR x IR" and g € C(8Q). We say that
u : Q@ — IR is a subsolution (supersolution) of (DP) if u is upper semicontinuous
(respectively, lower semicontinuous), solves H < 0 (respectively, H > 0) in Q
and satisfies g < u on 9% (respectively, u > g on 69Q).

Exercise 4.1. One does not expect (DP) to have solutions in general. Show
that if N = 1, Q = (0,1), the Dirichlet problem u + v’ = 1, u(0) = u(1) =0
does not have solutions (in the sense of Definition 2.1!).

We seek to show that if u is a subsolution of (DP) and v is a supersolution
of (DP), then u < v. We will not succeed without further conditions on H.
Indeed, choose © to be the unit ball and let w(z) € C*(Q) be any function
which vanishes on 9Q but does not vanish identically. Then w and —w are
distinct classical solutions (and hence viscosity solutions, via Exercise 2.4) of
(DP) with H(z,u,p) = |p|?> —|Dw|?, g = 0. We will discover sufficient conditions
to guarantee the comparison theorem along the way.



