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PREFACE

This volume contains the proceedings of the Conference on Topology and
its Applications held at Memorial University of Newfoundland from May 7 to
11, 1973. It consists of the papers given by the invited main speakers
P.J. Hilton, E. Klein, A. Liulevicius and R. Thom, and of some of the shorter
contributed papers presented by other participants. In those cases where a
contributed paper has not been included in these proceedings, its abstract
is included instead. The manuscript of René Thom's three one-hour lectures
on Catastrophe Theory was prepared from audio tapes of his lectures, and the
editorial work there was limited to making absolutely necessary changes only
in order to preserve the flavour of the oral presentation; for valuable
assistance in this task I want to thank Richard L.W. Brown as well as René
Thom himself.

As the organizer and chairman of the Conference, I wish to express my
appreciation to the National Research Council of Canada, to A.P.I.C.S. (the
Atlantic Provinces Inter-University Committee on the Sciences) and to
Memorial University for financial support of the Conference, and I want to
thank all those, faculty members, graduate students and members of the
secretarial staff, who gave manifold assistance before and during the
Conference. My special thanks go to the Invited Speakers and the many

participants whose contributions made the Conference a success.

As the editor of these proceedings, I want to express my thanks to all
colleagues who assisted in the editorial tasks and the refereeing, in
particular to Peter Hilton and Arunas Liulevicius. Finally, I want to
thank Mrs, H. Tiller for typing a major part of the final typed copy for
offset printing.

S. Thomeier

St. John's
February 1974
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CHARACTERISTIC NUMBERS

Arunas Liulevicius

The University of Chiecago

The lectures are organized as follows: in the first lecture the
algebra of unoriented cobordism is described, the second lecture applied
cobordism techniques to the geometric question of immersing closed
manifolds into Euclidean space, and the third introduces equivariant
Stiefel-Whitney classes and numbers and applies these notions to the
study of equivariant immersions of G-manifolds into representations of
G. Lecture 1 is intended to popularize the work of Thom [19], Newton and
VandeVelde [20], lecture 2 -- the work of Brown [4] and Liulevicius [16],
lecture 3 - of tom Dieck [8], Stong [18] and Bix [2]. Only lectures 2 and

3 were presented at the conference since fog delayed my arrival.

I am grateful to the organizers of the conference for the opportunity
to participate. Thanks also go to Air Canada for a fascinating tour: it

was an offer which I couldn't refuse.

Lecture 1. The algebra of cobordism

We shall prove a theorem about Hopf algebras due to Newton (who worked
in the context of symmetric polynomials). We prove it for a general ring
A (and use the notation of Chern classes) and then specialize it to
A= Z2 and show how it applies to cobordism and characteristic numbers.
Finally we describe the homotopy part of results of Thom [19] on the

structure of the unoriented cobordism ring.

Let A be a commutative ring with unit, C a graded Hopf algebra

over A which is described as follows: as an algebra C = A[cl,...,cn,...]
is a polynomial algebra on an infinite family of generators c, € cdn
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where d = 1 1if the characteristic of A is 2, d =2 if char A # 2.

The diagonal map ¥:C > C ® C 1is given by W(cn) = Z c; ® cj, where
i+j=n
of course ¢y = 1, the augmentation € : C > A 1is described by letting it

be a homomorphism of algebras over A and setting e(co) =1, e(cn) =0
if n > 1; the unit map n:A > C 1is the map of algebras specified by

n1) =1=c¢ Define the graded dual C, of C by setting

0
C*k = HomA(Ck,A), then (C,,¥,,9,,n,,€,) 1is a Hopf algebra. If

E = (el,...,er,...) is a sequence of natural numbers such that all but a

e e
finite number of the e. are zero, let CE = 1...crr... and define
w4 E 5 :
Yo € C*dn by the condition <yn,c >=1 if E = (n,0,0,...), that is
E

n
¢ = and <yn,cE> =0 if E # (n,0,0,...).

Theorem 1 (I. Newton). The algebra map f:C > C, defined by

f(cn) = Yy is an isomorphism of Hopf algebras.

The main application of this result is to homology of classifying
spaces. Let U = lgm U(mn) be the infinite unitary group, BU its
classifying space, then H*(BU;Z) = Z[cl,...,cn,...] as a polynomial
algebra where ¢, € Hzn(BU;Z) are the Chern classes. Whitney sum of
vector bundles gives a map V:BU x BU »~ BU which makes BU into an

associative H-space, w*cn = Z s ® Cj’ so in this notation
i+j=n
C = H*(BU;Z) for A =1Z, d = 2. We have:
Corollary 2. The homology H,(BU;Z) 1is a polynomial algebra on

classes e H, (BU;Z) coming from H (CPm;Z), moreover the coproduct
Yn 2n 2n P

¢, 1is given by ¢*(yn) = Z Yi ® Yj
i+j=n

Proof. Only the remark about ¥y coming frop the homology of cp”
needs explanation. The standard inclusion U(l)-—ig—U induces a map
cp” = BU(1) —E£—> BU, and (Bi)*cn =0 if n # 0,1, (Bi)*c1 =y, the
fundamental class of CP . Let Y, € Hzn(CP ;Z) be the class in homology
dual to yn, then under the monomorphism (Bi), this ¥ corresponds to

Yo € C*Zn given by Theorem 1.

Motivated by this example we can ask about the filtration of
H, (BU;Z) by means of the images of H,(BU (n);Z) under the standard maps
BU(n) - BU. This corresponds in the setting of Theorem 1 to the following:

let Ai:C* +~C, be the map dual to multiplication by c;- Define

di
F Ci by: FCy= {x e Cy A;(x) = 0 for i >n}. The structure of
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FnC* is given by:
Theorem 3. The subgroup FnC* is a free A-module with basis yE
E = (el""’er"")’ e + ...+ . # gae < N

Our first order of business is the proof of Theorem 1. We do this

in a sequence of lemmas.

Lemma 4. If the element Yy € C is defined by <yn,cE> =1 if

*dn
E = (n,0,0,...), =0ift E # (n,0,0,...), then

0= 1 v, ®

i+j=n J

E1 E2 E1+E2
Proof. We have <¢,(y ), ¢ ® c > =< (o > =0 wunless
i * n y >

El = (1,0,0,...), E2 = (n-i,0,0,...) 1in which case the value is 1.

Remark. Lemma 4 says that the algebra map f:C > C, defined by
f(c)) =y, 1is a map of Hopf algebras.

Let P(C) be the primitives of C: these are elements X e Ck,

k >0 such that ¢(x) =x & 1 +1 @ x.

Lemma 5. P(C)dn is A-free and a direct summand of Cdn on one

generator s, defined recursively by

S. = €S + C.S -+ (—l)n_lcn_ls1 + (—1)nncn = 0.

Proof. Consider the homomorphism of graded algebras

h:C - A[xl,...,xn] where X3 have grade d, defined by h(ck) =0 the
k-th elementary symmetric function of XpsenesX e Of course, h(ck) =0

if k >n, but h is a monomorphism in gradings less than or equal to

dn, and the image of h 1is precisely the subalgebra of all symmetric

polynomials in XpsenesX e An A-free basis for the image of h is given
by the elements X(w), where w = (el,...,es) is a partition,
n>s>0, e > .. > e 0. and X(w) 1is the sum of the distinct

°1
1
to the subscripts. Under the homomorphism h the diagonal y:C > C & C

e
monomials obtained from x X S by applying permutations of 1,...,n

corresponds to the map y¥X(w) = Z X(w') @ X(w"), the sum ranging
(w',w")=w
over all subpartitions of w. In particular, the primitive elements under

h correspond to the direct summand generated by X((k)), since for

k > 0 the only partition of k having only trivial subpartitions is
k k

(k). By definition X((k)) = Xy ¥ s & Xn' Let
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_ _ n-1 n-2 n
p(x) = (x—xl)...(x-xn) = X 9,x + 0,X + ...+ (-1 A then
p(xi) =0, i=1,...,n and so
0= p(xl) S S | p(xn)
= X((n)) - OIX((n—l)) + ... 4+ (-l)n_lcn_lX((l)) + (—l)nnon.
Let s, e PC)¥ be defined by h(s,) = X((K)), then
_ n-1 n .
0= Sh T 15n-1 + ...+ (1) o151 * (-1) ne_ o, and the lemma is
proved.

Corollary 6. For each n, <yn,sn> = 1.

Proof. True for n =1, and if true for n-1 then the recursion

g Z aEcE, E# (n,0,0,...).

relation for s shows that s_ = ¢
n n 1

Lemma 7. For each n

1 if E = (n,0,0,...),

E
<y 5 Cn>
0 otherwise.

Proof. True for n = 1. We have

n n-1 n-1
< = = =
Y16, Yy @ oy vle) > =<y T, e 1> Yep 1,
and if E # (n,0,0,...), y° = y;z, i>1, but then
E - -
Sy =<y; ® z,¢y @ ¢, >=0,

since <y.,c. > =0 for i > 1.
i’7i
Corollary 8. For each n, <f(sn),cn > = 1.
Proof. See Corollary 6 and Lemma 7.

We are now ready to prove Theorem 1. First, f 1is a monomorphism.
We do this by induction on the grading. Since f(1) =1, f 1is a
monomorphism in grading 0. Suppose Ker fICi =0 for i<n and
suppose Xx e Ker flCn . Since f 1is a map of Hopf algebras,

+1
Y(x) -x ® 1 -1 Q@ x eKer f @ f, where

n . .
f@ @ ct e ™ lsc, @ c,
i=1
is a monomorphism, since C, is A-free, so y(x) =x & 1 +1 @ x,
or Xx = Ask (dk = n+1), but
A= A<f(sk),ck> = <f(Ask),ck> = <f(x),ck> =0, so x=0 and

f|Cn is a monomorphism.

+1



CHARACTERISTIC NUMBERS

To prove that f 1is an epimorphism, it is sufficient that
f:Q(C) » Q(C,), where Q(B) = B/B*B denotes the indecomposable elements
of a graded connected algebra B (here B = all x ¢ B with grade
X > 0). Since P(C) 1is a direct summand of C, the exactness of

V.TxT

0 > P(C) > C
implies the exactness of

.
® ¢, —> C, —>P(C),—/> 0,

Cy

so P(C), = Q(C,), and <f(cn),sn> = <YoeSy> = 1 by Corollary 6, so

f:C - C, 1is onto as well, completing the proof of Theorem 1.

Now to prove Theorem 3. Let Ai:C* > C, be the map dual to

- di
multiplication by g We have:

Lemma 9. The maps Ai are group homomorphisms and satisfy

8,Gy) = 1 8,008, 0).
. L j
i+j=k
Proof. The coproduct of ¢, is ] ¢ ® c..
— k .- i j
i+j=k
We introduce a polynomial variable s and define A:C, » C.[s] by
setting A(x) = Z (Aix)sl, then if we give the variable s the grading
i=0

d (remember, d = 1 if char A = 2, d = 2 if char A # 2) we have:

Corollary 10. The map 4:C, > C,[s] 1is a homomorphism of graded

algebras.
Since we now know that C, = A[yl,...,yn,...] we can introduce an
additional bit of structure into C,. If E = (el,...,er) is a sequence
e e
of natural numbers, let (as before) yE = yll...yrr and define
deg yE =ept ...t and set deg(Z aEyE) = maximum deg yE where

ap # 0. The invariant deg 1is the algebraic degree in the polynomial
generators y. and is to be distinguished from the grading: recall that

grade yE = d(e1 + 2e2 o+ rer). We also have the notion of degree

in C,[s], namely deg(]) aisl) = maximum 1 such that a; # 0.
Lemma 11. The map A:C, > C,[s] preserves degree.

Proof. We have Ayk =Yy + yk_ls, so if E = (el,...,er),

1 T 1

E e
YUY Y then Ay~ = (Ayl)

€r
r ...(Ayr) has degree e, + ... + e

1 T
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in s, and the top coefficient is y:2...yi_1 , So two monomials yE s
yE' of the same grade have the same top coefficient in A(yE) and
A(yE') if and only if (ez,...,er) = (e'z,...,e'r), but this implies
e = e'1 as well, so y = yE'.

We define a filtration on C, by setting FnC* = {x & C*|deg Ax < n},

that is x ¢ FnC* if and only if Ai =0 for i > n, we have:

Theorem 3. FnC is the free A-module on monomials yE where

deg yE < n.

Examples. 1. The standard map BU(n) ~ BU induces a monomorphism
H,(BU(n);Z) > H,(BU;Z) and the image is precisely the free abelian group
E . E
on y with deg y < n.

2. The standard map BO(n) > BO induces a monomorphism
H*(BO(n);Zz) - H,(BO;Z,) and the image is precisely the subspace over
22 with basis xE, deg_xE < n, where X, is the element in
H, (BO(1);Z,) dual to wi .

3. The operations Ai give us a quick way of determining the
incidence matrices of C with C, (VandeVelde [20] has them explicitly
for Hn(BU;Z) for n < 24). For example, <c2,yi> =1,
<ci,y§ >= <c1,A1(yi)> = <c1,2y1> = 2 and we have the incidence matrix

Cc C2
| 2 1
Y, 0 1
yfl 2

Indeed, VandeVelde [20] uses the triangularity of the incidence matrices
under a clever ordering of the CE,yF bases to give a different proof

of Theorem 1.

We now explain how this bears on the algebra of unoriented cobordism
(see the original paper of Thom [19]). Let a:E(a) > X be a vector
bundle with structure group O(n) and EB(a) the total space of the
unit ball bundle, ES(o) the total space of the unit sphere bundle,
M(a) = EB(a)/ES(a) the Thom space of a. Notice that
M(a x B) = M(a) A M(B), M(sn) = Sn, where e":R" > point. The reduced

Zz-cohomology of M(a) 1is a free H*(X;Zz)—module on one generator
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U e ﬁn(M(a);Z ) (dim a= n) and the map

b 0BGz, ~ )5z,

defined by ¢(x) = x*U 1is an isomorphism (U 1is called the Thom class
of o and ¢ 1is called the Thom isomorphism). Of course, dually we

have the Thom isomorphism in homology:

A%}
b 0 H o (M(@)32,) > B (X5Z,).
We write MO(n) = M(Yn), where Y' is the classifying n-plane bundle

over BO(n), and we have maps

en:MOUH A S1 > MO(n+1)
um rl:MO(m) A MO(n) > MO(m+n)
induced by the standard inclusion O(n) - O(n+l) and the Whitney sum
representation O(m) x O(n) L O(m+n). Using the suspension homo-

morphisms and maps induced by e, we define

m (M) lim Trmm(MO(n)) s

n

. n
Hm(MO;Z ) = lim Hm+n(M0(n),Z )
n

Since the following diagram commutes
U
m,n*

n A%
Hm+r(Mo(m);ZZ) & Hn+s(M0(n);Zz)———————9 m+n+r+s(M0(m+n);z )

b, @ o, by

w*
Hr(BO(m);Zz) ® HS(BO(n);Z ) —————> Hr+s(BO(m+n);22)

(here ¢, 1is the Thom isomorphism in homology), the maps - induce
a ring structure in mw, (MO), H*(MO;ZZ) and ¢, :H,(MO;Z,) ~> H*(BO;ZZ) is
a ring isomorphism. We define bn € Hn(MO;Z ) by ¢*(bn) = X Notice

that bn is born on MO(1) = BO(1) and there has the name x
class dual to w?+1. The Hurewicz homomorphisms over

22 h:ﬂm+k(MO(k)) B Hm+k(MO(k);22) fit together to give a ring homo-

morphism h:m, (MO) -~ H,(MO;Z,). Let A, be the dual of the Steenrod

algebra over 22 (see Milnor [17]), u:H*(MO;ZZ) ~ A, ® H,(MO;Z,)

n+l’ the
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the coaction. Since u is a homomorphism of algebras over Z., it is

2
sufficient to specify u(bn). Now
s
- (s+1)
“*(bn) o Yn-s @ bs
s=0
where Ynfz+1) € By satisfy the relations:
{g if s=2"-1,
1) *
‘Y( :’
S T
Io if s42° -1,
. (n+1)
where Er are the Milnor [17] generators, moreover YO =1 and the

Cartan relations are satisfied: for each pair of natural numbers i,j we
have
y(3+3)  _ ) Y@ (3)
Tr S t
r=s+t

(see Liulevicius [15], for example).

Theorem 12 (Thom). The algebra w, (MO) is a polynomial algebra
T .
Zz[uz,u4,...,un,...], n#2 -1 ad h:m (MO) > H (MO;Z,) is a

monomorphism onto the elements x such that p(x) =1 ® x (the

primitives under the coaction u).

T .
4,...,un,...], n#2 -1 and define a

homomorphism of algebras and comodules over A

Proof. Let N, = Zz[uz,u

*
f:H*(MO;ZZ) + A, ® N,

(the target being the extended A,-comodule on N,) by setting

. T
f£= (1, ® Df:H,MO0;2,) >N, £(b)=u if n 420 -1, £(b) =0

if n=2" -1 for some r. Then since f = (1 ® f)u we have

f(bn) 1 ® u, modulo decomposables if n + o' 1, f(b ¥ ) = Er ® 1

modulo decomposables, so f is onto, hence an isomorphism, since the
dimensions of the domain and target are the same in each grading. Since
H*(MO;ZP) =0 for p an odd prime it follows that MO 1is equivalent

to the Eilenberg-MacLane spectrum on the graded Z, vector space N

* 3

2
and the theorem follows.

Remark. This version of the proof appears in Liulevicius [14] (see
also the correction in [15]). Of course, the image of the Hurewicz

homomorphism is precisely f_l(l & N.).
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Let us simplify notation by identifying H*(MO;ZZ) with A, & N,
under f, thus identifying =, (MO) with 1 & N,. The following table
gives the u, in terms of bi for n < 10 (for u.,n < 18 see Table

1.1 in Liulevicius [16]).

Table
generator algebraic degree expression

Sy 1 b

u, L b2

&2 1 b3
2 + blb2

uy 1 b4
3 + bsz

ug 1 b5
2 + blb4 + b2b3
3 + blbg

Ug 1 b6

53 1 b7
2 + b3b4 + b1b6
3 + bbb, + bib
4 + bbb+ blb,
5 + bfb;

u8 1 b8
3 + bb2 + b

273 176

ug 1 b8
3 + b2b§ + bfb6
5 + b6 + bib,
7 + b?b2
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Lecture 2. Immersions up to cobordism

There is a useful rule of thumb in differential topology for study-
ing complicated geometric structures. Usually there is a wealth of
structure so to understand it one tries to simplify the situation by
deciding which parts of structure can be pruned off. The aim is to reduce
the tangled, continuous picture of geometrical reality to the tangled but
discrete domain of homotopy. Many geometers consider the problem solved
at this point, by definition: if homotopy information is required, one
just picks up the phone and calls Mahowald. Suppose, however, that you
are stranded on a desert island -- you have to untangle the homotopy
yourself. The technique of course is to reduce it to a problem of algebra.
If the algebraic problem is still too complicated to handle it may be
necessary to look if certain aspects of the homotopy situation can be

simplified so that the algebra becomes manageable.

The work of Thom [19] on unoriented cobordism may be taken as an
example (at the risk of making the scheme into a Procrustean bed, of
course.) Suppose we want to get an overall view of the class of all
closed smooth manifolds. The first problem is that there are too many of
them even under diffeomorphism: there are lots and lots of those which
are even topologically spheres, so the relation of diffeomorphism is too
strong -- there are too many equivalence classes. We need a weaker, but
hopefully still interesting, equivalence relation to cut down the number
of equivalence classes. Cobordism, born in Poincare's first attempt to
define homology, is a reasonable candidate, especially if we are interest-
ed in homology of manifolds. Two closed manifolds M and M' of
dimension m are said to be cobordant if there exists an (m+1)-
dimensional manifold with boundary W such that W 1is diffeomorphic
to the disjoint sum of M with M'. It is immediately checked that
cobordism is an equivalence relation (use the collaring theorem for
transitivity). We denote the set of equivalence classes of m-dimensional
closed manifolds under cobordism by Nm' Disjoint sum induces addition
in Nm which makes it into a vector space over 22, and Cartesian

product induces a product Nm ® Nn - Nm+n which makes N, = {Nm}m ez
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into a graded algebra. The problem is now to determine the structure of
this algebra, and the key to Thom's solution is a reduction of the
geometric problem to a problem in homotopy, namely w, (MO). We exhibit
the Thom-Pontrjagin map rt: Nm - nm(MO). Let M be an m-dimensional
manifold. Choose an embedding e:M" > Rm+k. Let T be a tubular neigh-
borhood of the embedding e : T 1is diffeomorphic to EB(v), the total
space of the unit ball bundle associated with the normal bundle v of the
embedding e; let d:T - EB(v) be the diffeomorphism and notice that

under d, 3T corresponds to ES(v), the total space of the unit sphere

bundle associated with v. Consider Sm+k = Rm+k v {»} as the one-point
compactification of Rm+k, let t:Sm+k - T/3T be the map induced by the
identity on T which maps Sm+k - T into the point of T/3T represented

by 8T, let d : T/3T - EB(v)/ES(v) = M(v) be the map induced by d,
and V: M(v) - M(Yk) = MO(k) be the map induced by a classifying map of
v . If x ¢ Nm is the cobordism class defined by M, let 7t(x) € nm(MO)

be the class defined by the composition

b

SR o et 9 M) —Vs Mo (k).

Of course, one has to verify that t(x) 1is independent of all the choices
made in its construction, but this is not difficult. It is almost immed-
iate that <t 1is an algebra map, and one shows that 1 1is an isomorphism
by explicitly constructing an inverse nm(MO) -> Nm (here the trans-

versality theorems of Thom are used).

This reduces the geometry to homotopy, and we consider the problem
solved, since the algebra structure of =, (MO) has been determined: it
n # 2 S 1. we would

is a polynomial algebra 22[u2 ,u_,

sUysUg, e Uy R I
like to identify the monomorphism

¢
T h . * - -
N, ——m_(M0) — > H_(M0;Z,)——=H_(BO;Z,)

and this is easily done: it is the normal characteristic number map Vy

which is described as follows: let u ¢ Hm(BO;Z ), sSo we may consider

u as a linear functional on Hm(BO;Z ), then

u¢,ht(class of M) = <v*(u),[M]> ,

where v:M > BO is the stable normal bundle of M, [M] is the fundament-

al class of M, and <,> is the Kronecker pairing between cohomology

2

and homology. For example, if M = RP® then W(v) =1 + x, so



