«.. PEARSON

it %IJ; f*ff

(ZR3ZhR)

» Integrated Approach
» Architecture
-« Operating Systems

Umakishore Ramachandran
(%) William D. Leahy, Jr. =

L s O 3 R TET#R

China Machine Press

TEILZS
ERTTE
(BEIR)

Computer S_y_stems

An Integrated Agpt h; yi Archlte rg
and Opefd hdc Nerifs | t 4

e g

Umakishore Ramachandran
() William D. Leahy, Jr. =

' ERTET R

English reprint edition copyright © 2010 by Pearson Education Asia Limited and China
Machine Press.

Original English language title; Computer Systems: An Integrated Approach to Architec-
ture and Operating Systems (ISBN 978-0-321-486134) by Umakishore Ramachandran and
William D. Leahy, Jr. , Copyright © 2011.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc. , pub-
lishing as Addison- Wesley.

For sale and distribution in the People’s Republic of China exclusively (except Tai-
wan, Hong Kong SAR and Macau SAR) .

AFYESE I Pearson Education Asia Ltd. $EACHUHE Tolb 1 At 30 52 0 8
AR A WEIFTT, A LUTEAE 7 08 il s A 4

BT e NRAEHIEBE N (AP E A, TN TB XA EE
X) 858 &7,

AFEHINGA Pearson Education (BFE#EH HMAER) BOCHiThbRE, TARsE
HEARE, ‘

R T B Th AR 4 25 AR

AR, B

AP EEME ItETHBARITESAR

AP ZIZS; B 01-2010-5383

EBERE4&EB (CIP) #iE |

NS SR (BEICR) /() RO % (Ramachandran, U.),
¥ (Leahy, W.D.) % .—1bst: HUBE T BH:, 2010.9

(8 BB 5 R)

P54)53 : Computer Systems: An Integrated Approach to Architecture and Operat-
ing Systems

ISBN 978-7-111-31955-9

L. it . O8- @F-- M. HEHIERSH -3 V. TP303

T E A B34 CIP $diE %7 (2010) 45 183857 &5

AR Tl AL (s hmoskic i e A 22 5 WRECRS 100037)

AR FRAT

AL SR ED 95 47 PR 2+ =] E AR

201 14E1 H S LIRS 1 EN R

150mm x214mm - 24. 125 E[Jg§

PrAES. ISBN 978-7-111-31955-9

Efr: 69.00 0

NaAA, AT, #, B, hAshZTisimt
ZRIL . (010) 88378991; 88361066

TR . (010) 68326294; 88379649; 68995259
B, (010) 88379604

T F(EH: hzjsi@ hzbook. com

HEALER 5181 BA/REED © 30288 | 95.005T , 2010-05-11 (%) David A.Patterson

(HEUH 4K ARMER) R -

Ei& SitENigi 2 '&"I}‘zﬁ 4k ‘ 30310 58..007'1“: - 2010-05-05 | (%) M.Morris Mano
ﬁk‘tﬁ&%%ﬁ‘i&ti&%ﬁ&ﬁ(ﬂﬂ&) ;ézso 49.005t | 2010-01-12 (%) GregOsborn
C++*53$’1§11‘E1§539é3&’ (ﬁiﬁﬁ) | 28248 89.007% 2009~09—27‘ ‘{ ;2)ijarne Stroustrup |
H@?%IEPEP@%& (aﬁch‘ﬁ) 7 Y28247 45.003'E 2009- 09-27nw.w (i } WBruce Croft

BEHE | %Iﬂﬁ %5)&) ir 26525 49007?: | 2009-04-03 "(#%) Richard A.Brualdi
EARHEREEIRE (%3 éél;{{}! 25060 | 7500% | 2008-12-25 | (%) WayeWol
WEER FESHN (EW 3R) 25364 49.00T = 2008-12-23 (%) MarkM.r;A;erschaertw ~-
RIS (3R 23918 5600% | 2008-05-09 (%)M , WHEH
SRR (£ B0) 2516 G600% | 2008-03-31 | (%) NelDale
»’rﬁ*mtﬂt (EITRR.SE1088) 23250 69.005t = 2008-03-31 (%) June JamnchParsons
BFRARRRE (R 2355 | 4800% | 20080331 (%) DowgasEComer
JavaiE SRR BRE (T gjsrﬁ) | 233677 I 66.007T 2008-02-7174 (% } Y.Daniel Liang -
— 23167 | 5900% = 2008-01-28 | | %) Changlu

¥Rt ENEREN (ﬁiﬁwi 22393 65005 = 2007-09-29 (%) D;v;c; ;Aoneys-;a:ns
HENNE—REHE (B B4R) 21401 | 85.005t = 2007-05-24 (%) Larry L.Peterson

émm 348 v 3 | 21198 éa.oo;‘: 2007-04_;; (%) Steven J.Leon N

MIPS‘W REMIEN (iﬁt)ﬁ%f&ﬂﬁ) 20681l “““ 65.00 = 2007-01-09 (%) Dominic Sweetman
&*ﬁiﬂ%iﬁSVerlogﬁﬂ‘ (B30) 20356 | 56.000t | 2006-12-12 (n0) Slephen Brown Zvonko Desié; |
\ntemetﬁ;ﬁéi}f (FSCRE. E4RR) ~~;0419 45.005t = 2006-12-07 { %) Douglas E. CoMrﬁ;er -
WIREHREERS . JavalB Bk 19876 = 55.007C 2006—10—17"””"“." (%) Mark Allen Weiss -

(BSThE. 208)

HEILASEE (30 E2R) | 19766 66.00L = 2006-09-13 (%) Yale N.Pstt SamayJ Patel
\nt;I#&&tiﬁﬁ (ESCPR.SB7RE) - 5 19609 880;5:!: 2006;)80;' 7 7‘(%) Barry B. Brey -

I *EFFIQV{“:I 5 %Iﬁﬁ %Zﬂﬁ)

19626 35 003%

2006-08-03

(%) Bnan w. Kemighan

ﬁj
LY ¥
4]l
",r:r*f b A

ﬁﬁﬁéwkjjﬁﬂilggw

oGO 9GO 22 GO 7T 92 GOER- 22 GO 2 GO~ 22O %GO~ %GOG0

A

HhF I R AT AR B .

HUAE Tl £ R 2) A 4 R 5 0 2 R O AR Y, 2B I3 e B BO R AR S5 v, SE MR
ERCHINAR S, HFhl e, WIS RS RPISRN), RO M S F R E 2 G RO i BB AR R A
B T B A AR A T AR HE B RIS R B AT R R R 2 9 BRI RO, B IR K SR ¥ Y !

TAEE (FREHTENRE)

: Oses Wk O3 Dl
1T D4t |HEFA B Oifif OB Okt
i £ E3:]
B B F bt
BE | za. Rl
BiE [,
Ba: E-mail
5 C A2 BN RS BH
5t
R EER | HFEE :
iRz
D% O% O COMBA Digg D—#
AS: M. OBFOK OF#E ORDERMR
RiE:
OxE O—
0% 0OF O# OMBA e e
AL N DROHK Cirail: Dl
HHHE
ERE v EEEE

EEEEAEEE/EEIE OB 0OF HR

X2 Sk

HEFRERUTEA—MARRLERER: (MHEEBRR)

b AEFEHEMEEHEHEH1S HBELATEHPL @H: 100037

B iE: (010) 68353079 88378995 fEH: (010)68995260 :
E-mail:hzedu@hzbook.com markerting@hzbook.com B %1% % Rhttp://www.hzbook.com 3 & i

I NS AR R, ¢ O ORE ST I o Yy L B 'y O L7 N 80 S 00, LY . O N i O e W o O LN - OB

EARE B

AR MLIRE, TRIm AR AR L TE K2 AR, s
FERKTE ARPFFR & NG T 2RI, BERXHRNES,
KEARFEBEARRE RN T ZHER B EFEL . MO, 76kt r R
W, EEMMVASEEREORBEEFERES S, HRIFERPRIFZEL
Jb = [F] ok B AR RHIF A B2 AR 2R, H T 7 AR O 2 LR} 22 34, N(LEE
TR aEE, SRR TEARNEZ, BREBEARME, XAR¥EED
P, HATEH A2 HAEH B R mEGR .

A, E2RERAKEMHES T, RETHRIL™ L & RS, *f
LA AA BTG K H 2188, XOHTRALEE R A AL RS, dE
PR MR EM R RAEHH R EBAEERE, AREGFERAR
JRe i] B A BUAR T, 36 S5 Aok E e Kt B ALRL 2 & R 1Y L+ 4 8] 7
TEM R e 2 MBEMAIA P2 ESEEZ 4L, Hitk, I#—#EIMEFE T
FALEAORE TR E AL E I A R BRI A HE S E A, St
R, AR EEM IR RS HZ 8.

BUB Tt hit e B 2 R A R RS “ MR E I BE RS . H 1998
IR, FODE TAEEASTE T #ik. BiIFRIMEFEM L, SidE24F
HIAHESS J1, Fe{1Y5 Pearson, McGraw-Hill, Elsevier, MIT, John Wiley &
Sons, Cengage FFitt A3 Z HMA RN T RIFHAERR, MLi1EA K
Bl F# A 8%) Andrew S. Tanenbaum, Bjarne Stroustrup, Brain W.
Kernighan, Dennis Ritchie, Jim Gray, Afred V. Aho, John E. Hopcroft, Jeff-
rey D. Ullman, Abraham Silberschatz, William Stallings, Donald E. Knuth,
John L. Hennessy, Larry L. Peterson % K& X —#Ht L MES, ML “if
BHBEAR" hERE AR, HFE) | R EBH. KEASENE
T, WIEARBLT XENAE S AL I

“SHEPRHEAS” B TAES R T BN EE w1 28, BN
M AR T HE RS- S, AR o A T BIEMF A M T
M TP AR 2 R 2 e T A e b 5%, AR Ry AT
FIRALEF ., 24, “HHEVREAR” SRR TEMETmbr, X
P P T RIFR DR, 2 SRR AR IEX B S
g, HIBER “2SFRRAEE" R A ok th iR i 2 S W3 2~ 1
FRTR A o

BUBIEE . ZMABA . — TR . PRRE R KA A S,
HEEZFERNGELAE T REMNRIE, BEEITEIRESER L IER
FE B A T 52 2 FBOM B R T R AL, 0RO B AT R AL M7 R
FIRLFRE B A— D F BB, RATH BARRRERSE, R BRI IE
BRATABX — A& B EER R, A7)Y I A AT
TAER ARG TR IE, BATAMBRRTTEWT

EZM UL . www. hzbook. com

B F BB 4. hzjsj@hzbook. com
BEZBiE. (010) 88379604
BEZEME, bR TEREE S EdA 5
BRBIZRAS . 100037

S FAHIE B BT

Preface

Why a New Book on Computer Systems?

There is excitement when you talk to high school students about computers. There is a
sense of mystery as to what is “inside the box” that makes the computer do such things as
play video games with cool graphics, play music—be it rap or symphony—send instant
messages to friends, and so on. The purpose behind this textbook is to take the journey
together to discover the mystery of what is inside the box. As a glimpse of what is to come,
let us say at the outset that what makes the box interesting is not just the hardware, but
also how the hardware and the system software work in tandem to make it all happen.
Therefore, the path we take in this book is to look at hardware and software together to
see how one helps the other and how together they make the box interesting and useful.
We call this approach “unraveling the box"—that is, resolving the mystery of what is in-
side the box: We look inside the box and understand how to design the key hardware el-
ements (processor, memory, and peripheral controllers) and the OS abstractions needed
to manage all the hardware resources inside a computer, including processor, memory, I/O
and disk, multiple processors, and network. Hence, this is a textbook for a first course in
computer systems embodying a novel integrated approach to these topics.

The book is intended to give the breadth of knowledge in these topics at an early
stage in a student’s undergraduate career (in computer science or computer engineering).
This text serves the need for teaching a course in an integrated fashion so that students
can see the connection between the architecture and the system software. The material
may be taught as a four-credit semester course, as a five-credit quarter course, or as a
two-quarter three-credit course sequence. A course based on this textbook would serve
well to prepare a student for more in-depth senior-level or graduate-level courses that
go deeper into computer architecture, operating systems, and networking, to cater to
specialization in those areas. Further, such a course kindles interest in systems early that
can be capitalized on to involve students in undergraduate research.

Key features of the book (in addition to processor and memory systems) include
the following;

1. a detailed treatment of storage systems;
2. an elaborate chapter devoted to networking issues; and

3. an elaborate chapter devoted to multiprocessing and multithreaded programming.

vi

Preface

Pedagogical Style

The pedagogical style taken in the book is one of “discovery” as opposed to “instruction” or
“indoctrination.” Further, the presentation of a topic is “top down” in the sense that the
reader is first exposed to the problem we are trying to solve and then initiated into the solu-
tion approach. Take, for example, memory management (Chapter 8). We first start with the
question, “What is memory management?” Once the need for memory management is un-
derstood, we start identifying software techniques for memory management and the corre-
sponding hardware support needed. Thus, the textbook almost takes a storytelling approach
to presenting concepts, which students seem to love. Where appropriate, we have included
worked-out examples of problems in the different chapters in order to elucidate a point.

Our focus in writing the textbook has always been on the students. One can see this
commitment to students in the number of worked-out examples in the textbook that help
solidify the concepts that were just discussed. In our experience as educators, we have seen
that students really appreciate getting a historical context (names of famous computer sci-
entists and organizations that have been instrumental in the evolution of computing) to
where we are today and how we got here. We sprinkle such historical nuggets throughout
the textbook. Additionally, we include a section on historical perspective in several chap-
ters where it makes sense. Another thing that we learned and incorporated from listening
to students is giving references to external work to amplify a point in context, rather than
as an afterthought. One can see this in the number of footnotes throughout the textbook.
Additionally, we also give bibliographic notes and pointers to further reading at the end of
each chapter in a section devoted to external references (textbooks and seminal work) that
may or may not be directly cited in the text, but should be useful to increasing the students’
knowledge base. Today, with the abundance of information via the Internet, it is often
tempting to point to URLs for additional information. However, we have desisted from this
temptation (except for the inclusion of reliable links published by authoritative sources).
Having said that, we know that students of this generation will go to the web first, before
they go to the library, and of course, they should. In this context, we would like to share a
note of caution to the students: Be judicious in your use of the Internet as a resource for in-
formation. Often, a Google search may be the quickest way to get information that you are
seeking. However, you have to sift the information to ensure its veracity. As a rule of
thumb, use the information from the web to answer curiosity questions or gossip. (How
did DEC go out of business? Why did Linux succeed while Unix BSD did not? What is the
history of thé Burroughs corporation? Who are the real pioneers in computer systems?) For
technical references (What is the pipeline structure of the Pentium 4? What is the instruc-
tion-set architecture of the VAX 11/7807?), seek out published books and refereed confer-
ence and journal papers (many of which are available online, of course).

Incidentally, this textbook grew out of teaching such an integrated course, every se-
mester from the fall of 1999, in the College of Computing at Georgia Institute of
Technology. In the beginning, the authors developed a comprehensive set of notes and
slides for the course and used two standard textbooks (one for architecture and one for
operating systems) as background reference material for the students to supplement the
course material. In the spring of 2005, we turned our courseware into a manuscript for
a textbook, because the students continually communicated to us a need for a textbook
that matched the style and contents of our course. An online version of this textbook

Preface

has been in use at Georgia Tech since the spring of 2005 for this course that presents an
integrated introduction to systems. The course is offered three times every year (includ-
ing summers), with over 80 students taking the course every semester. Thus, the man-
uscript has received continuous feedback and improvement from students taking the
course, for over 15 consecutive semesters, before going to print.

In designing the course from which this book was born, as well as in writing the
book, we have learned a lot from the way a first course in systems is taught at other in-
stitutions, and from a number of excellent textbooks. For example, the first course in
systems taught at MIT! has a long history and tradition, and is truly one of a kind. The
book [Saltzer, 2009] that grew out of that course is a great resource for students aspir-
ing to specialize in computer systems. In writing our book, we will freely admit that we
have been inspired by the pedagogical styles of [Ward, 1989] and [Kurose, 2006].

The Structure of the Book and Possible Pathways Through the Book

The intellectual content of the book is broken up into five modules. The roadmap that
follows suggests a possible pathway through the material. The pathway assumes a
roughly equal coverage of the architecture and operating systems topics.

1. Processor: The first module deals with the processor, and software issues associated
with the processor. We start by discovering how to design the brain inside the box?, the
processor. What are the software issues? Since computers are programmed, for the most
part, in high-level language, we consider the influence of high-level language (HLL) con-
structs on the instruction set of the processor (Chapter 2). Once we understand the de-
sign of the instruction set, we focus on the hardware issue of implementing the processor.
We start with a simple implementation of the processor (Chapter 3), and then go on to
consider a performance-conscious implementation with the use of pipelining techniques
(Chapter 5). The processor is a precious resource that has to be multiplexed among sev-
eral competing programs that may need to run on it, as illustrated by the video-game ex-
ample in Chapter 1 (see Section 1.3). It is the OS’s responsibility to use this resource well.
The module concludes with OS algorithms for processor scheduling (Chapter 6).

We expect each of Chapters 2, 3, 5, and 6 to require three hours of classroom in-
struction, with an hour of recitation help for each chapter.

2. Memory System: The second module deals with memory systems and memory hi-
erarchies. A computer program comprises code and data, and therefore needs space
in which to reside. The memory system of a computer is perhaps the most crucial
factor in determining its performance. The processor speed (measured in gigahertz
these days) may mean nothing if the memory system does not match that speed by
providing, in a timely manner, the code and data necessary for executing a program.
Whereas the size of memory systems is growing by leaps and bounds, thanks to ad-
vances in technology, applications’ appetite for using memory is growing equally
fast, if not faster. Thus, memory also is a precious resource, and it is the responsibility
of the OS to manage this resource well. The first part of this module concerns the OS

1. hup:/mit.edu/6.033/www/.

2. The anatomical allusion in the cover design is meant to illustrate the analogy of computing 10 the
networked distributed processing that happens so naturally in the human body.

vii

viii

Preface

algorithms for efficient management of memory and the architectural assists for support-
ing it (Chapters 7 and 8); the second part deals with the memory hierarchies that help to
reduce the latency seen by the processor when accessing code and data (Chapter 9).

We expect each of Chapters 7, 8, and 9 to require three hours of classroom
instruction, with an hour of recitation help for each chapter.

. Storage System: The third module deals with the I/O (particularly, stable storage) and

the file system. What makes the computer useful and interesting is being able to inter-
act with it. First, we deal with hardware mechanisms for grabbing the attention of the
processor away from the currently executing program (Chapter 4). These mechanisms
deal with both external events and internal exceptions encountered by the processor
during program execution. Associated with the hardware mechanisms are software is-
sues that address “discontinuities” in the normal program execution, which include
remembering our location in the original program and the current state of the program
execution. Next, we delve into the mechanisms for interfacing the processor to /O de-
vices and the corresponding low-level software issues such as device drivers (Chapter
10), with a special emphasis on the disk subsystem. This is followed by a comprehen-
sive treatment of the file system (Chapters 11) built on stable storage such as the disk.

We expect each of Chapters 4 and 10 to require three hours of classroom in-
struction and an hour each of recitation help; Chapter 11 should require six hours
of classroom instruction and two hours of recitation help.

. Parallel System: Computer architecture is a fast-changing field. Chip density, proces-

sor speed, memory capacity, etc., have all been showing exponential growth over the
last two decades and are expected to continue that trend for the foreseeable future.
Parallel processing is no longer an esoteric concept reserved for supercomputers. With
the advent of multicore technology that houses multiple CPUs inside a single chip, par-
allelism is becoming a commodity. Therefore, understanding the hardware and soft-
ware issues surrounding parallelism is necessary to answer the question “What is inside
a box?” This module deals with operating systems issues and the corresponding archi-
tectural features in multiprocessors for supporting parallel programming (Chapter 12).

We expect Chapter 12 to require six hours of classroom instruction, with two
hours of recitation help.

. Networking: In the world we live in, a box is almost useless unless it is connected

to the outside world. The multiplayer video game (introduced in Chapter 1), with
your friends as fellow players on the network, is a nice motivating example, but
even in our everyday mundane activities, we need the network for e-mail, web
browsing, etc. What distinguishes the network from other input/output devices is
the fact that your box is now exposed to the world! You need a language to talk to
the outside world from your box and deal with the vagaries of the network, such as
temporary or permanent disconnections. This module deals with the evolution of
networking hardware, and the features of the network protocol stack (which is part
of the operating system) for dealing with the vagaries of the network (Chapter 13).

We expect Chapter 13 to require six hours of classroom instruction, with two
hours of recitation help.

In a nutshell, Chapters 2 through 10 will require one week of instruction each;

Chapters 11, 12 and 13 will require two weeks of instruction each, rounding up a 15-week

Preface

semester. The hardware and software issues for each of the five modules are treated together
in this textbook. The suggested pathway above through the material follows this treatment.

It is possible to tilt the coverage unevenly between architecture and operating sys-
tems topics if one so chooses, without loss of continuity. Let us consider the processor
module. Chapters 3 and 5 deal with the hardware implementation issues of the proces-
sor. For a course that is more OS-oriented, Chapter 5, which deals with pipelined
processor implementation (starting from Section 5.7), may be lightly covered or skipped
altogether (depending on time constraints), without loss of continuity. Similarly, in a
course that is more architecture oriented, Chapter 6, dealing with processor scheduling
issues, may be skipped altogether, without loss of continuity.

In the memory module, Chapter 8 deals with details of page-based memory man-
agement, from an OS perspective. An architecture-oriented course could skip this chap-
ter if it so chooses, without loss of continuity. Similarly, an OS-oriented course may
choose to tone down the detailed treatment of cache memories in Chapter 9.

In the storage module, an architecture-oriented course may choose to tone down the
treatment of file systems coverage in Chapter 11, without concern over loss of continuity.

In the parallel module (Chapter 12), an architecture-oriented course may skip top-
ics such as OS support for multithreading and advanced topics such as multiprocessor
scheduling, deadlocks, and classic problems and solutions in concurrency; similarly, an
OS-oriented course may choose to skip advanced topics in architecture, such as multi-
processor cache coherence, taxonomy of parallel machines, and interconnection net-
works. Given the importance of parallelism, it would be prudent to cover the chapter as
completely as possible, subject to time constraints, in any course offering.

In the networking module (Chapter 13), an architecture-oriented course offering
may skip the detailed treatment of the transport and network layers (Sections 13.6 and
13.7, respectively). An OS-oriented course may choose to cover less of the link layer of
the protocol stack (Section 13.8) and the networking hardware (Section 13.9).

Where Does This Textbook Fit into the
Continuum of CS Curriculum?

Figure P1 shows the levels of abstraction in a computer system. We can try to relate the
levels of abstraction in Figure P1 to courses in a typical CS curriculum. Courses such as
basic programming, object-oriented design and programming, graphics, and HCI

Application (Algorithms Expressed in High-Level Language) Higre
Sequential and Combinational Logic Elements
Logic Gates
Transistors
Solid-State Physics '
V Lower

Figure P.1 Levels of abstraction in a computer system.

X

Preface

generally deal with higher layers of abstraction. Typically, computer science and com-
puter engineering curricula offer courses dealing with the fundamentals of digital elec-
tronics and logic design, followed by a course on computer organization that deals
purely with the hardware design of a computer. Beyond the computer organization
course (moving up the levels of abstraction shown in Figure P1), most curricula take a
stovepipe approach: distinct courses dealing with advanced concepts in computer
architecture, operating systems, and computer networks, respectively.

Design of computer systems is such an integrated process today that one has to seri-
ously question this stovepipe approach, especially in the early stages of the development
of a student in an undergraduate curriculum in computer science.

A course structured around the topics covered in this book is a unique attempt to
present concepts in the middle (covering topics in the shaded area of Figure P1—
systems software and their relationship to computer architecture) in a unified manner
in an introductory systems course. Such a course would serve as a solid preparation for
students aspiring to learn advanced topics in computer architecture, operating systemns,
and networking (Figure P2).

Figure P.2 Systems course sequence.

Preface

The prerequisites for a course structured around the topics covered in this textbook
are quite straightforward: basic logic design and programming, using a high-level lan-
guage (preferably, C). In other words, a fundamental understanding of the levels of ab-
stractions above and below the topics covered in this book (see Figure P1) is required.

There are excellent textbooks that cater to the fundamentals of digital electronics and logic
design, as well as fundamentals of programming. Similarly, there are excellent textbooks that
deal with advanced topics in computer architecture, operating systems, and computer network-
ing. What is missing is a simplified and integrated introduction to computer systems
that serves as the bridge between the fundamentals and the advanced topics. The aim
of this textbook is to serve as this bridge.

The boundary of computer science as a discipline has expanded. Correspondingly,
students coming into this discipline have varied interests. There is a need for CS curric-
ula to offer choices for students to pursue in their undergraduate careers. At the same
time, there is a responsibility to ensure that students acquire “core” knowledge in sys-
tems (broadly defined) regardless of these choices. We believe that a course structured
around this textbook would fulfill such a core systems requirement. If taught right, it
should give ample opportunity for students to pursue deeper knowledge in systems,
through further coursework. For example, our recommendation would be to have a
course based on this textbook in the sophomore year. In the junior year, the students
may be ready to take courses that are more design oriented—specializing in architec-
ture, operating systems, and/or networking—building on the basic concepts they
learned in their sophomore year via this textbook. Finally, in their senior year the stu-
dents may be able to take more conceptual courses on advanced topics in these areas.

The textbook balances the treatment of both architecture and operating systems top-
ics. It is the belief of the authors that students majoring in computer science should get an
equal treatment of the two topics early in their undergraduate preparation, regardless of
their career objectives. Certainly, students aspiring to becoming system architects, must
understand the interplay between hardware and software, as laid out in this textbook.
Even for students aspiring to specialize in software development, such an understanding
is essential to becoming better programmers. However, it is up to individual instructors
how much emphasis to place on the two topics. The good news is that the textbook allows
instructors to go into as much depth as they deem necessary, commensurate with the cur-
ricular structure existing in their institutions. For example, if an instructor chooses to
scale back on the architecture side, it would be quite easy to tread lightly on the imple-
mentation chapters addressing the processor (Chapters 3 and 5), without losing continu-
ity in the discourse. In discussing the structure of this textbook, we have already given
similar suggestions for each of the five modules that this textbook comprises.

Supplementary Material for Teaching
an Integrated Course in Systems

The authors fully understand the challenge an instructor faces in teaching an integrated
course in computer systems that touches on architecture, operating systems, and networking,

To this end, we make available a set of online resources. Since we have been
teaching this course—three offerings in each calendar year for the last 11 years—as a

xi

xii Preface

requirement for all computer science majors, we have amassed a significant collection
of online resources:

1. We have PowerPoint slides for all the topics covered in the course, making prepa-
ration and transition (from the stovepipe model) easy.

2. A significant project component dovetails each of the five modules. We have de-
tailed project descriptions of several iterations of these projects, along with software
modules (such as simulators) for specific aspects of the projects.

3. In addition to the problems at the end of each chapter, we have additional problem
sets for the different modules of the course, as well as homework problems and
midterm and final exams used thus far in the course.

Example Project Ideas Included in the Supplementary Material
Processor Design

Students are supplied with a data path design that is 90% complete. Students complete the
data path to help them become familiar with the design. Then they design the microcode-
based control logic (using a logic design software such as LogicWorks) for implementing a
simple instruction set using the data path. This allows the students to get a good under-
standing of how a data path functions and to appreciate some of the design tradeoffs. The
students get actual circuit design experience and functionally test their design, using the
built-in functional simulator of the logic design software.

Interrupts and Input/Output

Students take the design from the first project and add circuitry to implement an interrupt
system. Then they write (in assembly language) an interrupt handler. The circuit design
part of the project is once again implemented and functionally simulated using LogicWorks
software system. In addition, the students are supplied with a processor simulator that they
enhance with the interrupt support, and use it in concert with the interrupt handler, which
they write in assembly language. This project not only makes operation of the interrupt
system clear, but also illustrates fundamental concepts of low-level device input/output.

Virtual Memory Subsystem

Students implement a virtual memory subsystem that operates with a supplied processor
simulator. The students get the feel for developing the memory-management part of an
operating system through this project by implementing and experimenting with different
page replacement policies. The project is implemented in the C programming language.

Multi-Threaded Operating System

Students implement the basic modules of a multithreaded operating system, including
CPU and /O scheduling queues, on top of a simulator that we supply. They experiment
with different processor scheduling policies. The modules are implemented in C, using
pthreads. The students get experience with parallel programming, as well as exposure
to different CPU scheduling algorithms.

Preface

Reliable Transport Layer

Students implement a simple reliable transport layer on top of a simulated network layer
provided to them. Issues that must be dealt with in the transport layer include corrupt
packets, missing packets, and out-of-order delivery. This project is also implemented in
C, using pthreads.

A Note of Caution

We offer one word of caution as we launch on our journey to explore the insides of a com-
puter system: In a textbook that presents computer system design, it is customary to back
up concepts with numerical examples to illustrate the concepts. The past is indicative of the
future. If there is a constant in the technology landscape, it is change. When you buy a new
car, the minute it rolls out of the showroom, it becomes a used car. In the same manner, any
numbers we may use in the numerical examples as to the speed of the processor, or the ca-
pacity of memory, or the transfer rate of peripherals become outdated instantly. What en-
dure are the principles, which is the focus of this textbook. A comfort factor is that whereas
the absolute numbers may change with time—from megaHertz to gigaHertz, and
megabytes to gigabytes—the relative numbers stay roughly the same as technology ad-
vances, thus making the numerical examples in the textbook endure with time.

Acknowledgments

We are deeply indebted to several colleagues, nationally and internationally, who have
been either directly or indirectly responsible for the creation of this textbook. First and
foremost, we would like to thank Yale Patt, who, back in the summer of 2004 when we
described the course that we teach at Georgia Tech, told us in his inimitable forceful
style that we should write a textbook because there is a crying need for a book that pres-
ents the systems concepts in an integrated manner. We can honestly say that, but for his
encouragement, we may not have embarked on this path. Our colleagues at other insti-
tutions who deserve special mention for encouraging us to write this textbook include
Jim Goodman (University of Wisconsin-Madison and University of Auckland, New
Zealand), Liviu Iftode (Rutgers University), Phil McKinley (Michigan State University),
and Anand Sivasubramaniam (Pennsylvania State University and TCS). We are particu-
larly thankful to Jim Goodman for his careful reading of an early draft of the manuscript
and providing detailed feedback that helped improve the discourse tremendously.
Besides these folks, we received much positive reinforcement for our project from
several colleagues in other institutions who helped to get us started.

The first step was creating a manuscript for internal consumption by students at
Georgia Tech. We cannot thank the students of CS 2200 at Georgia Tech enough. The
feedback from several generations of students, who have used the online version of this
textbook since the spring of 2005, has been immensely useful in improving the presen-
tation clarity, refining specific worked-out examples in the text, providing historical
pointers that would interest the reader, and other contributions. In addition, three un-
dergraduate students helped with some of the artwork in this textbook: Kristin
Champion, John Madden, and Vu Ha.

xiii

xiv

Preface

Several colleagues in the College of Computing, including Nate Clark, Tom Conte,
Constantine Dovrolis, Gabriel Loh, Ken Mackenzie, and Milos Prvulovic, have given
suggestions and insightful comments that have helped clarify the discourse in this text-
book. We owe a lot to Constantine Dovrolis for suggestions and feedback on early drafts
of the networking chapter that have helped improve both the content and the ordering of
its presentation in that chapter. Ken Mackenzie’s suggestions helped us to come up with
a simple control regime for processor design in Chapter 3. Tom Conte gave detailed com-
ments on the pipelining chapter that helped in improving the clarity and the content.
Eric Rotenberg of North Carolina State University provided very useful feedback on early
drafts of the pipelining chapter. Junsuk Shin wrote the simple client—server socket code
that appears in the appendix. Our special thanks go to all of them.

We wish to thank Georgia Tech, and the vision of the College of Computing that
encourages such creative thinking on the teaching side. Indeed, it is the revision of the
entire undergraduate curriculum back in 1996 which started us on the path of looking
critically at how we teach our undergraduates and understanding what we are missing
in the curriculum that ultimately led us to develop a first course in systems as an inte-
grated offering spanning architecture, operating systems, and networking.

Being novices at book publishing, we turned to successful textbook authors to learn
from their experiences. Yale Patt (University of Texas), Jim Kurose (University of
Massachusetts), Jim Foley (Georgia Tech), Andy van Dam (Brown University), Sham
Navathe (Georgia Tech), Rich LeBlanc (Georgia Tech), and Larry Snyder (University of
Washington) deserve special mention. We cannot thank them enough for their generos-
ity in sharing their experiences as authors and guiding us through the various aspects of
book publishing, including choosing a publisher, working with an editor, framing ques-
tions for potential reviewers, and effectively using the reviews in revising the manuscript.

The manuscript went through several rounds of external review. Most of the anony-
mous reviewers were thoughtful and skillfully surgical in pointing out ways to improve the
manuscript. We are extremely grateful for their time and help in shaping the final product.

Our special thanks to Addison-Wesley for publishing our textbook. As our manu-
script editor in charge of overseeing the review process and giving us feedback on how
to improve the manuscript, Matt Goldstein has been superb. His style of looking over
our shoulders without being overbearing is unique. He has been patient with us when
we let schedules slip and has been unwaveringly supportive of the vision behind this
book project. Our thanks to Marilyn Lloyd, senior production manager at Pearson, who
was in charge of our textbook production. Our thanks go also to Jeff Holcomb, Chelsea
Bell, and Dan Parker of Pearson. As the project manager overseeing the day-to-day de-
tails of the production process, Dennis Free of Aptara and the Aptara staff, including
Jawwad Ali Khan and Rajshri Walia, and Brian Baker of Write With, Inc., deserve spe-
cial mention for bringing the production of this book to fruition in a timely manner.

Finally, we would like to thank our families for their love, understanding, and sup-
port, which sustained us throughout the writing of this book. As an aside, Umakishore’s
father was a famous novelist (with the pen-name “Umachandran”) with several fictional
books in Tamil to his credit; memories of him served as an inspiration for undertaking
this book-writing project.

Umakishore Ramachandran
William D. Leahy, Jr.

