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University of Washington
Abstract
Statistical Model of Thermal Stress Fracture of Ceramics
by Wayne Phillip Rogers

Chairman of the Supérvisory Committee:
Professor Ashley F. Emery
Department of Mechanical Engineering

A general model of fracture of ceramic materials under thermal stress conditions is
presented. The model is a hybrid of the Weibull-Batdorf statistical theory of fracture and
Stanley's modified approach to strength of brittle materials under transient stress
conditions. Both znalytcal and numerical soluticn techniques for temperature, stress and
probability of failure are presented. A procedure is described for incorporating the
statistical theory of fracture into a finite analysis of heat transfer and stress. The probability
of failure during a thermal stress cycle is predicted based on thermal and elastic constants,
thermal and mechanical boundary conditions, and mechanical strength parameters. A
technique is described for obtaining test-independent statistical strength parameters from
mechanical tests. Stwength was measured at room temperature and at high temperature in
three point bending. These results were compared to tests of disk specimens in concentric
ring flexure.

Theoretical predictions of failure probability as a function of thermal shock severity and
dme were compared to experimental results from rwo thermal shock tests, Four ceramic
materials were studied in the water quench test. The model accurately predicted the
statistical distributions of critical temperanure difference for all four materials. It was found
that boiling phenomena lead to a highly temperature dependent convection coefficient which
strongly affects the emperature disnibution, stress, and probability of failure.

A second thermal shock test, the brass rod contact test, was developed as a means of
producing well defined thermal boundary conditon, high rates of heat transfer, and a
uniform equibiaxial stress state in disk shaped specimens. The specimen temperature was



monitored in order to calibrate the convective heat mansfer coefficient directly. The time to
failure during the thermal shock test was measured acousically with a digital data
acquisition apparatus. A finite element analysis of the brass rod contact test, combined
with the statistical model of fracture, accurately described the experimental results for the
probability of failure as a function of initial specimen temperature and time.
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