YOUR UNIX
THE ULtimATE GUIDE

SuMITABHA DASs

Your UNIX

The Ultimate Guide

Sumitabha Das

Internetworking Consultant

Boston Burr Ridge, IL Dubuqudig MiEfleon, Wi NgyfYork San Francisco St. Louis
Bangkok Bogotd Caracas Kud™Wswmpur Lishefm London Madrid Mexico City
Milan Montreal New Delhi |Santiago Sequl Singapore Sydney Taipei Toronto

Preface

The limits of my language mean the limits of my world.
—Ludwig Wittgenstein

n an article in The Bell System Technical Journal published in 1978, Ken

Thompson and Dennis Ritchie introduced to the world a “general-purpose”
operating system offering a “high degree of portability.” That operating system was
UNIX. It has come a long way since then, and it is firmly entrenched today in its famed
position as the environment of choice for serious work. Whether it’s used for computer-
aided design or simulation in the laboratory, UNIX has been the platform that has aided
their development. UNIX gave birth to the C language. Enterprise-scale database appli-
cations run on UNIX. UNIX systems have also been behind the creation of Jurassic
Park and Titanic. Today, electronic commerce is fueled by UNIX.

However, the ride to fame hasn’t always been smooth. UNIX has constantly
drawn admirers and detractors alike. Beginners feel overwhelmed by its sheer weight
and are often unable to comprehend why UNIX behaves in a radically different man-
ner when compared with the Windows platform. Even experienced computer profes-
sionals feel lost in this mysterious universe, characterized by its arcane tools and cryp-
tic syntax. Windows isn’t like this at all; why was UNIX designed that way?

There’s a reason behind all this. UNIX was never designed for the world. A group
of programmers created it to run their own programs—programs that no one else
required. But the fact that it still managed to gain wide acceptance without any serious
marketing effort points to UNIX’s inherent strengths. Because it is rooted in open stan-
dards, UNIX has shown up in every hardware and now powers the Internet.

Even though UNIX is based on a few simple ideas, it is extremely rich in features—
features never seen or experienced before. UNIX has redefined what an operating sys-
tem should be and why many people need to master it. The UNIX “command line,”
with its myriad options and complex syntaxes, drove many people away. But these fea-
tures and the capability of these commands to act in combination are precisely what
make UNIX seem irreplaceable. This is what this book attempts to explain and advise:
There is a method to this madness.

A single textbook is never adequate to present all these features, but fortunately
I could select from this ocean those essential concepts that require specific attention.
This book makes no attempt to list all 24 options of the 1s command or all of the shell’s

vii

viii

Your UNIX: The Ultimate Guide

features. But it does discuss the ones that I consider important and shows you how to
apply them to real-world situations. I have treated these concepts in some detail, which
will benefit the beginner as well as the expert.

This book is well suited for use in a variety of UNIX courses related to intro-
ductory programming, operating systems and system administration—at both the intro-
ductory and more advanced levels. A knowledge of one operating system is preferable
even though the book makes no such assumption. However, the programming features
of the shell can be better understood by someone with a background of one program-

ming language.

Why You Must Know UNIX Today

As I see it, UNIX had to grow through four important phases in its life cycle. Initially,
it was considered a product for the engineering and scientific community. The initiated
couldn’t live without it; the others stayed away because it wasn’t “friendly” enough. A
lot of what we see in present-day UNIX is the result of the development work of these
universities and research institutes.

Next, the corporates took to UNIX. UNIX made significant inroads into large
corporations and government organizations. Its robustness established it as the operat-
ing system of choice for database work. Every RDBMS package, be it Oracle or
Sybase or Informix, has long been available on the major UNIX platforms. If you
wanted to be a good DBA (database administrator), you had to know UNIX.

The Internet is the third (and most significant) phase of the UNIX cycle. Many
of the things you see on the Net and the Web owe their origin to the hard and inspiring
work done by the UNIX community. TCP/IP was first ported to UNIX systems. Most
servers on the Net are UNIX machines. Internet Service Providers use UNIX machines.
perl, which operates behind all the forms that you see on the Web, is a UNIX product.
In short, the Internet is UNIX, and to understand its workings and exploit this technol-
ogy for local internets, one must know UNIX.

These years have also seen the silent but phenomenal growth of the Linux cult.
Linux is the free UNIX that has captivated the new generation of college students and is
now invading the commercial world. It is widely favored for its richness of Internet-
related tools. I see a great future ahead for Linux and feel compelled to include its impor-
tant features in this book. Even though Linux doesn’t use any of the original AT&T code,
it’s just as UNIX as any other flavor—in spirit, in philosophy—in everything.

Why You Should Actually Like UNIX
I am distressed by one trend that seems to emerge from recent adoptions of UNIX.
Many people are now entering UNIX through the “back door’-—and this back door is
the X Window system—the graphical windowing system offered on UNIX machines.
These people use UNIX in the same way they handle DOS or Windows and expect the
mouse to do all the work. They configure the system by filling up forms of menu-based
GUI applications, and they don’t even care to know the names of the files or which
entries are affected. Let’s make no mistake; you can’t learn UNIX this way. It takes lit-
tle time to get disillusioned and join the group of detractors.

Necessity apart, UNIX is actually fascinating. The system is based on its
commands, programs that are meant to do specific jobs. Commands use options, and

Preface

each option makes the command behave differently. Many of these commands can be
combined with one another (as filters) to perform complex tasks. Some of them even
use a powerful pattern matching feature (called regular expressions) that is used in
locating and substituting text. Add to all this a scripting language, and you have a tool
kit that sets no limits on the things that you can do with this system.

UNIX commands are generally noninteractive, and hence ideally suited for the
development of automated systems. You can do things in UNIX at the drop of a hat—
things which you simply can’t do in the windowing environment. Ask a Windows user
to convert a thousand files from BMP to GIF format; he’ll run away. If you know your
UNIX well, you can do that by writing just three or four lines of simple code. You don’t
need to click your mouse a thousand times (actually more).

The excitement that UNIX generates lies in the fact that many of its powers are
hidden. It doesn’t offer everything on a platter; it encourages you to create and inno-
vate. Figuring out a command combination or designing a script that does a complex
Jjob is a real challenge to the UNIX enthusiast. This is what UNIX is, and it had better
remain that way. If you appreciate this, then you are on the right track, and this book

is for you.

How the Book Is Organized

UNIX versions can be broadly divided into two different schools—the System V school
from AT&T Bell Laboratories and the Berkeley school from the University of Califor-
nia, Berkeley. More specifically, versions tend to be looked at as being either based on
SVR4 (System V Release 4—AT&T’s last release before winding up its UNIX opera-
tions) or on BSD UNIX (the UNIX created by Berkeley). This books attempts to por-
tray UNIX generically, keeping an eye on the adoption of its features by Solaris. Linux
is primarily BSD-based and has been treated in separate sections.

The subject matter is organized differently from what you would find in other
textbooks. Though a system component is often spread across multiple chapters, you’ll
find like material grouped together for ease of understanding and reference. Once you
understand this organization, locating a feature or a command shouldn’t be difficult:

Topic Chapters

Editors 4and S

File system 6, 7 and 21

Shell 8,17, 18 and 19
Process 10 and 22

TCP/IP and the Internet 11,13, 14, 23 and 24
Regular expressions 4,5,15,16 and 20
Filters 9,15, 16 and 20
System and Network Administration 21,22, 23 and 24

Allocation of a command or feature to a particular chapter is based on definite
principles. You probably won’t find a separate chapter on file attributes in other text-
books, but I have considered it necessary to maintain this arrangement. That’s why the
basic commands that act on file content (like cp, rm, 1p, compress and gzip) have been
separated from those that change or match the attributes only without disturbing the

Your UNIX: The Ultimate Guide

contents (like 1n, chown, chgrp and find). The first group can be found in Chapter 6,
while Chapter 7 exclusively handles file attributes.

In a similar manner, the shell makes its appcarance in three distinct forms: as an
interpreter (Chapter 8), as an environment customizer (Chapter 17) and as a program-
ming language (Chapters 18 and 19). I haven’t made the mistake of discussing shell
programming and job control in a single chapter as some people have done. I feel that
job control belongs to the realm of processes, even if it is a feature of the shell. That’s
why you’ll find it in Chapter 10 along with its other companions that display, kill and
schedule processes.

Now that you understand the basic overarching structure of the book, it’s time
you had a look at the organizational details of each chapter:

Chapter 1 takes you on a tour through two hands-on sessions to let you grasp
some of the important features of the system. Try out some of the commonly used
UNIX commands. Learn to use your keyboard when the system behaves unpredictably.
This exposure, when set against the background, also gives you an indication of things
to come. Learn the essential features of UNIX from this chapter.

Chapter 2 prepares you for understanding the syntax of UNIX commands—the
various forms its options and arguments can take. Learn to use the on-line UNIX doc-
umentation, especially the man command. The various facilities available in the system
not only let you find out what a command does but also locate the command that does
a specific job.

Chapter 3 discusses some useful stand-alone utilities. Some of these commands
report on the system’s parameters like the date (date) or the machine name (uname).
You’ll learn to change your password (passwd) and set your terminal’s characteristics
(stty). Many of these commands have been used in command pipelines and shell
scripts that are featured later in the book.

Chapter 4 presents comprehensive coverage of the vi editor, the most popular
text editor used on UNIX systems. Get to know the three modes and the commands
associated with each mode. Apart from performing the basic editing functions, learn
how to use a number with a command to repeat it. Knowledge of searching and sub-
stitution techniques also leads you to the first discussion on regular expressions. The
advanced features include configuration issues and are taken up in the “Going Further”
section at the end of the chapter.

Chapter 5 presents yet another editor—GNU emacs, which is not universally
available but is widely used. Learn the use of the [Ctri] and the [Meta] keys in fram-
ing command sequences, and the fully-worded commands when no key bindings are
available. Use regions and windows for productive editing and understand the superior
pattern search and substitution techniques. Learn to use the kill ring for retrieving mul-
tiple sections of copied and deleted text. Customization of the editor and its advanced
features are discussed in the end-of-chapter “Going Further” section.

Chapter 6 discusses files and directories. Understand the use of pathnames in
describing the parent—child relationship between them. Create and remove directories
(mkdir and rmdir) and navigate the file system (pwd and cd). Learn to create (cat >),
copy (cp), remove (rm) and print (1p) files. Find out how free your disk is (df) and
compress your files (compress, gzip and zip) to release space. No file attributes are

discussed in this chapter.

Preface

xi

All file and directory attributes are discussed in Chapter 7. Use the 1s command
with numerous options to display them. Change the permissions (chmod) and owner-
ship (chown and chgrp) of a file. Understand how permissions acquire a different
meaning when applied to directories. Use links (1n) to provide additional names to a
file without changing the inode number. Finally, use the find command to locate any
file or directory in the file system by specifying one or more file attributes. A file’s con-
tents are not disturbed in this chapter.

Chapter 8 is the first of four chapters reserved for the shell. Learn the use of
metacharacters to match multiple filenames with a single pattern. Redirect the input
and output streams of many commands to originate from or go to another file or
another command. Use quotes and the \ to remove the special meaning of these
metacharacters. The chapter also introduces the use of shell variables and shell scripts.

Chapter 9 develops on the stream-handling features of the shell to present a fam-
ily of commands (filzers) that use streams both for input and output. These are simple
filters that manipulate content in a limited way, like extracting sections from different
regions of a file (head, tail, cut and paste). Learn to sort a file (sort) and translate
a character (tr) into something else. Finally, use these commands in combination to
have a first taste of the much-hyped tool-building feature of UNIX.

The process management system comes next (Chapter 10). Find out how similar
files and processes are, and discover three types of commands in the system when
looked at from a process perspective. Understand how processes are created with fork
and exec, display their attributes (ps) and kill a runaway process (ki11). Learn to run
jobs in the background (nohup and &) and move them between background and fore-
ground (bg and fg). Also learn to change their priority (nice) and even schedule them
(at, batch and cron) for later operation.

We venture into the TCP/IP networking world in Chapter 11. Get introduced to
hostnames, IP addresses and domain names. Understand the role played by ports and
sockets to move a packet from one host to another. You’ll learn to log on to a remote
machine with telnet and rlogin. Also copy files between machines with ftp and
rcp. Use rsh to run a command remotely without logging in.

The GUI in UNIX comes next (Chapter 12) with a minimal discussion on the X
Window system. Understand how X is ideally suited for working in a TCP/IP network.
X clients need a separate program (the window manager) to control the look and feel
of its windows. Use the xterm client as the launching pad to run all applications. Con-
figure X to behave differently on startup (.xinitrc) and customize its resources.

Chapter 13 is all about electronic mail. Understand how the SMTP and POP pro-
tocols are used to handle mail. Here, apart from the standard mail command, use two
menu-based programs, elm and pine. Forward your mail (. forward) or leave behind
messages when you are away (vacation). Configure and use Netscape Messenger as
a superior mail handling tool. Learn to compose a group of messages offline, use the
address book and set up spam control. Mail can now handle multimedia attachments as
a multipart message. Understand MIME theory in the “Going Further” section.

Chapter 14 extends Chapter 11 to focus on the Internet and the World Wide Web.
Learn how the top-level domains are organized. Use a mailing list. Discover a domain-
like structure in newsgroups, and access Net News using tin and Netscape. Commu-
nicate with multiple persons using the Internet Relay Chat. Use URLs, HTTP and

xii

Your UNIX: The Ultimate Guide

HTML to access the Web. Customize Netscape Navigator to make Web browsing very
productive.

Filters make another appearance in Chapter 15 with two advanced text manipu-
lators. Search for a pattern with commands of the grep family (also egrep and fgrep).
Display lines containing and not containing the pattern, and their frequency of occur-
rence. Use sed as a multipurpose filtering tool and especially to substitute one pattern
for another. Here, we have the most exhaustive presentation of regular expressions dis-
cussed in a phased manner in three sections.

awk as a filter and a programming language makes its appearance in Chapter 16.
Break up a line into fields and manipulate each field individually. Use the comparison
operators and decimal numbers for computation. Make decisions and iterate within a
loop in true programming language style. Use the common awk variables and its built-
in functions, especially those that relate to string handling. You’ll need all this knowl-
edge to understand perl, which uses many of awk’s features.

The UNIX shell provides excellent opportunities to customize your environment
(Chapter 17). Use its variables to set the command search path, the terminal and the
prompt. Use the history facility to edit and re-run previous commands with simple key-
strokes. Devise aliases for frequently used commands, and let the shell complete file-
names and command names for you. Learn to place all customized settings in a startup
file. The discussions are presented separately for the Bourne shell, C shell, Korn shell
and bash.

Shell programming is introduced in Chapter 18. Develop both interactive (read)
and noninteractive scripts by passing arguments ($1, $2 etc.). Use the exir status of a
command to control program flow ($?) and the | | and && operators to act as simple con-
ditionals. Learn to use test to check strings and the file attributes. Use the wild-card han-
dling feature of case as a superior string checking tool. Exploit the $0 parameter to make
a script do different things depending on the name by which it is called. Use the standard
programing constructs if, while, until and for to develop three interesting scripts.

The shell’s advanced features are presented in Chapter 19 and include the special
features of the Korn and bash shells. Put values into positional parameters (set and
shift). Have another look at stream redirection with the here document and learn to
merge streams using special symbols. Use export to make variable values available in
sub-shells. Learn to use arrays and shell functions. Evaluate a command line twice (eval)
to develop scripts using numbered prompts and variables. Handle multiple streams using
exec. Finally, use trap to determine script behavior when it receives a signal.

We encounter perl in Chapter 20 as the finest and most powerful filter in the
UNIX world. Use the default variable $_ for condensing many statements. Split a line
into a list of variables or an array. Use a nonnumeric subscript with the associative
array. per1 uses all the regular expressions discussed so far, but it uses some of its own
too (the final discussion). Learn to handle external files and develop subroutines.
perl’s dominant role in Internet CGI programming is discussed in the chapter’s
“Going Further” section using a simple form-based HTML application.

The file system comes up for the last time in Chapter 21—this time from the sys-
tem administrative point of view. We discuss the device files and their unique attrib-
utes. Know all about partitions, file systems and inodes. Know the features of the var-

Preface

xiit

ious types of file systems and learn to mount and unmount them. Check the integrity of
a file system with the fsck command.

General system administration is taken up in Chapter 22. Learn about the pow-
ers and privileges of the super user. Maintain user accounts and groups. Enforce secu-
rity and learn two special permission modes of a file, the sticky bir and set-user-id.
Understand the role of init in the startup and shutdown procedure, and grasp the sig-
nificance of the fields in /etc/inittab. Make backups with tar and cpio. The end-
of-chapter “Going Further” section discusses printer administration and the scripts
used by init.

We turn to network administration in Chapter 23 and understand how IP
addresses are allocated in a TCP/IP network. Learn to configure your network interface
(ifconfig), routing (route) and display the network statistics (netstat). Understand
how inetd controls the ftp, telnet and POP services. Connect your machine to the
Internet with the Point-to-Point Protocol (PPP) using two tools, dip and chat. Make
your directories and file systems shareable using the Network File System (NFS).

Finally, use your Linux machine to set up three important Internet services for a
fictitious network—name service (DNS), email and Web (Chapter 24). Set up the mas-
ter, slave and caching-only server using BIND 8. Understand how sendmail works, and
configure the important parameters in /etc/sendmail.cf to set up standard mail server
configurations. Understand the utility of aliases for forwarding mail and use fetchmail
to download mail from a remote POP server. Also set up the httpd Web service using
Apache. Learn to control CGI script execution, virtual hosts and directory access.

How This Book Is Different

At the outset, let me maintain that I made no conscious decision to make this book dif-
ferent from others. Facing a UNIX box was my first encounter with computers—even
before I knew what an operating system was. [had no expectations, no sides to take
and no one to offer me guidance. Having been out there “in the cold,” I feel that the
stumbling blocks to understanding UNIX are often different from what they are per-
ceived to be. I couldn’t wholeheartedly embrace the way people wrote on the subject,
and instead conceived my own idea of the “true” UNIX book—a book that people
would like to have with them all the time. The implementation of this idea, spurred by
the instant delight that I developed in the subject, automatically sets this book apart
from others. There are five important points to consider:

1. Clarity of Expression
UNIX concepts are sometimes abstract, and when they are not, their relevance to the
real world is not often appreciated. I believe that every concept has to be dissected
properly to expose its design considerations. Why was the feature conceived in the first
place? Where can one apply it? Is the standard explanation clear? Do the examples
leave behind gray areas of understanding? If we don’t have positive answers to all these
questions, then we are most certainly in a state of ambiguity and confusion,

This book makes sure every concept is explained the way it needs to be. Take, for
instance, one of the basic tenets of the UNIX system, standard output. We are told what
standard output is, but I have not been impressed with the way it has been explained in

xiv

Your UNIX: The Ultimate Guide

the books. On the other hand, I felt that the sequence who > newfile is better com-
prehended in this way (p. 239):

How many people know for a fact that a command has no knowledge of
the source of its input and output? Or that there are important implications involved
when choosing to use we < foo in preference to we foo (p. 240)? When do you
need to make a command ignorant of the source of its input (p. 247)? Does the \ in
echo "Enter your name \c" really remove a special meaning as it is normally known
to do (p. 237)? You must know the answers to these questions before you satisfy your-
self that you have understood the shell.

To take another example, why do I often hear that the command line
find /home -name index.html -print is difficult to remember? Only because many
people don’t care to split find’s arguments into three components (p. 218):

Take a look at Table 7.5 (p. 220) and you’ll find the selection criteria separated
from the action, and presented in roughly the same sequence the 1s -1 command pres-
ents the file attributes. I haven’t seen it organized this way in any other book, and yet I
strongly feel that a power user of find needs to look at the command in this way.

There are so many other things that you need to know and yet aren’t properly
explained in the standard books. This book explains why file ownership is so important
(p. 208) and how to use the sticky bit to implement group projects (p. 680). You’ll dis-
cover three important application areas where links can be used (p. 215). How does the
shell that greets you on login differ from the one that runs your scripts (p. 523)? Why
mustn’t the cd command run in a sub-shell (p. 298)? Will a message addressed to
joe winter <winterj@sasol.com> reach him if we misspelled joe (p. 368—Note)?
You'’ll find answers to all these questions (and many, many more) in this book.

2. Both Elementary and Comprehensive
One of my reviewers had earlier observed (before he reviewed this book) that the prob-
lem with writing a good semester-length UNIX book is that you need something ele-

Preface

XV

mentary enough for beginning students but comprehensive and “referency” enough for
the same students to use as they advance. Making a book that fits into both slots was
perhaps the most difficult task I faced, but it seems that this has now been achieved.
The final judgment, however, is reserved for you.

This book has an enormous amount of information laid out in a structured manner—
much more than can be expected from a book of this size. I have tried to present infor-
mation that is easy to understand and yet devoid of verbiage. While I didn’t deviate
from the goal of grouping like material, I also made sure that advanced material was
segregated from the essential by locating it at the end of a chapter. Each page there is
highlighted with the “Going Further” tab. A beginner should simply ignore these por-
tions during the initial pass.

I felt the need to provide as many examples as I could; in fact, some of the tables
contain just examples. Just take a look at the ways chmod is used in Table 7.3 (p. 205)
and discover an undocumented feature! Or the way the shell’s wild cards are used with
commands in Table 8.1 (p. 231). Since cron is an indispensable scheduling tool, the
significance of the fields of its configuration file is presented with a good number of
examples in Table 10.3 (p. 313). Sometimes, I have combined a concept and an exam-
ple in the same table. You’ll appreciate regular expressions better if you study the
entries in Table 15.2 (p. 441).

This book is also a comprehensive reference. Important commands have their
options listed in their own tables, and the chapters on vi and emacs editors have lots of
tables. Once you know how to use one editor, you'll find Appendix B (p. 781) useful
(where vi and emacs are compared feature for feature) to learn the other. Does the C shell
use functions? Or what’s the role of the command that is itself named command in the Korn
and bash shells? Just look up Appendix D (p. 795) where all the four shells are compared
in detail. We all know that regular expressions are used differently by the major filters, but
can you recall whether grep uses the \b escape sequence? There’s no need to experiment
any longer, the regular expression matrix says it all “in one place” (Appendix C, p. 791).

This book is also characterized by the presence of section references everywhere.
Each chapter opens with a statement of objectives with pointers to the section numbers.
A list of the key terms introduced is also presented at the end with similar references.
Both forward and reverse referencing have also been made in the main text:

Sometimes, you’ll want to know not what a command does, but the command
that actually performs a specific function. How does one display lines in double space?
Or select those that contain or don’t contain a pattern? Does UNIX have any tool that
presents lines in reverse order? What are the various copying facilities available?
There’s a specially prepared HOWTO document (Appendix E, p. 807) that you’ll find
enormously useful for these lookups, as these sample lines will reveal:

xvi

Your UNIX: The Ultimate Guide

How to do or display Command Page no.
copy directory tree cp -r 178
copy file between machines ftp 329
copy file between machines without authentication rcp 336
lines containing pattern grep 434
lines in ASCII collating sequence sort 275
lines in double space pr -d -t 267
lines in reverse order tail -r 272
lines not containing pattern grep -v 438

If you fail to locate a key term, there’s a comprehensive glossary that comes to
your rescue (Appendix G, p. 819). Special attention has also been given to the index. In
addition to the general index, you have access to specially prepared indexes for the vi
and emacs editors. A comprehensive set of over 200 commands discussed in this book
has also been indexed separately. There’s also a separate index for the shells that are

featured in the book.

3. Realistic lllustrations

These days you’ll find UNIX books filled with lots of illustrations, but how many of
them truly explain a concept? Even though I probably have not used as many illustra-
tions as some authors have, I have tried to make them more effective. For instance, the
following illustration looks at standard output in a rather different way:

FIGURE 8.2 The Three Destinations of Standard Output

AN
File

Terminal
(Default)

Pipe

You probably won’t have seen standard output portrayed in this manner, but this
figure answers many queries. Did it ever occur to you that standard output has three
possible destinations? This figure easily replaces a thousand words.

There are many more compelling illustrations. The complexity of the shell’s
behavioral pattern breaks down when you take a look at Fig 8.1 (p. 229). The process

Preface xvii

killing mechanism becomes much easier to comprehend by drawing an analogy with a
radar, a gun and an aircraft in Fig 10.2 (p. 308). And you should find the presence of
the postman in Fig. 13.7 (p. 379) quite meaningful when figuring out how SMTP and
POP handle electronic mail.

4. Strong Learning Aids

The idea of reminding a reader about an important topic has always been uppermost in
my mind, even though it may have already been mentioned in the text. In fact, these
pedagogical aids are a strong feature of this book, and you’ll find over 400 instances
of such aids in this text. They take on various names, for example, Note, Caution, and
Tip. Here’s an instance of the first type:

UNIX is an unusual system; it seldom warns you when you are about to do some-
thing disastrous. Yet, the reader would like to be cautioned against taking this disas-
trous step. If you are going to schedule jobs using the crontab command, then this is
something you must keep in mind:

As mentioned before, many of UNIX’s mysteries are hidden. A good tip can
often save hours of effort, and I have chosen to provide lots of them in this book. Do
you really have to quit the vi editor every time you want to execute the currently edited
shell or perl script? No, you don’t:

xviii

®

C Shell

Your UNIX: The Ultimate Guide

This book is not about Linux per se, but I consider Linux to be an important mem-
ber of the UNIX family. In general, Linux commands have more options, and some of
them are absolute beauties! I have highlighted features that are either unique to Linux
or handled differently by it. Such instances are easily located; just look for the penguin:

GNU grep has a nifty option that locates not only the matching line, but also a cer-
tain number of lines above and below it. For instance, you may want to know what
went before and after the foreach statement that you used in a perl script:

$ grep -1 "foreach" count.pl One line above and below
print ("Region List\n");
foreach $r_code sort (keys(%regionlist)) {

print ("$r_code : $region{$r _code} : $regionlist{$r_code}\n") ;

The command locates the string foreach and displays one line on either side of it.
Isn’t this feature useful?

Even though I have used the Bourne shell as the “base” shell in this book, most
discussions focus on the other shells—C shell, Korn shell and bash. Rather than have
separate chapters for them, I have first discussed a concept in a general manner and
then highlighted a shell-specific feature in a separate aside box:

The standard error is handled differently by the C shell, so the examples of this sec-
tion won’t work with it. In fact, the C shell merges the standard error with the stan-
dard output; it has no separate symbol for handling standard error only.

5. Numerous Questions and Exercises

This book features an enormous number of questions that test the reader’s knowl-
edge—over 900 of them. More than a third of them are Self-Test questions, and their
answers are provided in Appendix H. These questions are all targeted toward beginners
who will do well to answer them before moving on to the next chapter.

More rigorous and extensive questioning is reserved for the Exercises section.
Some of them pose real challenges, and it may take you some time to solve them. These
exercises reinforce and often add to your knowledge of UNIX, so don’t ignore them.
The answers to these questions are available to adopters of the book at the book’s Web
site http://www.mhhe.com/das. You’ll find a lot of additional material on this site that
you can use to supplement this book.

Final Words of “Wisdom”

All examples have been tested with a number of UNIX and Linux systems, but I sim-
ply can’t guarantee that they will run error-free on every system. UNIX fragmentation
makes sweeping generalizations virtually impossible. It is quite possible that some
commands may either not be available or may throw out different messages on your

Preface

xix

system. You have to take this in your stride, and you need not automatically conclude
that the system has bugs. Nevertheless, bugs in these examples are still possible, and 1
welcome ones (along with all your suggestions at sumitabha@vsnl.com) that you may
hit upon.
Before I take leave, a note of caution would be in order. Many people missed the
UNIX bus through confused and misguided thinking and are now regretting it. They
fell for the mouse, and the mouse couldn’t deliver much. Don’t let this happen to you.
It doesn’t have to if you don’t want it to—at least, not any longer. Learn to use the tools
of the system and build on them without reinventing the wheel. You’ll find a world of
opportunity and excitement opening up. Approach the subject with zeal and confi-
dence; I am with you.

Sumitabha Das

XX

Your UNIX: The Ultimate Guide

Conventions Used in This Book

The key terms used in the book (like regular expression) are shown in a bold font.
Apart from this, the following conventions have been used in this book:

Commands, internal commands and user input in examples are shown in bold
constant width font:

Many commands in more including f and b use a repeat factor.
The shell features three types of loops—while, until and for.
Enter your name: henry

Apart from command output, filenames, strings, symbols, expressions, options
and keywords are shown in constant width font. For example:

Most commands are located in /bin and /usr/bin.

Try doing that with the name gordon lightfoot.

Use the expression wilco[cx]k*s* with the -1 option.

The shell looks for the characters >, < and << in the command line.
The -mtime keyword looks for the modification time of a file.

Machine and domain names, email addresses, newsgroups and URLs are dis-
played in italics:
When henry logs on to the machine uranus
The RFCs are available at rs.internic.net.
User henry on this host can be addressed as henry@calcs.planets.com.
Every beginner should subscribe to news.announce.newusers.
Download the plugin software from Astp.//www.shockwave.com.

Place-holders for filenames, terms, header text, menu options and explanatory
comments within examples are displayed in italics:

Use the -f filename option if this doesn’t work.
..... to develop a set of standard rules (protocols)
We’ll ignore the C header. STIME shows the time the process started.

Use Edit>Preferences to configure Netscape.
$cd ../.. Moves two levels up

The following abbreviations, shortcuts and symbols have been used:

SVR4—System V Release 4
sh—Bourne shell

c¢sh—C shell

ksh-—Korn shell

ksh93—The ksh93 version of the Korn shell

$HOME /fIname—The file flname in the home directory
~/flname—The file fIname in the home directory

foo, bar and foobar—Generic file and directory names as used on USENET
.... for lines that are not shown

This box O indicates the space character,

This pair of arrows == indicates the tab character.

Preface

xxi

Acknowledgments
A book of this type requires lots of input from people, and I have been fortunate
enough to have all the support I needed. First and foremost, I must acknowledge the
real debt of gratitude that I owe to Ananda Deb, without whom this book would not
have seen the light of the day. Selflessly, he looked after all my hardware, software and
system and network administration requirements, and if that is not enough, he is also
responsible for rendering most of the illustrations of this book.

Thanks to all my reviewers for their positive and constructive suggestions related
to the book organization and content:

Clare Nguyen DeAnza College

Donald M. Needham U.S. Naval Academy

John Berezinski Northern Illinois University
Karen Atkinson Rochester Institute of Technology
Ronald J. Thomson Central Michigan University
Shashi Shekhar University of Minnesota

Tony Marsland University of Alberta

Vibha Mahajan deserves thanks for her initial groundwork. I can quite under-
stand the pain she had to go through in allowing her own project to be put into abeyance
while Thomas Casson engaged me in this one. Full marks to the publisher and his
highly responsive team for the harmonious way they worked to ensure the smooth pas-
sage of this ambitious project. Thanks to the ubiquitous Melinda Dougharty for seeing
to it that I stayed on course by constantly providing me with feedback and her own
advice that helped me write the book. Her razor-sharp analysis of what this book
should contain and how the material needed to be organized remains a classic piece of
work by itself.

Rebecca Nordbrock deserves praise for the admirable way she conducted the
editing and typesetting activities. She kept her cool throughout, even as last-minute
changes were being carried out to make the book more reader-friendly. Heather Bur-
bridge has been a real help to us through her activities as liaison and the special inter-
est she has taken in this project. Thanks to Gina Hangos for taking care of the manu-
facturing process and making sure that deadlines were met.

If you find the book everywhere, it’s simply because of John Wannemacher. The
marketing manager, who also came up with the title of this book, has great faith in its
potential and is responsible for creating the awareness that we all feel it deserves. If
you have liked the cover and interior design, then think of Kiera Cunningham, who was
instrumental in handling these elements. If the Web site for this book appeals to you,
then we have Phil Meek to thank. Thanks are also due to designer, Pam Verros, and
copy editor, Jill Barrie. The exhaustive set of indexes owes its origin to Richard Shrout.
This book was a challenge for any compositor, but Lachina Publishing Services rose to
the occasion admirably. Space constraints don’t permit mentioning everyone by name;
but thanks just the same.

Malay Mitra has been with me ever since I got into UNIX and has been provid-
ing me with valuable information and tips as and when I needed them. There have been
helpful suggestions from J.P. Mathew on matters related to Linux. Kawaljit Gandhi was

at my side when it came to the Internet and perl.

