'Erlan:d'v]onsvs‘On .
Alfonso Valdes
‘Magnus Almgren (Eds.)

Recent Advances in
Intrusion Detection

7th International Symposium, RAID 2004
Sophia Antipolis, France, September 2004
Proceedings

LNCS 3224

@ Springer

Erland Jonsson Alfonso Valdes
Magnus Almgren (Eds.)

Recent Advances in
Intrusion Detection

7th International Symposium, RAID 2004
Sophia Antipolis, France, September 15-17, 2004
Proceedings

@ Springer

Volume Editors

Erland Jonsson

Magnus Almgren

Chalmers University of Technology

SE-412 96 Goteborg, Sweden

E-mail: {erland.jonsson, magnus.almgren} @ce.chalmers.se

Alfonso Valdes

SRI International

333 Ravenswood Ave., Menlo Park, CA 94025, USA
E-mail: alfonso.valdes @sri.com

Library of Congress Control Number: 2004111363

CR Subject Classification (1998): K.6.5, K.4, E.3, C.2, D.4.6

ISSN 0302-9743
ISBN 3-540-23123-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Olgun Computergrafik
Printed on acid-free paper SPIN: 11322924 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3224

Lecture Notes in Computer Science

For information about Vols. 1-3104

please contact your bookseller or Springer

Vol. 3232: R. Heery, L. Lyon (Eds.), Research and Ad-
vanced Technology for Digital Libraries. XV, 528 pages.
2004.

Vol. 3224: E. Jonsson, A. Valdes, M. Almgren (Eds.), Re-
cent Advances in Intrusion Detection. XII, 315 pages.
2004.

- Vol. 3223: K. Slind, A. Bunker, G. Gopalakrishnan (Eds.),
Theorem Proving in Higher Order Logic. VIII, 337 pages.
2004.

Vol. 3221: S. Albers, T. Radzik (Eds.), Algorithms — ESA
2004. X VIII, 836 pages. 2004.

Vol. 3220: J.C. Lester, R.M. Vicari, F. Paraguacu (Eds.),
Intelligent Tutoring Systems. XXI, 920 pages. 2004.

Vol. 3208: H.J. Ohlbach, S. Schaffert (Eds.), Principles
and Practice of Semantic Web Reasoning. VII, 165 pages.
2004.

Vol. 3207: L.T. Jang, M. Guo, G.R. Gao, N.K. Jha, Embed-
ded and Ubiquitous Computing. XX, 1116 pages. 2004.

Vol. 3206: P. Sojka, I. Kopecek, K. Pala (Eds.), Text,
Speech and Dialogue. XIII, 667 pages. 2004. (Subseries
LNAI).

Vol. 3205: N. Davies, E. Mynatt, I. Siio (Eds.), UbiComp
2004: Ubiquitous Computing. XVI, 452 pages. 2004.

Vol. 3203: J. Becker, M. Platzner, S. Vernalde (Eds.), Field
Programmable Logic and Application. XXX, 1198 pages.
2004.

Vol. 3199: H. Schepers (Ed.), Software and Compilers for
Embedded Systems. X, 259 pages. 2004.

Vol. 3198: G.-J. de Vreede, L.A. Guerrero, G. Marin
Ravent6s (Eds.), Groupware: Design, Implementation and
Use. XI, 378 pages. 2004.

Vol. 3194: R. Camacho, R. King, A. Srinivasan (Eds.), In-
ductive Logic Programming. XI, 361 pages. 2004. (Sub-
series LNAI).

Vol. 3193: P. Samarati, P. Ryan, D. Gollmann, R. Molva
(Eds.), Computer Security — ESORICS 2004. X, 457
pages. 2004.

Vol. 3192: C. Bussler, D. Fensel (Eds.), Artificial Intel-
ligence: Methodology, Systems, and Applications. XIII,
522 pages. 2004. (Subseries LNAI).

Vol. 3189: P.-C. Yew, J. Xue (Eds.), Advances in Computer
Systems Architecture. XVII, 598 pages. 2004.

Vol. 3186: Z. Bellahseéne, T. Milo, M. Rys, D. Suciu, R.
Unland (Eds.), Database and XML Technologies. X, 235
pages. 2004.

Vol. 3185: M. Bernardo, F. Corradini (Eds.), Formal Meth-
ods for the Design of Real-Time Systems. VII, 295 pages.
2004.

Vol. 3184: S. Katsikas, J. Lopez, G. Pernul (Eds.), Trust
and Privacy in Digital Business. XI, 299 pages. 2004.

Vol. 3183: R. Traunmiiller (Ed.), Electronic Government.
XIX, 583 pages. 2004.

Vol. 3182: K. Bauknecht, M. Bichler, B. Proll (Eds.), E-
Commerce and Web Technologies. XI, 370 pages. 2004.

Vol. 3181: Y. Kambayashi, M. Mohania, W. W68 (Eds.),
Data Warehousing and Knowledge Discovery. XIV, 412
pages. 2004.

Vol. 3180: F. Galindo, M. Takizawa, R. Traunmiiller
(Eds.), Database and Expert Systems Applications. XXI,
972 pages. 2004.

Vol. 3179: EJ. Perales, B.A. Draper (Eds.), Articulated
Motion and Deformable Objects. XI, 270 pages. 2004.

Vol. 3178: W. Jonker, M. Petkovic (Eds.), Secure Data
Management. VIII, 219 pages. 2004.

Vol. 3177: Z.R. Yang, H. Yin, R. Everson (Eds.), Intelli-
gent Data Engineering and Automated Learning - IDEAL
2004. XVIII, 852 pages. 2004.

Vol. 3176: O. Bousquet, U. von Luxburg, G. Ritsch (Eds.),
Advanced Lectures on Machine Learning. VIII, 241 pages.
2004. (Subseries LNAI).

Vol. 3175: C.E. Rasmussen, H.H. Biilthoff, B. Schélkopf,
M.A. Giese (Eds.), Pattern Recognition. X VIII, 581 pages.
2004.

Vol. 3174: F. Yin, J. Wang, C. Guo (Eds.), Advances in
Neural Networks - ISNN 2004. XXXV, 1021 pages. 2004.

Vol. 3172: M. Dorigo, M. Birattari, C. Blum, L.
M.Gambardella, F. Mondada, T. Stiitzle (Eds.), Ant
Colony, Optimization and Swarm Intelligence. XII, 434
pages. 2004.

Vol. 3170: P. Gardner, N. Yoshida (Eds.), CONCUR 2004
- Concurrency Theory. XIII, 529 pages. 2004.

Vol. 3166: M. Rauterberg (Ed.), Entertainment Computing
- ICEC 2004. XXIII, 617 pages. 2004.

Vol. 3163: S. Marinai, A. Dengel (Eds.), Document Anal-
ysis Systems VI. XII, 564 pages. 2004.

Vol. 3162: R. Downey, M. Fellows, F. Dehne (Eds.), Pa-
rameterized and Exact Computation. X, 293 pages. 2004.

Vol. 3160: S. Brewster, M. Dunlop (Eds.), Mobile Human-
Computer Interaction — MobileHCI 2004. XVIII, 541
pages. 2004.

Vol. 3159: U. Visser, Intelligent Information Integration
for the Semantic Web. XIV, 150 pages. 2004. (Subseries
LNAI).

Vol. 3158: 1. Nikolaidis, M. Barbeau, E. Kranakis (Eds.),
Ad-Hoc, Mobile, and Wireless Networks. IX, 344 pages.
2004.

Vol. 3157: C. Zhang, H. W. Guesgen, W.K. Yeap (Eds.),
PRICAI 2004: Trends in Artificial Intelligence. XX, 1023
pages. 2004. (Subseries LNAI).

Vol. 3156: M. Joye, J.-J. Quisquater (Eds.), Cryptographic
Hardware and Embedded Systems - CHES 2004. X111, 455
pages. 2004.

Vol. 3155: P. Funk, P.A. Gonzélez Calero (Eds.), Advances
in Case-Based Reasoning. XIII, 822 pages. 2004. (Sub-
series LNAI).

Vol. 3154: R.L. Nord (Ed.), Software Product Lines. XIV,
334 pages. 2004.

Vol. 3153: J. Fiala, V. Koubek, J. Kratochvil (Eds.), Math-
ematical Foundations of Computer Science 2004. XIV,
902 pages. 2004.

Vol. 3152: M. Franklin (Ed.), Advances in Cryptology —
CRYPTO 2004. XI, 579 pages. 2004.

Vol. 3150: G.-Z. Yang, T. Jiang (Eds.), Medical Imaging
and Augmented Reality. XII, 378 pages. 2004.

Vol. 3149: M. Danelutto, M. Vanneschi, D. Laforenza
(Eds.), Euro-Par 2004 Parallel Processing. XXXIV, 1081
pages. 2004.

Vol. 3148: R. Giacobazzi (Ed.), Static Analysis. XI, 393
pages. 2004.

Vol. 3146: P. Erdi, A. Esposito, M. Marinaro, S. Scarpetta
(Eds.), Computational Neuroscience: Cortical Dynamics.
XI, 161 pages. 2004.

Vol. 3144: M. Papatriantafilou, P. Hunel (Eds.), Principles
of Distributed Systems. XI, 246 pages. 2004.

Vol. 3143: W. Liu, Y. Shi, Q. Li (Eds.), Advances in Web-
Based Learning — ICWL 2004. X1V, 459 pages. 2004.

Vol. 3142: J. Diaz, J. Karhumiiki, A. Lepisto, D. Sannella
(Eds.), Automata, Languages and Programming. XIX,
1253 pages. 2004.

Vol. 3140: N. Koch, P. Fraternali, M. Wirsing (Eds.), Web
Engineering. XXI, 623 pages. 2004.

Vol. 3139: FE.lida, R. Pfeifer, L. Steels, Y. Kuniyoshi (Eds.),
Embodied Artificial Intelligence. 1X, 331 pages. 2004.
(Subseries LNAI).

Vol. 3138: A. Fred, T. Caelli, R.P.W. Duin, A. Campilho,
D.d. Ridder (Eds.), Structural, Syntactic, and Statistical
Pattern Recognition. XXII, 1168 pages. 2004.

Vol. 3137: P. De Bra, W. Nejdl (Eds.), Adaptive Hyperme-
dia and Adaptive Web-Based Systems. XIV, 442 pages.
2004.

Vol. 3136: F. Meziane, E. Métais (Eds.), Natural Language
Processing and Information Systems. XII, 436 pages.
2004.

Vol. 3134: C. Zannier, H. Erdogmus, L. Lindstrom (Eds.),
Extreme Programming and Agile Methods - XP/Agile
Universe 2004. XIV, 233 pages. 2004.

Vol. 3133: A.D. Pimentel, S. Vassiliadis (Eds.), Computer
Systems: Architectures, Modeling, and Simulation. XIII,
562 pages. 2004.

Vol. 3132: B. Demoen, V. Lifschitz (Eds.), Logic Program-
ming. XII, 480 pages. 2004.

Vol. 3131: V. Torra, Y. Narukawa (Eds.), Modeling De-
cisions for Artificial Intelligence. XI, 327 pages. 2004.
(Subseries LNAI).

Vol. 3130: A. Syropoulos, K. Berry, Y. Haralambous, B.
Hughes, S. Peter, J. Plaice (Eds.), TeX, XML, and Digital
Typography. VIII, 265 pages. 2004.

Vol. 3129: Q. Li, G. Wang, L. Feng (Eds.), Advances
in Web-Age Information Management. XVII, 753 pages.
2004.

Vol. 3128: D. Asonov (Ed.), Querying Databases Privately.
IX, 115 pages. 2004.

Vol. 3127: K.E. Wolff, H.D. Pfeiffer, H.S. Delugach (Eds.),
Conceptual Structures at Work. XI, 403 pages. 2004. (Sub-
series LNAI).

Vol. 3126: P. Dini, P. Lorenz, J.N.d. Souza (Eds.), Service
Assurance with Partial and Intermittent Resources. XI,
312 pages. 2004.

Vol. 3125: D. Kozen (Ed.), Mathematics of Program Con-
struction. X, 401 pages. 2004.

Vol. 3124: J.N. de Souza, P. Dini, P. Lorenz (Eds.),
Telecommunications and Networking - ICT 2004. XXVI,
1390 pages. 2004.

Vol. 3123: A. Belz, R. Evans, P. Piwek (Eds.), Natural Lan-
guage Generation. X, 219 pages. 2004. (Subseries LNAI).

Vol. 3122: K. Jansen, S. Khanna, J.D.P. Rolim, D. Ron
(Eds.), Approximation, Randomization, and Combinato-
rial Optimization. IX, 428 pages. 2004.

Vol. 3121: S. Nikoletseas, J.D.P. Rolim (Eds.), Algorith-

mic Aspects of Wireless Sensor Networks. X, 201 pages.
2004.

Vol. 3120: J. Shawe-Taylor, Y. Singer (Eds.), Learning
Theory. X, 648 pages. 2004. (Subseries LNAI).

Vol. 3118: K. Miesenberger, J. Klaus, W. Zagler, D. Burger

(Eds.), Computer Helping People with Special Needs.
XXIII, 1191 pages. 2004.

Vol. 3116: C. Rattray, S. Maharaj, C. Shankland (Eds.), Al-
gebraic Methodology and Software Technology. X1, 569
pages. 2004,

Vol. 3115: P. Enser, Y. Kompatsiaris, N.E. O’Connor, A.F.

Smeaton, A.W.M. Smeulders (Eds.), Image and Video Re-
trieval. XVII, 679 pages. 2004.

Vol. 3114: R. Alur, D.A. Peled (Eds.), Computer Aided
Verification. XII, 536 pages. 2004.

Vol. 3113: J. Karhumiki, H. Maurer, G. Paun, G. Rozen-
berg (Eds.), Theory Is Forever. X, 283 pages. 2004.

Vol. 3112: H. Williams, L. MacKinnon (Eds.), Key Tech-
nologies for Data Management. XII, 265 pages. 2004.

Vol. 3111: T. Hagerup, J. Katajainen (Eds.), Algorithm
Theory - SWAT 2004. XI, 506 pages. 2004.

Vol. 3110: A. Juels (Ed.), Financial Cryptography. XI, 281
pages. 2004.

Vol. 3109: S.C. Sahinalp, S. Muthukrishnan, U. Dogrusoz
(Eds.), Combinatorial Pattern Matching. XII, 486 pages.
2004.

Vol. 3108: H. Wang, J. Pieprzyk, V. Varadharajan (Eds.),
Information Security and Privacy. XII, 494 pages. 2004.
Vol. 3107: J. Bosch, C. Krueger (Eds.), Software Reuse:
Methods, Techniques and Tools. XI, 339 pages. 2004.
Vol. 3106: K.-Y. Chwa, J.I. Munro (Eds.), Computing and
Combinatorics. XIII, 474 pages. 2004.

Vol. 3105: S. Gébel, U. Spierling, A. Hoffmann, I. Iurgel,
O. Schneider, J. Dechau, A. Feix (Eds.), Technologies for

Interactive Digital Storytelling and Entertainment. XVI,
304 pages. 2004.

Preface

On behalf of the Program Committee, it is our pleasure to present to you the
proceedings of the 7th Symposium on Recent Advances in Intrusion Detection
(RAID 2004), which took place in Sophia-Antipolis, French Riviera, France,
September 15-17, 2004.

The symposium brought together leading researchers and practitioners from
academia, government and industry to discuss intrusion detection from research
as well as commercial perspectives. We also encouraged discussions that ad-
dressed issues that arise when studying intrusion detection, including informa-
tion gathering and monitoring, from a wider perspective. Thus, we had sessions
on detection of worms and viruses, attack analysis, and practical experience
reports.

The RAID 2004 Program Committee received 118 paper submissions from
all over the world. All submissions were carefully reviewed by several members
of the Program Committee and selection was made on the basis of scientific
novelty, importance to the field, and technical quality. Final selection took place
at a meeting held May 24 in Paris, France. Fourteen papers and two practical
experience reports were selected for presentation and publication in the confer-
ence proceedings. In addition, a number of papers describing work in progress
were selected for presentation at the symposium. The keynote address was given
by Bruce Schneier of Counterpane Systems. Hakan Kvarnstrom of TeliaSonera
gave an invited talk on the topic “Fighting Fraud in Telecom Environments.”

A successful symposium is the result of the joint effort of many people. In
particular, we would like to thank all authors who submitted papers, whether
accepted or not. Our thanks also go to the Program Committee members and
additional reviewers for their hard work with the large number of submissions. In
addition, we want to thank the General Chair, Refik Molva, for handling confer-
ence arrangements, Magnus Almgren for preparing the conference proceedings,
Marc Dacier for finding support from our sponsors, Yves Roudier for maintaining
the conference Web site, and Hervé Debar at France Télécom R&D for arranging
the Program Committee meeting. Finally, we extend our thanks to the sponsors:
SAP, France Télécom, and Conseil Régional Provence Alpes Céte d’Azur.

September 2004 Erland Jonsson
Alfonso Valdes

Organization

RAID 2004 was organized by Institut Eurécom and held in conjunction with

ESORICS 2004.

Conference Chairs

General Chair
Program Chairs

Publications Chair

Publicity Chair
Sponsor Chair

Program Committee

Tatsuya Baba
Lee Badger
Sungdeok Cha

Steven Cheung
Hervé Debar
Simone Fischer-Hiibner
Steven Furnell
Dogan Kesdogan
Christopher Kruegel
Hakan Kvarnstrom
Wenke Lee

Roy A. Maxion
John McHugh
Ludovic Mé

George Mohay

Vern Paxson

Giovanni Vigna
Andreas Wespi
S. Felix Wu

Diego Zamboni

Refik Molva (Institut Eurécom, France)

Erland Jonsson (Chalmers University of
Technology, Sweden)
Alfonso Valdes (SRI International, USA)

Magnus Almgren (Chalmers University of
Technology, Sweden)

Yves Roudier (Institut Eurécom, France)
Marc Dacier (Institut Eurécom, France)

NTT Data Corporation, Japan

DARPA, USA

Korea Advanced Institute of Science and
Technology, Korea

SRI International, USA

France Télécom R&D, France

Karlstad University, Sweden

University of Plymouth, UK

RWTH Aachen, Germany

Technical University Vienna, Austria
TeliaSonera AB, Sweden

Georgia Institute of Technology, USA
Carnegie Mellon University, USA

CMU/SEI CERT, USA

Supélec, France

Queensland University of Technology, Australia
International Computer Science Institute and
Lawrence Berkeley National Laboratory, USA
UCSB, USA

IBM Zurich Research Laboratory, Switzerland
UC Davis, USA

IBM Zurich Research Laboratory, Switzerland

VIII Organization

Steering Committee

Marc Dacier (Chair)
Hervé Debar
Deborah Frincke
Ming-Yuh Huang
Wenke Lee

Ludovic Mé
Giovanni Vigna
Andreas Wespi

S. Felix Wu

Additional Reviewers

Magnus Almgren
Christophe Bidan
Phil Brooke
Sanghyun Cho

Andrew Clark
Chris Clark

Marc Dacier

Drew Dean
Maximillian Dornseif
Bruno Dutertre
Ulrich Flegel
Deborah Frincke
Anup Ghosh
Satoshi Hakomori
Jeffery P. Hansen
Anders Hansmats
Hans Hedbom
Thorsten Holz
Gary Hong
Ming-Yuh Huang
Klaus Julisch
Jaeyeon Jung
Kevin S. Killourhy
Hansung Kim

Oleg Kolesnikov
Tobias Kolsch
Takayoshi Kusaka

Institut Eurécom, France

France Télécom R&D, France

Pacific Northwest National Laboratory, USA
The Boeing Company, USA

Georgia Institute of Technology, USA
Supélec, France

UCSB, USA

IBM Zurich Research Laboratory, Switzerland
UC Davis, USA

Chalmers University of Technology, Sweden
Supélec, France

University of Plymouth, UK

Korea Advanced Institute of Science and
Technology, Korea

Queensland University of Technology, Australia
Georgia Institute of Technology, USA
Institut Eurécom, France

SRI International, USA

RWTH Aachen, Germany

SRI International, USA

Dortmund University, Germany

Pacific Northwest National Laboratory, USA
DARPA, USA

NTT Data Corporation, Japan

Carnegie Mellon University, USA
TeliaSonera AB, Sweden

Karlstad University, Sweden

RWTH Aachen, Germany

UC Davis, USA

The Boeing Company, USA

IBM Zurich Research Laboratory, Switzerland
Massachusetts Institute of Technology, USA
Carnegie Mellon University, USA

Korea Advanced Institute of Science and
Technology, Korea

Georgia Institute of Technology, USA
RWTH Aachen, Germany

NTT Data Corporation, Japan

Organization IX

Additional Reviewers (continued)

Byunghee Lee

Stefan Lindskog
Emilie Lundin Barse
Shigeyuki Matsuda
Michael Meier

Benjamin Morin
Darren Mutz
Tadeusz Pietraszek
Alexis Pimenidis
Xinzhou Qin

Rob Reeder

Will Robertson
Tim Seipold
Jeongseok Seo

Hervé Sibert
Kymie M.C. Tan
Axel Tanner

Elvis Tombini
Eric Totel

Fredrik Valeur
Chris Vanden Berghe
Jouni Viinikka
Nicholas Weaver
Ralf Wienzek
Jacob Zimmerman
Albin Zuccato

Korea Advanced Institute of Science and
Technology, Korea

Karlstad University, Sweden

Chalmers University of Technology, Sweden
NTT Data Corporation, Japan

Brandenburg University of Technology
Cottbus, Germany

France Télécom R&D, France

UCSB, USA

IBM Zurich Research Laboratory, Switzerland
RWTH Aachen, Germany

Georgia Institute of Technology, USA
Carnegie Mellon University, USA

UCSB, USA

RWTH Aachen, Germany

Korea Advanced Institute of Science and
Technology, Korea

France Télécom R&D, France

Carnegie Mellon University, USA

IBM Zurich Research Laboratory, Switzerland
France Télécom R&D, France

Supélec, France

UCSB, USA

IBM Zurich Research Laboratory, Switzerland
France Télécom R&D, France

International Computer Science Institute, USA
RWTH Aachen, Germany

Supélec, France

Karlstad University, Sweden

Table of Contents

Modelling Process Behaviour

Automatic Extraction
of Accurate Application-Specific Sandboxing Policy
Lap Chung Lam and Tzi-cker Chiueh

Context Sensitive Anomaly Monitoring of Process Control Flow
to Detect Mimicry Attacks and Impossible Paths....................... 21
Haizhi Xu, Wenliang Du, and Steve J. Chapin

Detecting Worms and Viruses

HoneyStat: Local Worm Detection Using Honeypots.................... 39
David Dagon, Xinzhou Qin, Guofei Gu, Wenke Lee, Julian Grizzard,
John Levine, and Henry Owen

Fast Detection of Scanning Worm Infections........................... 59
Stuart E. Schechter, Jaeyeon Jung, and Arthur W. Berger

Detecting Unknown Massive Mailing Viruses Using Proactive Methods ... 82
Ruigi Hu and Aloysius K. Mok

Attack and Alert Analysis

Using Adaptive Alert Classification to Reduce False Positives
in Intrusion Detection 102
Tadeusz Pietraszek

Attack Analysis and Detection for Ad Hoc Routing Protocols 125
Yi-an Huang and Wenke Lee

On the Design and Use of Internet Sinks for Network Abuse Monitoring .. 146
Vinod Yegneswaran, Paul Barford, and Dave Plonka

Practical Experience

Monitoring IDS Background Noise
Using EWMA Control Charts and Alert Information 166
Jouni Viinikka and Hervé Debar

Symantec Deception Server Experience
with a Commercial Deception System 188
Brian Hernacki, Jeremy Bennett, and Thomas Lofgren

XII Table of Contents

Anomalous Payload-Based Network Intrusion Detection
Ke Wang and Salvatore J. Stolfo

Anomaly Detection

Anomaly Detection Using Layered Networks Based
on Eigen Co-occurrence Matrixoiiitniiniiniinennenneenennnn
Mizuki Oka, Yoshihiro Oyama, Hirotake Abe, and Kazuhiko Kato

Seurat: A Pointillist Approach to Anomaly Detection
Yinglian Xie, Hyang-Ah Kim, David R. O’Hallaron,
Michael K. Reiter, and Hui Zhang

Formal Analysis for Intrusion Detection

Detection of Interactive Stepping Stones:
Algorithms and Confidence Bounds
Awvrim Blum, Dawn Song, and Shobha Venkataraman

Formal Reasoning About Intrusion Detection Systems
Tao Song, Calvin Ko, Jim Alves-Foss, Cui Zhang, and Karl Levitt

RheoStat: Real-Time Risk Management
Ashish Gehani and Gershon Kedem

Author Index

Automatic Extraction of Accurate
Application-Specific Sandboxing Policy

Lap Chung Lam and Tzi-cker Chiueh

Rether Networks, Inc.
99 Mark Tree RD Suite 301, Centereach NY 11720, USA
1lclam@cs.sunysb.edu, chiueh@rether.com
http://www.rether.com

Abstract. One of the most dangerous cybersecurity threats is control
hijacking attacks, which hijack the control of a victim application, and
execute arbitrary system calls assuming the identity of the victim pro-
gram'’s effective user. System call monitoring has been touted as an effec-
tive defense against control hijacking attacks because it could prevent re-
mote attackers from inflicting damage upon a victim system even if they
can successfully compromise certain applications running on the system.
However, the Achilles’ heel of the system call monitoring approach is
the construction of accurate system call behavior model that minimizes
false positives and negatives. This paper describes the design, imple-
mentation, and evaluation of a Program semantics-Aware Intrusion De-
tection system called Paid, which automatically derives an application-
specific system call behavior model from the application’s source code,
and checks the application’s run-time system call pattern against this
model to thwart any control hijacking attacks. The per-application be-
havior model is in the form of the sites and ordering of system calls made
in the application, as well as its partial control flow. Experiments on a
fully working Paid prototype show that Paid can indeed stop attacks that
exploit non-standard security holes, such as format string attacks that
modify function pointers, and that the run-time latency and through-
put penalty of Paid are under 11.66% and 10.44%, respectively, for a
set of production-mode network server applications including Apache,
Sendmail, Ftp daemon, etc.

Keywords: intrusion detection, system call graph, sandboxing, mimicry
attack, non-deterministic finite state automaton

1 Introduction

Many computer security vulnerabilities arise from software bugs. One particular
class of bugs allows remote attackers to hijack the control of victim programs
and inflict damage upon victim machines. These control hijacking exploits are
considered among the most dangerous cybersecurity threats because remote at-
tackers can unilaterally mount an attack without requiring any special set-up or
any actions on the part of victim users (unlike email attachment or web page
download). Moreover, many production-mode network applications appear to be
rife with software defects that expose such vulnerabilities. For example, in the

E. Jonsson et al. (Eds.): RAID 2004, LNCS 3224, pp. 1-20, 2004.
© Springer-Verlag Berlin Heidelberg 2004

2 Lap Chung Lam and Tzi-cker Chiueh

most recent quarterly CERT Advisory summary (03/2003) [4], seven out of ten
vulnerabilities can lead to control hijacking attacks. As another example, the no-
torious SQL Slammer worm also relies on control hijacking attacks to duplicate
and propagate itself epidemically across the net.

An effective way to defeat control-hijacking attacks is application-based
anomaly intrusion detection. An application-based anomaly intrusion detection
system closely monitors the activities of a process. If any activity deviates from
the predefined acceptable behavior model, the system terminates the process or
flags the activity as intrusion. The most common way to model the acceptable
behavior of an application is to use system calls made by the application. The
underlying assumption of the system call-based intrusion detection is that re-
mote attackers can damage a victim system only by making malicious system
calls once they hijack a victim application. Given that system call is the only
means to inflict damage, it follows logically that by closely monitoring the sys-
tem calls made by a network application at run time, it is possible to detect and
prevent malicious system calls that attackers issue, and thus protect a computer
system from attackers even if some of its network applications have been com-
promised. While the mechanics of system call-based anomaly intrusion detection
is well understood, successful application of this technology requires an accurate
system call model that minimizes false positives and negatives.

Wagner and Dean [22] first introduced the idea of using compiler to de-
rive a call graph that can capture the system call ordering of an application.
At run time, any system call that does not follow the statically derived or-
der is considered as an act of intrusion and thus should be prohibited. A call
graph derived from a program’s control flow graph (CFG) is a non-deterministic
finite-state automaton (NFA) due to such control constructs as if-then-else and
function call/return. The degree of non-determinism determines the extent to
which mimicry attack [23] is possible, through so-called impossible paths [22].
This paper describes the design, implementation, and evaluation of a Program
semantics-Aware Intrusion Detection system called Paid, which consists of a
compiler that can derive a deterministic finite-state automaton (DFA) model
which captures the system call sites, system call ordering, and partial control
flow from an application’s source code, and an in-kernel run-time verifier that
compares an application’s run-time system call pattern against its statically de-
rived system call model, even in the presence of function pointers, signals, and
setjmp/longjmp calls. Paid features several unique techniques:

— Paid inlines each system call site in the program with its associated system
call stub so that each system call is uniquely labeled by the return address
of its corresponding int 0x80 instruction,

— Paid inlines each call in the application call graph to a function having
multiple call sites with the function’s call graph, thus eliminating the non-
determinism associated with the exit point of such functions,

— Paid introduces a notify system call that its compiler component can use to
inform its run-time verifier component of information that cannot be deter-
mined statically such as function pointers, signal delivery, and to eliminate
whatever non-determinism that cannot be resolved through system call in-
lining and graph inlining, and

Automatic Extraction of Accurate Application-Specific Sandboxing Policy 3

— Paid inserts random null system calls (which are also part of the system
call graph) at compile time and performs run-time stack integrity check to
prevent attackers from mounting mimicry attacks.

The combination of these techniques enables Paid to derive an accurate DFA
system call graph model from the source code of application programs, which
in turn minimizes the run-time checking overhead. However, the current Paid
prototype has one drawback: it does not perform system call argument analysis.
But we will include this feature in the next version of Paid.

2 Related Work

2.1 System Call-Based Sandboxing

Many recent anomaly detection systems [22,8,18,13,9, 24,15, 17] defines normal
behavior model using run-time application activities. Although such systems can-
not stop all attacks, they can effectively detect and stop many control hijacking
attacks. Among these systems, system call pattern has become the most pop-
ular choice for modeling application behavior. However, simply keeping track
of system calls may not be sufficient because it cannot capture other program
information such as user-level application states.

Wagner and Dean’s work [22] advocated a compiler approach to derive three
different system call models, callgraph model (NFA), abstract stack or push-
down automaton model (PDA), and digraph model. Among all three models,
the PDA model, which models the stack operations to eliminate the impossible
paths, is the most precise model, but it is also the most expensive model in
terms of time and space in many cases. Paid’s DFA model represents a signifi-
cant advance over their work. First, Paid uses notify system call, system call
inlining, and graph inlining to reduce the degree of non-determinism in the input
programs. Second, Paid uses stack integrity check and random insertion of null
system calls to greatly raise the barrier for mimicry attacks. Third, Paid is more
efficient than Wagner and Dean’s system in run-time checking overhead. For ex-
ample, for a single transaction, their PDA model took 42 minutes for gpopper
and more than 1 hour for sendmail, whereas Paid only takes 0.040679 seconds
for gpopper and 0.047133 seconds for sendmail.

Giffin et al. [9] extended Wagner’s work to application binaries for secure
remote execution. They used null system call to eliminate impossible paths in
their NFA model by placing a null system call after a function call. Paid is
different from this work because it places a null system call only where non-
determinism cannot be resolved through graph inlining and system call stub
inlining. As a result, Paid can use the DFA model to implement a simple and
efficient runtime verifier inside the kernel. Giffin et al. also tried graph inlining,
which they called automaton inlining. They found graph inlining increases the
state space dramatically, but Paid’s implementation on Linux only increases
the state space around 100%. This discrepancy is due to the libc library on
Solaris. For example, for a single socket call, it only needs a single edge or
transition on Linux, while it takes more than 100 edges on Solaris. They found
numerous other library functions that share the same problem. Giffin’s PDA

4 Lap Chung Lam and Tzi-cker Chiueh

model is similar to Wagner’s model, and they used a bounded-stack to solve the
infinite stack problem. However, when the stack is full, the PDA model eventually
becomes a less precise NFA model. Giffin et al. also proposed a Dyck model [10]
to solve non-determinism problem by placing a null system call before and after
a function call to simulate stack operation. To reduce performance overhead, a
null system call from a function call does not actually trap to the kernel if the
function call itself does not make a system call.

Behavior blocking is a variation of system call-based intrusion detection.
Behavior blocking systems run applications in a sandbox. All sandboxed ap-
plications can only have the privileges specified by the sandbox. Even if an
application is hijacked, it cannot use more privileges than as specified. Existing
behavior blocking systems include MAPbox [1], WindBox (3], Janus [11], and
Consh [2]. The key issue of behavior blocking systems is to define an accurate
sandboxing policy, which is what Paid is designed for.

Systems such as StackGuard [6], StackShield [21] and RAD [5,16] tried to
protect the return addresses on the stack, which are common targets of buffer
overflow attacks. Non-executable stack [19] prevents applications from executing
any code on the stack. Another problem is that they cannot prevent attacks
that target function pointers. IBM’s GCC extension [7] reorders local variables
and places all pointer variables at lower addresses than buffers. This technique
offers some protection against buffer overflow attacks, but not buffer underflow
attacks. Purify [12] instruments binaries to check each memory access at run
time. However, the performance degradation and the increased memory usage
are the key issues that prevent Purify from being used in production mode.
Kiriansky [14] checks every branch instruction to ensure that no illegal code can
be executed.

3 Program Semantics-Aware Intrusion Detection

3.1 Overview

Paid includes a compiler that automatically derives a system call site low graph
or SCSFG from an application’s source code, and a DFA-based run-time verifier
that checks the legitimacy of each system call. To be efficient, the run-time
verifier of Paid is embedded in the kernel to avoid the context-switching overhead
associated with user-level system call monitors. The in-kernel verifier has to be
simple so that it itself does not introduce additional vulnerabilities. It also needs
to be fast so as to reduce the performance overheard visible to applications.
Finally it should not consume much of the kernel memory. The key challenge
of Paid is to minimize the degree of non-determinism in the derived SCSFG
such that the number of checks that the run-time verifier needs to perform is
minimized.

Once an application’s SCSFG is known, the attacker can also use this infor-
mation to mount a mimicry attack, in which the attacker follows a legitimate
path through the application’s SCSFG until it reaches a system call she needs
to deal the fatal blow. For example, assume an application has a buffer over-
flow vulnerability and the system call sequence following the vulnerability point

Automatic Extraction of Accurate Application-Specific Sandboxing Policy 5

is {open, setreuid, write, close, exec}, and an attacker needs setreuid
and exec for her attack. After the attacker hijacks the application’s control using
a buffer overflow attack, she can mimic the legitimate system call sequence by
interleaving calls to open, write and close with those to setreuid and exec
properly, thus successfully fooling any intrusion detection systems that check
only system call ordering. To address mimicry attacks, Paid applies two simple
techniques: stack integrity check and random insertion of null system calls. In
the next version of Paid, we will add a comprehensive checking mechanism on
system call arguments as well.

main fO 0 main

open O

write
open ; foo
F read

write

O._

<Bead foo

-0

foo write
close close
é%)sc close
(A) Function Call Graphs (B) Graph Interlinking (C) Graph Inlining

Fig. 1. Graph interlinking and graph inlining are two alternative to constructing a
whole-program system call graph from the system call graphs of individual functions

3.2 From NFA to DFA

The simplest way to construct a call graph for an application is to extract a
local call graph for each function from the function’s CFG, and then construct
the final application call graph by linking per-function local call graphs using
either graph interlinking or graph inlining, which are illustrated in Figure 1. A
local call graph or an application call graph is naturally an NFA because of
such control constructs as if-then-else and function call/return. To remove non-
determinism, we employ the following techniques: 1) system call stub inlining,
2) graph inlining, and 3) insertion of notify system call.

One source of non-determinism is due to functions that have many call sites.
For these functions, the number of out-going edges of the final state of their local
call graph is more than one, as exemplified by the function foo in Figure 1(B).
To eliminate this type of non-determinism, we use graph inlining as illustrated in
Figure 1(C). In the application call graph, each call to a function with multiple
call sites points to a unique duplicate of the function’s call graph, thus ensuring
that the final state of each such duplicated call graph have a single out-going
edge. Graph inlining can significantly increase the state space if not applied
carefully. We use an e-transition removal algorithm to remove all non-system
call edges from a function’s CFG before merging the per-function call graphs.

