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Preface

" The present volume contains articles pertaining to a wide variety of sub-
jects such as conformal and quasiconformal mappings and related extremal
problems, Riemann surfaces, meromorphic functions, subharmonic functions,
approximation and interpolation, and other questions of complex analysis.
These contributions by mathematicians from all over the world express con-
sideration and friendship for Albert Pfluger. They reflect the wide range of
his interests.

Albert Pfluger was born on 13 October 1907 in Oensingen (Kanton Solothurn)
as the oldest son of a Swiss farmer. After a classical education he studied
Mathematics at the ETH-Zurich. Among his teachers were Hopf, Plancherel,
Pélya and Saxer. Pélya was his Ph.D. adviser. After some teaching at high
schools (Gymnasien), he became professor at the University of Fribourg, and
a few years later (1943) he was appointed as successor of Pélya at the ETH.
He retired in 1978, but has aiways remained very active in research.

Pfluger’s lectures were highly appreciated by the students. His vivid and clear
teaching stimulated and challenged them to independent thinking. Many of
his Ph.D. students are now themselves teaching in universities.

His main research relates to the following fields: entire functions, Riemann
surfaces, quasiconformal mappings, schlicht functions. (See list of publica-
tions.) He collaborated with several mathematical colleagues, in particular
with Rolf Nevanlinna, who taught parallel to him at the University of Zurich.
In 1973 Pfluger was nominated foreign member of the Finnish Academy of
Sciences. '

To Albert Pfluger, his wife Maria, their children and grandchildren we present
our cordial wishes, and to the authors of this volume our sincere thanks.

Joseph Hersch, Alfred Huber
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Lars V. Ahlfors

Cross-ratios and
. L ] L ] L ] n
Schwarzian Derivatives in R

This paper was written several years ago, but no part of it has been published previously.
A preprint was distributed to selected experts and seems to have been favorably received.
For some time I had hoped to improve on the results of the paper, but as years went by my
research took a different direction, and it became implausible that I would add anything
significant to the paper as it stands.

Meanwhile there has been considerable progress in this area, but my friends have
insisted that the bulk of the paper still has at least some historical interest and should be
made available to the mathematical public. It gives me ,"eat satisfaction that the paper
will appesar in its original form in this volume dedicated to Professor Albert Pfluger in
- . spprediation of his lasting contributions to analysis

+The research for the paper was supported by the National Science Foundation.

The cross-ratio is of fundamental importance in projective geometry and
some aspects of complex function theory. In the latter connection the cross-
ratio of four complex numbers a, b, ¢, d is defined as

a—-c b-c
(a,b,c,d) = ;——d : m,
another complex number. On the other hand, in geometry the cross-ratio
occurs mainly as a double ratio (AC/AD) : (BC)/(BD) of the lengths of
four segments.

Recent developments in function theory, especially in connection with
Kleinian groups. have made it even more essential than at the time of Poincaré
and Klein to study the conformal structure of three-space as an extension of
the conformal structure of the complex plane. Experience has shown that
many methods which carry over effortlessly from two to three dimensions
do not extend to arbitrary R™. For this reason it seems to the author that
the case of arbitrary dimension is not an idle generalization, but may serve
to throw new light on the cases n = 2 and 3 as well. With some degree of
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justification it can be maintained that a method which does not generalize is
not fully understood. , .

The theory of Mébius transformations does of course generalize almost
automatically, but the lack of a natural generalization of the complex cross-
ratio has been a considerable handicap. One of the purposes of this paper is
to suggest a way to overcome this difficulty. Since the idea is quite simple it
may have occured to others as well, but since I am not aware of any mention -
of it in the literature I have thought it worth while to give it some publicity.

The second part of the paper is devoted to a study of the Schwarzian
derivafive, it is éommonly accepted that the Schwarzian derivative is an in-
finitesimal version of the cross-ratio, but this is seldom made explicit. Tra-
~ diticaally; the Schwarzian is considered only in connection with holomorphic
functions of one variable, and in that case the relation to the cross-ratio is
- fairly obvious, It seems that the more general case of smooth mappings into
R™ has hardly been explored at all. It turns-out that the real and imaginary
parts of the Schwarzian can both be generalized, albeit in somewhat different
ways. At present these generalizations are more or less tentative, and there
are no significant applications, but in view of the importance of the holomor-
phic Schwarzian it is not unreasonable to make at least a preliminary forage
* inthis direction.

§1 Mabius transformations and cross-ratios.

1. When AP. Mobius introduced the notion of wﬁa-t we call a Mobius trans-

formation he did not connect it with the idea of a fractional linear transfor-
mation with complex cgefcients, nor did he regard conformality as the main
feature. His was a purely Yeometric theory of “Kreisverwandtschaften”, a
term that defies translation. In modern terminology a “Kreisverwandtschaft”
~ is a homeamiprphism of the extended complex plane C which maps circles on

circles. Tifxs Aed him to the invariance of the cross-ratio and the angle, but he
made oq,l*«ﬁnmmﬂ use of the complex notation. It is interesting to note that
MGbius was well aware that his definition works equally well in three dimen-
sions. If it had not been considered esoteric at the time he would probably
have used n dimensions.

2. The modern approach is much more direct. We begin with the complex
case and define a Méobius transformation by the formula

I

“» z_az-}-b
7 T ez+d

1)

where a,b,c,d € C and ad — bc = 1. We regard (1) as a mapping of C on
itself with the standard conventions for oo. ;
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From (1) one derives the difference formula

.. S Al S
. el P Yo @

¥

which implies the existence of the derivative
; 7(2) = (cz +d)2. @)

We rewritt;l(Z) as

<y A\

; 12 =9 =7() 4}z - ). )

. We shall find (4)-an extremely useful tool even, within certain limits, in
the mﬂﬁ'ﬁi%gepsimd case. For thie moment we observe merely that it proves
the invariqaeg-of the cross-ratio. Indeed, with the definition

- ‘-f an

F @ ()= (- = ) = (N )

it follows that (yz,vz',7¢,7¢") = (z,2',{,('), for the factors v'(z)!/? etc.
introduced by (4) cancel against each other.

We remark in passing that the cross-ratio is well defined, finite or infinite,
as soon as no more than two of the z,7',(,(’ are equal.

3. It is useful to recall that four numbers determine six cross-ratios, depending
on the order. Each corresponds to four permutations: in simplified notation
(abed) = (cdab) = (dabc) = (dcba).

There is a unique Mobius tranformation that carries three given distinct
points b, ¢,d into 0,1, 0o in this order. Therefore, there is a unique complex
number z such that (abed) = (z,1,0,00) = z, (acbd) = (2,0,1,00) = 1 — ¢,
(bacd) = z~1. The other three cross-ratios are (1—2z)7,1—2"1, (1—2"1)"1,
It is sufficient, however, to retain the basic relations

(abed) + (acbd) =1, (abed)(bacd) = 1. (5)

They remain in force even in the event of one or two pairs of equal numbers.

In additjon to (z,1,0,00) there is another normal form for the cross-
ratio, namely, (—1,~e",e”,1). The condition z = (—1, —e",e",1) translates
to z = ch?(r/2). This means that T is determined up to sign and additive
multiples of 271, It becomes unique if we require that 0 < Ims < x, 7 =0if r
is real. In relation to z = (abcd) the number 7, 50 normalized, is referred to as
the complez distance between the ordered pairs (a, d) and (b, c). Its geometric
meaning will be explained later. It seems to have been first introduced by
F. Schilling in 1891.
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4. We pass now to R”, the complex plane being identified with R?. We shall
use the notations z = (z1,...,z,) € R, |z|2 = 22 + ... + 22, and (z,y) =
z1y1+. . . +Znyn. As usual, R" is compactified to R* = R"U{oo}. A similarity
is a mapping R® — R™ whose restriction to R is given by z — mz 45, where
b € R" and m is a conformal matriz, i.e. a matrix Ak, A > 0, k € O(r). Also,
oo is mapped on itself.

The snversion, or reflection in the unit sphere $"~!, is defined by z —
z* = z/|z|? when z # 0,00 and 0* = o0, 00* = 0.

Definition 1. The group M(R™) of Mdbius transformations is the group
generated by all similarities together with the inversion in the unit sphere.

If 2 C R™ is open the derivative of a mapping f : @ - R" at z € Q, if it
exists, is the matrix f'(z) or D f(z) with elements f'(z);; = 8fi/0z;. Clearly,
D(mz+b) = m and, by elementary calculation, Dz* = |z|~2(6;;—2ziz;/|z{?).
In this paper we shall use the notation Q(z) for the matrix with elements
Q(z)i; = ziz;/|z|* and I or I,, for the unit matrix. With this notation

~ o2 - 2Q(=). ®)

One verifies that Q(z)? = Q(z) and (I - 2Q(z))* = I, I — 2Q(z) € O(n).
Matrices of the form I — 2Q(a) will occur frequently. They have a simple
geometric interpretation: (I — 2Q(a))z is the mirror image of z with respect
to the hyperplane through 0 perpendicular to a.

According to (6) Dz* is a conformal matrix, and by the chain rule the
derivative 4'(z) of any v € M(R") is likewise a conformal matrix. In other
words, the mapping by a Mobius transformation is conformal. For n > 2 the
converse is a classical theorem due to Liouville.

As a conformal matrix 4'(z) can be written in the form Ak with A > 0,
k € O(n); unless v is a similarity A and k will depend on z. We shall denote
A by |¥'(z)|; because of the conformality A is also the operator norm of the
matrix 7'(z) and the linear change of scale at z, the same in all directions.

The determinant of k = 4/'(z)/|y'(z)| is.constantly 1 if v is sense-
preserving, —1 if it is sense-reversing. It is possible to restrict attention to
the sense-preserving subgroup, but this is not always an advantage. We pre-
fer to stay with the original definition of M(R™) as the group of all Mébius
transformations.

As customary, we shall identify R*~! with the set of z € R™ with z,, = 0.
The points with z,, > 0 form the upper half-space H". We denote by M(H")
the subgroup which maps H" on itself. Similarly, M(B™) will be the subgroup
that preserves the unit ball. The groups M(H"), M(B") and M(R""') are
isomorphic.
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5. Formula (4), restricted to ali‘soluteuz'alues, remains valid in R".

Proposition 1. I v € M(R"), then
lyz — vyl = Iy ()2 W) ?|e - yl ©)

for all z,y € R" \ v~ 1oo.

The formula is trivial when « is a similarity. For vz = z* it reduces to
jz* — y*| = |z|7!|y| |z — y| which is easily verified. The general validity of
(7) follows by the chain rule.

If z,y,u,v € R there is no immediate way of forming a cross-ratio since
multiplication has no meaning. However, if we use only distances we can still
form the absolute cross-ratio

|z, u,0,y] = |z — vl |z — y| 7 fu — yl ju —v|7". (8)

It is again well defined as long as no three points coincide and we admit oo
as a possible value.

Proposition 2. |z, yu,yv,vy| = |z, u,v,y| for every v € M(R™).
This is a trivial conséquenoe of (7).

6. We shall use Proposition 2 to prove: .

Proposition 3. Every v € M(R") with Yoo = 0 is a simila.fity.

Since v — 40 has fixed points at 0 and co we may as well assume that

70 = 0, 700 = 0o and show that vz = mz with a constant conformal matrix
m. By Proposition 2, |yz,7y,0, 00| = |z,¥,0,00| or |yz|/|vy| = |z|/|y, and
similarly |yz — vy|/lvyl = |z — y|/lyl. From the first relation |yz| = A|z| with

~ constant A. From the second |yz — 7y|> = A?|z — y|> and hence (yz,7y) =
A%(z,y). On expanding the squares it follows that |y(z + y) — vz — yy|? =
Nzt y)-z—y’ =0and thusy(z +y) = vz + 19, V(z +y) = ¥(2), a

: tant. ’
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7. Proposition 3 leads to a simple nomll form for all Mébius transformations.
For given v we shall write y~10 = u, T, loo = v and assume that v # co. Then
oz = (z —v)* = (u—v)* is a Mdbiug tr&mfox‘matwn thh ou=0, ov=o00s0
that oy~ has 0 and oo as fixed points. We conclude by ?ropoatlon 3 that

Bl b

Nz = m[(z & : )T-* (“ - v)‘] :".i' :‘ o (9)

where m is a constant conformal matnx R
- Sometimes it is preferable to teplace (9) by

L

o= i o (] (o)

prev_ided that u and v are different from 0. Since every mapping of the form
(9) is also of the form (10) there exists corg_formal m such that

(2% = v") = (0 = o) = mi(@ = )" < (u o)) (ay
To fiad i we shall first compare the absolute values. By (6) and (7)
(2" = 07)" = (u* = 0")"] = & —ul/le* — "] ju” o]

' l’-"ll”lz/lf—vl Iu —”l

and |[(z ~v)* —(u—v)*| = lz u|/{:za—vl]u~—v| so tha.t m= Ivl’k k € O(n).
To' determine k we dxﬁ'exenhate (11); By (6) and the cha.m rule we-obtain

(I-2Q(=* -v'))(I 20(3)) k(f 2Q(z—V)) (12)

s b

- Forz=2v the matrices I — 2Q in this formula are a.ll equal to I—-2Q(v) so
that (12) gives k = I —2Q(v). At the samé time we have proved the identity

(I - 2Q(z* - v*)) (I - 2Q(2)) = (I ~ 2Q(v)) (£ - 2Q(z — v)) or, in different

notation
I-2Q(a" - b) = (I - 2Q(@) (I - 2Q(a - ) (I - 2Q().  (13)
We shall choose -
Jows = (2% — o) ~ (u* ~ ) e

to be the standard mapping with yu = 0, Yv = 00. R is useful to display the
alternative expression .

us = (I = 2Q(0)) (2 = )" — (u = v)") (15)
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