lames Glimm
Arthur Jaffe

Quantum Physics

A Functional Integral Point of View

Second Edition



.
; 3 L
s N
(:’ A

i

James Glimm
Arthur Jaffe

Quantum Physics

A Functional Integral Point of View

Sf_econd Edition

With 51 Hustrations

Springer-Verlag
New York Berlin Heidelberg
London Paris Tokyo



James Glimm Arthur Jaffe

Courant Institute for Mathematical Sciences - Harvard University
New York University Cambridge, MA 02138
New York, NY 10012 US.A. '
US.A.

Library of Congress Cataloging in Publication Data
Glimm, James,
Quantum Physics.
Bibliography: p
Includes index.
1. Quantum field theory. 2. Quantum theory.
3. Statistical physics. 1. Jaffe, Arthur.
1937- . 1L Title,
QC17445.G49 1987 530.1'43 86-31418

© 1981, 1987 by Springer-Verlag New York Inc. )

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag, 175 Fith Avenue, New York, New York
10010, U.S.A.), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and refrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

Printed and bound by R. R. Donnelley & Sons, Harrisonburg, Virginia.
Printed in the Unjted States of America.

987654321 =

ISBN 0-387-96476-2 Springer-Verlag New York Berlin Heidelberg (hard cover)
ISBN 3-540-96476-2 Springer-Verlag Berlin Heidelberg New York (hard cover)
ISBN 0-387-96477-0 Springer-Verlag New York Begjjn Hddelberg (soft cover)
ISBN 3-540-96477-0 Springer-Verlag Berlin Heidelberg New York (soft cover) °

©



Preface

Twen}y years after its inception {Jaffe, 1965b; Lanford, 1966; Glimm, 1967a],
consttuctive quantum field theory is on the threshold of achieving its major
goals. This level of success, while not unprecedented in contemporary mathe-
matics, occurs with sufficient infrequency that it is worth commenting on (a)
some of the factors which contributed to this success, and (b) what the
implications of this success might be for mathematics and for science.

It is easier to address the second question. We see three consequences of
a satisfactory mathematical foundation for the equations of quantum field
theory. First, there is the question of principle as to whether the equations are
. correct and are correctly formulated. Having a mathematical foundation is
a necessary but not a sufficient condition to answer this question positively.
This concern was the original and primary motivation for the work from
which this book is drawn. Second, the equations of quantum field theory are
prototypes for other equations of independent interest, which arise in statis-
tical mechanics, turbulence, and stochastic partial differential equations. The
mathematical tools and concepts used to study quantum fields will likely find
use in a variety of other problems having a similar mathematical structure.
In fact, it is remarkable that these field-theoretic ideas have been instrumental
through the work of Donaldson, Taubes, Uhlenbeck, and others in funda-
mental achievements in topology, where the mathematical structures appeared
to be unrelated. Third, with the increasing power of computers, problems of
the type mentioned above will be increasingly amenable to numerical solution.
In this case, knowledge of the mathematical structure of the solution will be
a considerable help in the discovery, understanding, and analysis of numerical
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vi Preface

algorithms and of numerical solutions. At the turn of the past century, Poin-
caré advanced essentially the same argument (citing the increased accuracy
and quantity of astronomical observations) as a reason for the development
of the qualitative theory of ordinary differential equations.

It is more difficult to determine the factors contributing to the success in
this subject. It appears that a dedicated and talented group of workers, strong
scientific leadership, sound scientific judgments, and constructive working
arrangements each had a significant role to play.

In this second edition of Quantum Physics, we have added new chapters on
correlation inequalities and the cluster expansion. Included is the remarkable
proof that the ¢* theories are trivial in high dimensions. Nonabelian gauge
theories are required on both physical and mathematical grounds, and a new
chapter is devoted to this topic. Also included in this chapter are phase cell
expansions. This set of ideas has provided the basis for most of the estimates
and proofs in constructive field theory. They were developed independently
from renormalization group theory which implements similar ideas in prob-
lems with natural scaling behavior. An appendix on Hilbert space operators
and function space integrals was added to make the book self-contained from
a mathematical point of view. Certain proofs in Part T were simplified or
expanded, to make them easier to follow.



Introduction

This book is addressed to one problem and to three audiences. *

The problem is the mathematical structure of modern physics: statistical
physics, quantum mechanics, and quantum fields. The unity of mathemati-
cal structure for problems of diverse origin in physics should be no
surprise. For classical physics it is provided, for example, by a common
mathematical formalism based on the wave equation and Laplace’s equation.
The unity transcends mathematical structure and encompasses basic
phenomena as well. Thus particle physicists, nuclear physicists, and con-
densed matter physicists have considered similar scientific problems from
complementary points of view.

The mathematical structure presented here can be described in various
terms: partial differential equations in an infinite number of independent
variables, linear operators on infinite dimensional spaces, or probability
theory and analysis over function spaces. This mathematical structure of
quantization is a generalization of the theory of partial differential equa-
tions, very much as the latter generalizes the theory of ordinary differential
equations. Our central theme is the quantization of a nonlinear partial
differential equation and the physics of systems with an infinite number of
degrees of freedom.

‘Mathematicians, theoretical physicists, and specialists in mathematical
physics are the three audiences to which the book is addressed.

Each of the three parts is written with a different scientific perspective.
Part I is an introduction to modern physics. It is designed to make the
treatment of physics self-contained for a mathematical audience; it covers
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xiv Introduction

quantum theory, statistical mechanics, and quantum fields. Since it is ad-
dressed piimarily to mathematicians, it emphasizes conceptual structure—
the definition and formulation of the problem and the meaning of the
answer—rather than techniques of solution. Because the emphasis differs
from that of conventional physics texts, physics students may find this part
a useful supplement to their normal texts. In particular, the development of
quantum mechanics through the Feynman-Kac formula and the use of
function space integration may appeal to physicists who want an introduc-
tion to these methods.

Part Il presents quantum fields. Boson fields with polynomial seli-
interaction in two space-time dimensions—P(¢), fields—are constructed.
This treatment is mathematically complete and self-contained, assuming

‘some knowledge of Hilbert space operators and of function space integrals.

The original construction of the authors has been replaced by successive
improvements and simplifications accumulated for more than a decade. This
development is due to the efforts of a small and dedicated group of some
thirty constructive field theorists including Frohlich, Guerra, Nelson,
Osterwalder, Rosen, Schrader, Simon, Spencer, and Symanzik, as well as the
authors. Physicists may find Part 1T useful as a supplement to a conventional
quantum field text, since the mathematical structure (normally omitted from
such texts) is developed here. '

Part II contains the resolution of a scientific controversy. For years
physicists and mathematicians questioned whether nonlinear field theory is
compatible with relativistic quantum mechanics. Could quantization defined
by renormalized perturbation theory be implemented mathematically? The
mathematically complete construction of P(¢), fields presented here and the
construction of Yukawa, ,, ¢3$, sine-Gordon,, Higgs,, etc, fields in the
literature provide the proof. Central among the issues resolved by this work is
the meaning of renormalization outside perturbation theory. The math-
ematical framework for this analysis includes the theory of renormalization
of function space integrals. From the viewpoint of mathematics the
implementation of these ideas has involved essentially the creation of a new
branch of mathematics.

Whether the equations are mathematically consistent in four space-time
dimensions has not been resolved. There i$ speculation, for example, that
the equations for coupled photons and electrons (in isolation from other
particles) may be inconsistent, but that the inclusion of coupling to the
quark field may give a consistent set of equations. A proper discussion of
this issue is beyond the scope of this book, but is alluded to in Chapters 6
and 17. :

Particle interaction, scattering, bound states, phase transitions, and criti-
cal point theory form the subject of Part III. Here we develop the con-
sequences of the Part II existence theory and make contact with issues of
broad concern to physics. This part of the book is written at a more
advanced level, and is addressed mainly to theoretical and mathematical

physicists. It is neither self-contained nor complete, but is intended to
|



Introduction XV

develop central ideas, explain main results of a mathematical nature, and
provide an introduction to the literature.

Condensed matter physicists may find interesting the discussion of phase
transitions and critical phenomena. The central matters are series expansions
and correlation bounds. These methods find application in diverse areas. We
give detailed justification of the connection (by analytic continuation) be-
tween quantum fields and classical statistical mechanics. Professional
physicists could well start directly in Part III, returning to earlier material
only as necessary.

Readers interested in the historical development of constructive quan-
tum field theory are referred to the various survey articles of the authors
and others. In this book the specific, detailed references are minimized,
especially in the self-contained Parts I and II. A large bibliography has
been included; we apologize for the inevitable omissions.

Numerous colleagues, students, and friends helped make this book
possible. Of particular importance were R. D’Arcangelo, R. Brandenberger,
B. Drauschke, J.-P. Eckmann, J. Gonzalez, W. Minty, K. Peterson, P. Petti,
the staff at Springer-Verlag, and especially our wives Adele and Nora. We are
also grateful to the ETH, the IHES, the University of Marseilles, and the CEN
Saclay for hospitality as well as to the Guggenheim Foundation and the NSF
for support.

For the Second Edition

In the preparation of this second edition, we highlight several definitive
contributions to physics which have emerged from the program of mathe-
matical analysis of fundamental physics, as explained in the first edition. We
give three examples where mathematical theorems have given the cleanest and
most definitive resolution of scientific controversies. These controversies con-
cern properties of solutions of equations describing models of physical phe-
nomena. They arose due to ambiguities in the analysis of these solutions
through other methods, namely laboratory experiment, numerical simulation,
or formal analysis according to the methods of theoretical physics.

The existence of a phase transition in a two-dimensional Coulomb gas (the
Kosterlitz—Thouless transition) was proved by Frohlich and Spencer; see
Chapter 5. The appearance of disorder in the ground state of the three-
dimensional random field Ising model (lower critical dimension) was proved
by Imbrie; see Chapter 5. The nonexistence theory for pure ¢* fields in
dimensions d > 4 and the expectation of a similar result for d = 4 was obtained
by Aizenman and Frohlich; see Chapter 21. This result focuses attention on
nonabelian gauge theory for which renormalization group methods suggest
that the d = 4 theory exists; see Chapter 22.

In conclusion, we see that mathematical analysis must be included in the
list of appropriate methods in the search for truth in theoretical physics. This
conclusion is strengthened by experience in other areas of mathematical
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physics, including general relativity and attempts at a unified field theory
, based on string theory.

In this edition, we have expanded the proofs in Part I and added an
appendix on Hilbert space operators and function space integrals to make the
book seif-contained. Three new chapters reflect recent developments.

We thank many people, including E. Nelson and R. Streater, for de-
tailed comments on the first edition. Furthermore, we thank R. Cheng and
B. Drauschke for assistance on the Bibliography and Index.



Conventions and Formulas

Founer transforms

f(e) = @) [ €77 (p) dp,

f = (2n)"’2 f e~ 'Pxf(x) dx,
f0)= (2")"’5’. Y &™f ~(n),
f(n) = @n)~* j he“"’f(e) de.
0
- Minkow?ki vectors

x = (X0, X) = (Xo, -+ Xa-1)

x?=x x= —x3+x3, P2=P'P="‘P(2)+Pz,
X'P=inl’i= —XoPo+ X' P,
O=-0+A= -axg+ffax,=.
Euclidean vectors | “'
X4 = iXg,
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xviii Conventions and Formulas

d
A=Y ax}.
i1

Schrodinger’s equation

h = h/2m,
ih® = H8, 0(t) = e~ "H"9(0),
p=—ih g [plxh aly] = in (x = )
Covariance operators C,, € €,, satisfy
(-4 + m?)C,, = 3.

o and y matrices

o 3 =i o)
%=1o 1/ 1711 o

e el
=l o Tl 1)

vi=(° "“), =123,

o, O
I 0 0 I
o=t —1) Ts=Yoni¥2Vs =1, of
£=3 a,,,
¢* =Y al =a

Dirac equation (zero field)
(hd — me)y = 0.

Dirac equation in external field A

ﬁa+€4—m4¢=u



List of Symbols

Qv

annihilation and creation operators
free energy

antisymmetrization operator

action

algebra of operators

bond

observable; region in space-time
set of bonds

diagonal values of C, ¢(x) = C(x, x); critical (as
a subscript); constant

critical

classical

covariance; (Chap. 7) complex numbers

a class of covariance operators (Sec. 7.9)
dimension of space-time

Dirichlet boundary conditions

domain of an operator; C§ test function space
Schwartz distribution space

domain for irreducible spin j representation of
Su(2, €)

energy level; eigenvalue for H; Euclidean trans-
formation; Euclidean group
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List of Symbols

~ a

Euclidean group; Euclidean Hilbert space; time
strip (Section 10.5)

test function; free energy »

- Fock space

test function

group

Planck’s constant

external field

Hamiltonian

Hilbert-Schmidt  «:

Hamiltonian density

Hilbert space of quantum states

identity operator ' _
interaction strength for Ising ferromagnet
angular momentum

Boltzmann’s constart

kernel of semigroup

kernel of Bcthe-Salpeter equation
angular momentum (Section 15.1)

lines in Feynman graphs (self-interacting,
interacting) >

Lagrangian; lattice; multiple reflection norm
(Section 10.5); Lorentz group

mass; magnetization; multiple reflection norm
(Section 10.5)

number of field components; degree of polynomial P
nearest neighbor ' ‘
Neumann boundary condition; N(f) = norm of f.
null space for inner product

pefiod boundary conditions; pressure; Lebesgue
index; degree of polynomial P

momenta,; momentum operator; momentum space
polynomial interaction; projection operator

Hermite polynomial

configuration; configuration space; Lebesgue index
real numbers; multiple reflection norm (Section 10.5)
Euclidean d-space

time
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NN*X&*%QQ

~ ™ N

I4)

P

xxi

entropy

generating function; Schwinger function; sphere;
symmetrization operator

volume of n-sphere

Schwartz space of rapidly decreasing test functions
Schwartz space of tempered distributions
symmetric group on n elements (permutation group)
Euclidean time (=x,); Minkowski time (=x,)
time ordering; truncation

unitary operator on Hilbert space

potentiai :

Wightman function

Wiener measure

Wiener path space

phase space

point in space time

point in space

fugacity; activity

partition function; field strength renormalization
constant; integers

nonnegative integers; partition function
(1/kT) inverse temperature

critical exponent

boundary; phase boundary

Dirichlet boundary conditions on I'; inverse to
propagator or two point function

length or area of T

Dirac § function; Kronecker & function; lattice
spacing; critical exponent

Laplacian; special solution of wave or Laplace
equation (propagator) also unit square

20 — 1 {a type of Heaviside function); lattice spacing;
reduced temperature (T — T,)/T,

critical exponents

reflection operator; Heaviside function; state in #
momentum cutoff

coupling constant

bounded region of space
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[A] area or volume of A

M (—A + m?*)'2 = (p* + m*)'/?; chemical potential;
external field

du statistical weight or ensemble

frequency; critical exponent
statistical weight or ensemble
random variable

partition function

m e B«

3.14159; momentum conjugate to field ¢
projection operator; hyperplane

+ . half spaces of RU\I1

p density

o mass?; Ising spin variable; time

z . proper self-energy

¢, O quantum field; configuration of classical field

dd, Gaussian measure, covariance C

susceptibility; random variable; state in J¢;
characteristic function

quantum field; state in
frequency; Wiener path; angular integration variable
vacuum state; ground -state; equilibrium state
derivative; boundary operator
gradient; divergence

| absolute value; area, volume or number of - ; norm

projection operator from the Euclidean ‘path space
to the Hilbert space of quantum states

Fourier transform
, D rinner product
expectation; integral with respect to du
, ] ‘ commutator: [a, b} = ab — ba
} anticommutator: {a, b} =ab + ba = .
free boundary conditions; empty set
vector product

time derivative; position for iaissing variable as
in f(-) = f for a function f.

set theoretic difference: A\B={x: x € 4, x ¢ B}
- complex conjugation; closure
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