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control design using adaptation is given in the section of Adaptation and
Learning.

Robot control under kinematic singularities. One major difficuity in formu-
lating the control problem in the Cartesian space is due to kinematic singulari-
ties. The correct understanding of the treatment of such singularities is funda-
mental not only for performing feedback control in the work space but also to
realize tasks in the framework of force and position control. In here, the impact
of kinematic singularities in the feedback control design and its relation with
the concepts of nonlinear controllability are analysed.
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tiated this exchange. I would like to thank the members of the program com-
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Tomei and L. Dugard for making this event possible. I am also indebted to M.
Spong, A. De Luca, B. Espiau, S. Nicosia, Y. Nakamura and S. Arimoto for ac
cepting to participate in this conference and for giving interesting tutorial talks. -
The local organization was an important support. I would like to thank A.
Aubin and S. Seleme for helping in the workshop preparation and M.R.
Choisy and M.T. Decotes-Genon for ensuring an efficient organization and a
warm reception. The laboratory of Automatic Control of Grenoble (LAG),
which belongs to the Polytechnic Institute of Grenoble (INPG) and is associated
to the National French Research Foundation ( CRNS), played the roll of host in
the workshop organization. Thanks are also due to I.D. Landau, director of the
LAG and to M. Garnier vice-director of the INPG for supporting us in this ef-

fort. Finally, I would like to thank the society ALEPH-Technologies for kindly &

accepting to show their robotics activities and developments to the workshop
attendees and to the MNRT-France for its financial support.

Grenoble, France, November 1990

Carlos Canudas de Wit . .
(Laboratory of Automatic Control of Grenoble)
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Robustness of Adaptive Control of Robots: Theory

and Experiment *

Fathi Ghorbel
Alan Fitzmorris
Mark W. Spong
Coordinated Science Laboratory
University of Illinois at Urbana-Champaign
1101 W. Springfield Ave.
Urbana, Ill. 61801

Abstract

It is well known in adaptive control theory that the performance of adaptive controllers can
be highly sensitive to the modeling assumptions used to prove convergence. In this paper we
discuss the robustness of adaptive control of rigid robots and methods for improving robustness
in the face of unmodeled dynamics and external disturbances. Both theoretical and experimental
resulls are presented. Robustness is achieved by modifying the rigid control algorithm in two
important ways. First, the rigid robot control law is incorporated into a composite slow/fast
control law by adding to it a “fast” control to damp the joint oscillations. Second, so—called

og-modification is used to ensure boundedness of the estimated parameters.

1 Introduction

One of the goals of robotics research is to develop so-called intelligent robots which are capable

of adapting their behavior to uncertainties in their-environment. Uncertaintics arise from many

*Rescarch partially supported by the University of Illinois Manufacturing Research Center under Grant No. UFAS

1-5-80405.
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sources; unknown loads, grinding forces, part misalignment in assembly, time delays in teleop-
cration, unknown terrain in mobile robots, etc. Other important sources of uncertainty include
uncertainties in the dynamic description of the robot itself, for example, when a “rigid” control al-
gorithm is applied to a flexible robot. For this reason the application of adaptive control techniques

in robotics has been an area of intense interest.

At the present time there are a number of “provably correct” adaptive algo;ithms for motion
and force control of rigid robots. By “provably correct” we mean an adaptive control algorithm
that uses the full Lagrangian dynamic model (considering the robot as a chain of coupled rigid
bodies) and which can be proven to be globally conveigent, i.e., tlhic position and velocity tracking
crrors converge asymptotically to zero with all internal signals (input torque, estimation error, etc.)
remaining bounded. A recent tutorial[14] contains details of seven such globally convergent adaptive
algorithms. In the mecantime, several additional results have been published, including results on
exponential stability[25], persistency of excitation[26], improved Lyapunov arguments[27], etc. The
result is that rigid robot dynamics are now well understood with respect to the design of adaptive

control algorithms.

It is known, however, that the stability of adaptive systems can be lighly sensitive to distur-
bances and unmodeled dynamics. These arise in the robotics context f[rom several sources. External
disturbances include many types of interaction with the environment. For example, robotic assem-
bly has been described as a sequence of controlled collisions with the environment. These collision
forces can be viewed as disturbances to the controller. A repetitive task, for example, subjects
the robot to periodic forcing which, even in non-adaptive control, can excite complex nonlincar

dynamic behavior, such as period doubling bifurcations and chaos[29].

Uamodeled dynamics include actuator/sensor dynamics, joint flexibility, link flexibility, and

;
cuvironment dynamics. Of these, joint flexibility is dominant in most manipulator designs. In-
vironment dynamics arise in force and impedance controlled tasks such as assembly and grinding

and will become increasingly important in future applications.

Several so-called “instability mechanisms” in adaptive control have been identified[10]. In the
robotics context these instability mechanisms may manifest themselves when a rigid model is used
as a basis for the design of an adaptive control algorithm. Among the mechanisms leading to

instability are:
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® 1) Reference trajectories which are “too fast.” In other words, if the bandwidth of the refer-
ence Lrajectory is in the same frequency range as the unmodeled dynamics, these dynamics

can be excited and drive the system unstable.

* 2) Parameter drift. The estimated parameters do not necessarily converge to their true
values even in the ideal case without persistency of excitation conditions on the reference
signal. In the presence of unmodeled dynamics, or in the presence of external disturbances,

the parameters can drift along an cquilibrium manifold until an instability results [15].

e 3) lligh Gain instability. This type of instability, when the controller gains are too high, is
actually due to the loss of passivity from the ideal case and can occur even for non-adaptive

algorithms [1].

e 4) I'ast adaptation instability. This type of instability occurs when the gains in the parameter
update law arc too large. Due to the complicated nonlinear structure of robotic systems there
are few design rules that can be called upon to design these various gains. At present the

choice of such gains in adaptive robot control is largely a trial and error process.

In this paper we restrict our discussion to a treatment of the robustness of adaptive control to
joint flexibility and to techniques to enhance robustness. Our design methodology, however, can
be used as a basis for designing controllers which are robust to other forms of uncertainty such
as actuator dynamics, external disturbances, and other effects. Our approach can be explained
intuitively as follows: Using the idea of composite contrul of singularly perturbed systems a fast
feedback control law is first designed to damp the oscillations of the fast variables representing
the joint flexibility. Once the fast transients have decayed, the slow part of the system should
appear nearly like the dynamics of a rigid robot, which can then be controlled using any number

of techniques. Our strategy is then summarized as
conlroleomposite = controlyyy, + control fait (1)

where control y,,, is designed using a rigid robot modecl and control Jast 18 designed solely to provide
sullicient damping of the fast dynamics. In this paper, we base our design of the slow control on the
algorithm of Slotine and Li [18] because it is globally convergent in the absence of joint flexibility,

and because its implementation requires only position and velocity measurements.
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We will see that the presence of unmodeled dynamics greatly complicates the analysis of the
tracking properties of the system. Clobal convergence is no longer guaranteed for all possible
reference trajectories. Using the composite Lyapunov theory for singularly perturbed systems we
present sufficient con.ditions for adaptive trajectory tracking. For point-to-point motion we show
that there is always a range of joint stiffness for which convergence is achieved and we quantify
the region of convergence. I'or tracking of (smooth and bounded) reference trajectories we give
suflicient conditions for closed loop stability and uniforn boundedness: of the tracking error. A
residual set to which the tracking crror converges is quantified. We also show that for special classes
of trajectories, which include step responses gencrated from reference models and certain joint
interpolated trajectories we can achieve asymptotic tracking. The actuals details and calculations
of the proofs are tedious. I'or this reason we have omitted most of the calculations from the present

paper and the interested reader should consult the thesis [4] for complete proofs.

2 Notation and Terminology

In what follows, we use the following standard notation and terminology [3]: R4 will denote the
set of nonnegative real numbers, and R™ will denote the usual n-dimensional vector space over
R cndowed with the Euclidean norm [Ix]l = { };,xgz}%. R"™*" denotes the set of all n x n
madtrices with recal elements. For cach matrix A eéR™*" we define Ll;c induced matrix norm of A
corresponding to the Euclidean vector norm ||A|| = {/\,,mx (ATA)}% , where Ajnax (ATA) is the

maximum cigenvalue of ATA. We define the standard Lebesgue spaces Lo, and Ly as

L, (Ry) = {f: R4y — R" such that fis Lebesgue measurable and || f||,, < oo} (2)
where [[fll,, = €55 supyefosey I/,

L3(R4) = {f: Ry = R" such that f is Lebesgue measurable and || f]|, < oo} (3)

g
where || f]l; = { Il f(t)n’dt}’. Denote by Bx C R**, By C R", By C R*" the closed balls
centered at x =0,0 =0,and y = 0 respectively, and let B=Bx X Bg x By C R % R" x R*".
Also define B = {(“x" ,"9" Ayl s (x,0,y) € B} c R
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3 Singular Perturbation Model

The dynamic equations of a flexible joint manipulator are given by [19]
0 . (4)
u, ®)

D(q1)d1 + C(q1,491)a@1 + g(q1) + K(aq1 — q2)

Ja2 - K(q1 — q2)

where the vectors q; € R™ and q; € R™ represent the link angles and motor angles, respectively,
D(q) is the n X n inertia matrix for the f}gid links, J is a diagonal matrix of actuator inertias
reflected to the link side of the gears, C(q1,q1)q: represents the Coriolis and centrifugal terms,
g(q1) represents the gravitational terms, and K is a diagonal matrix representing the joint stiffness.
FFor notational simplicity we will assulﬁc that all joint stiffness constants are the 'sa,me in which case
K may be taken as a scalar. The composite control law u that we consider is given by [20]
u = us(qi,qi,t) + up(qi,qz2), where, uy = Iy(q1 — q2), K, is a constant diagonal matrix, and
u, is designed using the following rigid modecl, obtained by letting the joint stiffness A tend to

infinity, [19]
(D(q1) + J)dr + Clan,an)a + g(a1) = u,. (6)

We define the variable z := K(qs — q1), and we assume that K is O(1/€?), and K, is O(1/¢), so
that we may write K = K,/¢%, K, = K,/¢, where K, K, are O(1). By substituting the control
law u into (4)-(5), and using the definition of z, we obtain the singularly perturbed system [20]

z (7)

EJitelyn+ Kz = Ki(u, - J§). (8)

D(q1)d; + C(q1,491)q1 + g(q1)

We now choose uy as the adaptive control law of [18] designed for the rigid system (6). The whole
adaptive system can therefore be written as

i) Plant:

z )

Ki(uy - Jéu). | (10)

D(q1)d: + C(q1,q1)d: + g(a1)

I

Ji+ k7 + K1z
ii) Controller (designed for the rigid plant (6)):

u, = (D(qy) + Na + Clai,a)v + &(a) — Kpr, (11)
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where D, J, € and g represent the terms in (6) with estimated values of the paramcters, Kp is a

diagonal matrix of positive gains,

W=a-q%, v=q'-Aq, r=dq-v=§ +Aq, a=v. (12)

A is a constant diagonal matrix, and q4(?) is the reference trajectory which is at least three times

continuously differentiable.

iii) Parameter Update Law:
0 = -r'y"(qq,q1,a,v)r, (13)
where I' is a symmetric, positive definite matrix, 0 = @ — 0 is the parameter error, and

(D(a) + J)a + Cla,a1)v + glqi) = Y(q1,49:,a,v)0. (14)

Y(q1,q1,a,v) is an n X 7 matrix of known functions (regressor), and @ is an r-dimensional vector

of parameters.

The plant (9)-(10), the controller (11), and the parameter update law (13) are now transformed

into a more suitable singularly perturbed form, details of which can be found in [4]

X=Ax+ ®0 + Azy
S é: —T'px ‘ (15)
«y = Ay + €A;' Byu,

or equivalently,

. A] (11 /13
i p=/f(tpy)= p+ y
S =To Orxr 0rx2n (16)

y =y(l,p,y,c) = Ay +(A2_lb‘2l.-|’

where

€ R®", with the nonsingular lincar transformation 7 (17)




es

Inxn Oﬂ-Xn

lp:

A Lixn

€ R2n+r

Al = Al(xaqdyqd) =

—A

Tnxn

_M(ql)—l[C(qh‘h) + I{D] onxn

* M(q1) = D(q1) + J,

o & = &(x,q4,q4,G4) =

OTIXTL OHXTI

° A3 = AS(xv qll) =

M(q

Oﬂxf

Al(ql)_ly(qh(h » YV, a)

X € R2nx2n,
1)_ Oan

2nxr
€ER i

* v =¢(X,q4,qa) = [ Orxn YT(q1,41,a,v) ] =

[} /12:

o I} =

On.)(n 111)(71

® u:u.s"‘]qlv

Y=

-
ONX n E R2"‘x
J—I ]\’1
+ A7 ' Byu

€ Rlnx Zn,

—.]_llii] —J_ll\'g

n
’

€ RZn .

2nx2n
eER 3

4 Analysis of the Singularly Perturbed System & -

(18)

(19)

(20)

(21)

(22)

(23)

(24)
(25)
(26)

(27)

(28)

System S is a nonautonomous nonlinear singularly perturbed system in the standard form [12]. p

is the slow variable, and y is the fast variable. The analysis of system S follows the techniques
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of composite Lyapunov functions for nonlincar singularly perturbed systems developed in [17]; sce

also [12].

The boundary layer system, denoted Sy, is defined as
dy
So 1 = =g(t,p,y(7), €= 0) = Azy, (29)

where 7 = /e is a stretching time scale. Let P be the symmetric positive definite matrix that
satisflies the Lyapunov Equation A:{P + PA; = —-Q, where Q is a positive definite matrix. We

choose, for the boundary layer system, the Lyapunov Functio.. Candidate W (y) =‘yTPy.
The reduced system, or quasi-steady state, is defined by sctting € = 0 in S, that is,

Al ¢ A3 .
JGpy)=| P+ y (30)
-1 4 Orxr 0rx2n

.‘/(lyp»}’»(=()):A2Y- . (3‘)

P

0

Since Aj is invertible, the algebraic equation (31) has the unique root y = 0. The reduced system,

denoted S, is obtained by replacing y = 0 into (30)

. Ay ¢
Sr : pzf(tvpay=0)= P, @ (32)
_I“P 0rxr
or equivalently,
X =A;x+ ¢0
; Seid : (33)
0 =-Tpx

Fact 1 The reduced system S, is equivalent to the adaptive rigid-joint system [4].

a

A consequence of Fact 1 is that we can usc the same Lyapunov function candidate as that of

the adaptive rigid-joint system [14], [22], namely,

4

1 T lo o
EPFM((Il)P+ ai ATKpa + 50 r-'e

Il

V(as,a1,r,0) = V(t,x,8) = V(t,p). (34)
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Define
F o= Lin +JD(q)7?, (35)
du Jdu Jdu (3) 5
11 i= 36
(L) 0q¢14+() (Id+()q (36)

For V(x,0,y) € B, define positive constants ky, ky, k3, and positive functions kq(t), ks(t) and k,(t)

such that

]
o(al) “1 ——/lsy-f- JW—EAgy

o Aay| <. (ks + <) Iyl (37)

o(a2) : “{F(,)—UA, Figcky }x+F0—“q>0”
ax 90

< |{raem - razref|
n Ou ( 0 ]
' "ox | M (=M (q)Adq - Clar,@1)Aq) J
,du 0
+ 1’0—- . _
§ L v (#r(aia + Clan ) "
N 0
0% | M-1Y,(q))0,
< b [l 4 s(0) + by (0): (38)
«ad) : [[FpW]l < ka(t): (39)

Note that the existence of the various constants &; in the above estimates requires only continuity
of the functions involved since the set B is compact. Note also that k5(!) is proportional to the

norms of the qq and qq, and that k¢(t) is proportional to the norm of g = Y,,(q.)@,,.

Consider the following composite Lyapunov [unction candidate for the singularly perturbed

system §
Vi(L,x,0,y)=(1-d) V(L,x,0)+dW(y) , 0<d<]l, (10)

which represents a weighted sum of V(¢,x,8), the Lyapunov function of the reduced system ;.

and W(y), the Lyapunov function of the boundary layer system Sy,. Taking into account (al),(a2),



