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Preface

A database system is a common, visible tool in the corporate world—employees fre-
quently interact directly with database systems to submit data or create reports.
Database systems are also common, but invisible, as components of software systems.
For example, consider an e-commerce website that uses a server-side database to hold
customer, product, and sales information. Or consider a GPS navigation system that uses
an embedded database to manage the road maps. In both of these examples, the pres-
ence of the database system is hidden from the user; the application code performs all
of the database interaction.

From the point of view of a software developer, using a database directly is rather
mundane, because modern database systems contain sophisticated front ends that make
the creation of queries and reports straightforward. On the other hand, the possibility
of incorporating database functionality into a software application is exciting, because it
opens up a wealth of new and unexplored opportunities.

But what does “incorporating database functionality” mean? A database system pro-
vides many things, such as persistence, transactional support, and query processing.
Which of these features are needed, and how should they be integrated into the software?
Suppose for example that a programmer is asked to modify an existing application, say to
add the ability to save state, or to increase reliability, or to improve the efficiency of file
access. The programmer is faced with several architectural options. She could:
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@ purchase a full-featured, general-purpose database system, and then modify the appli-
cation to connect to the database as a client;

@ obtain a more specialized system that contains only the desired features, and whose
code can be embedded directly into the application; or

® write the necessary functionality herself.

In order to make the proper choice, the programmer needs to understand what each
of these options entail. She needs to know not only what database systems do, but also
how they do it, and why.

This text examines database systems from the point of view of the software devel-
oper. It covers the traditional database system concepts, but from a systems perspective.
This perspective allows us to investigate why database systems are the way they are. It
is of course important to know how to write queries, but it is equally important to
know how they are processed. We don’t want to just use JDBC, we want to know why
the API contains the classes and methods that it does. We need a sense of how hard
is it to write a disk cache or logging facility. And what exactly is a database driver,
anyway?

Organization of the Text

The text begins with an introductory chapter on the purpose and features of a database
system. The remaining chapters are arranged into four parts:

Part 1 covers the fundamentals of relational databases. It contains five chapters,
which respectively examine the concepts of table, relationship, query, integrity, and effi-
ciency. In particular, Chapter 2 covers tables and their constraints, including keys and
foreign keys. Chapter 3 introduces database design using UML diagrams, and normal-
ization using BCNF. Chapter 4 examines both relational algebra and SQL in significant
detail. Chapter 5 discusses database features that help ensure that the data remains accurate,
namely assertions, triggers, and authorization. And Chapter 6 examines how indexes and
materialized views can be used to make queries more efficient.

Part 2 is devoted to how to write a database application using Java. Chapter 7 intro-
duces the client-server paradigm and the premise that application programs can act as
clients of a database server. Chapter 8 presents the basics of JDBC, which is the funda-
mental API for Java programs that interact with a database. Chapter 9 examines how a
Java application, by encapsulating its interaction with the database system, is able to pro-
vide the concept of persistent objects. Chapter 10 considers how XML can be a database-
independent representation of data, and how it can be used for exchanging data between
database systems. And Chapter 11 considers webserver-based applications that use
servlets, and examines how their interaction with a database server compares with that
of stand-alone applications.

Part 3 considers the internals of a database server. Each of its eight chapters covers
a different database component, starting with the lowest level of abstraction (the disk
and file manager) and ending with the highest (the JDBC client interface). The chapter
for each component explains the issues and considers possible design decisions. As a
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result, the reader can see exactly what services each component provides, and how it inter-
acts with lower-level components to get what it needs. By the end of this part, the reader
will have witnessed the gradual development of a simple but completely functional system.
Part 4 contains four chapters on efficient query processing. This part studies the sophis-
ticated techniques and algorithms that can replace the simple design choices described in
Part 3. Topics include indexing, sorting, intelligent buffer usage, and query optimization.

@ - simpiens software

In my experience, most students can grasp conceptual ideas (such as concurrency con-
trol, buffer management, and query optimization) much more easily than they can grasp
how these ideas are embodied inside a database system. Ideally, a student should write
an entire database system as part of his coursework, just as the student would write an
entire compiler in a compiler course. However, database systems are much more com-
plex than compilers, so that approach is not practical. My solution was to write a simple
but fully functional database system, called SimpleDB. Students can apply their concep-
tual knowledge by examining SimpleDB code and modifying it.

SimpleDB “looks” like a commercial database system, both in its function and
structure. Functionally, it is a multi-user, transaction-oriented database server that exe-
cutes SQL statements and interacts with clients via JDBC. Structurally, it contains the
same basic components as a commercial system, with similar APIs. Each component of
SimpleDB has a corresponding chapter in the text, which discusses the component’s
code and the design decisions behind it.

SimpleDB is a uscful educational tool because its code is small, easily readable, and eas-
ily modifiable. It omits all unnecessary functionality, implements only a tiny portion of SQL,
and uses only the simplest (and often very impractical) algorithms. There consequently are
numerous opportunities for students to extend the system with additional features and
more efficient algorithms; many of these extensions appear as end-of-chapter exercises.

SimpleDB can be downloaded from the URL www.wiley.com/college/sciore. Details on
installing and using SimpleDB are in its distribution file and in Chapter 7. I welcome sug-
gestions for improving the code, as well as reports of any bugs; send email to sciore@bc.edu.

- End-of-Chapter Readings

This text is motivated by the following two questions:

® What Java tools and techniques will best help us build an application that uses a data-
base system?

® What functionality do database systems provide, and what algorithms and design
decisions will best implement this functionality?

Of course, entire shelves can be filled with books that address one aspect or another of
these questions. Since there is no way that a single text could hope to be comprehensive, I
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have chosen to present only those algorithms and techniques that most clearly illustrate the
issues involved. My overriding goal is to teach the principles behind a technique, even if it
means omitting (or reducing) discussion of the most commercially viable version of it.
Instead, the end of each chapter contains a “suggested reading” section. Those sections
discuss interesting ideas and research directions that went unmentioned in the text, and
provide references to relevant web pages, research articles, reference manuals, and books.

- Suggested Course Contents

This book is best read sequentially, from cover to cover. However, there is much more
material than typically fits into a single one-semester college course; thus some picking
and choosing is necessary, depending on the goals of the course and the background of
the students. Here are outlines for three possible courses that use this book.

A Usage-Centric Introductory Course

This course corresponds to the traditional first database course, but with a Java slant.
The course covers Parts 1-2 in detail.

A System-Oriented Introductory Course

This course assumes that students have had no prior exposure to databases, leaving the
teaching of “how to use a database” to another non-prerequisite course. This course lightly
covers Chapters 1-2 and skims through Chapter 4, covering only the select, project, group-
by, and product operators and their corresponding SQL. It skims Chapters 7-8 to establish
JDBC competence. It then covers Part 3 in detail, and Chapters 21 and 24 of Part 4.

An Advanced Course in Database Implementation

This course assumes that students have alrcady had a traditional first database course,
and are familiar with SQL and relational algebra. The course covers Chapters 7-8 if stu-
dents are not familiar with JDBC, and then does Parts 3 and 4 in detail. If desired, the
instructor can supplement the text with the advanced readings suggested at the end of
cach chapter.

- Text Prerequisites

This text is intended for upper-level undergraduate or beginning graduate courses in
Computer Science. It assumes that the reader is comfortable with basic Java program-
ming; for example, it uses the classes in java.util extensively, particularly collections and
maps. Advanced Java concepts (such as RMI, JDBC, JPA, and servlets) are fully explained
in the text.
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SimpleDB implements each of its components as a Java package. Many students may
have not had to deal with packages before; if so, I am glad that this text can rectify that
deficiency.
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