y "
\

DATABASE DESIGN

ano IMPLEMENTATION

A SOFTWARE DEVELOPER’S
HANDS-ON GUIDE TO DATABASE SYSTEMS

Combining an eminently readable style with a practical approach, Edward Sciore’s Database
Design and Implementation introduces you to database systems from a software developer’s
perspective. In its pages, you will learn how to use a database and how to develop one of your
own.

Organized according to the components of a database, Database Design and Implementation
takes you through database systems concepts from low-level disk access all the way to the query
planner. Presenting only the essential algorithms and techniques that most clearly illustrate the
issues discussed, the book covers such topics as data design and manipulation, integrity and
security, memory and record management, metadata, query processing and optimization,
integrity and security, indexing, and more.

As you proceed through the chapters and numerous exercises, you’ll learn:

« How to build database applications in Java
« JDBC, JPA, XML, and Servlet development
+ The internals of a database server

+ Sophisticated techniques for indexing, sorting, intelligent buffer usage, and query opti-
mization

Best of all, this book includes a simple but fully functional database system, SimpleDB, that
enables you to apply your conceptual knowledge by examining and modifying the code. With
numerous hands-on exercises and such tools as SimpleDB, Database Design and Implemen-
tation will give the self-studier as well as the traditional student an ideal introduction to the world
of database systems.

Edward Sciore is an Associate Professor in the Computer Science Department at Boston
College. He received his Ph.D. from Princeton University in 1980, and has been studying and
teaching about database systems ever since. He is the author of numerous research articles about
database systems. His favorite activity, however, is to teach database courses to college students.
These teaching experiences, accumulated over a 25-year period, are what led to the wrltm;, s of
this book.

ISBN 978-0-471-7571

T

WWILEY

www.wiley.com/college/sciore

DATABASE DESIGN AND
IMPLEMENTATION

Edward Sciore
Boston College

WILEY
John Wiley & Sons, Inc.

ASSOCIATE PUBLISHER Daniel Sayre

SENIOR PRODUCTION EDITOR Sujin Hong

EXECUTIVE MARKETING MANAGER Christopher Rucl

SENIOR DESIGNER Kevin Murphy

COVER PHOTO ©Ryan McVay/Gerty Images
COVER DESIGN David Levy

EDITORIAL ASSISTANT Carolyn Weisman

This book was set in Galliard by Aptara and printed and bound by R.R. Donnelly. The cover was printed
by Phocnix Color.

‘This book is printed on acid free paper. =

Copyright © 2009 John Wiley & Sons, Inc. All rights reserved. No part of this publication may

be rcproduccd stored in a retrieval system or transmitted in any form or by any means, ¢lectronic,
mechani pying, recording, ing or otherwise, except as permitted under Section 107 or
108 of the 1976 United States Copyright Act, without cither the prior written permission of the
Publisher or authorization through payment of the appropriate per-copy fee to the Copyright Clearance
Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc.,
111 River Street, Hoboken, NJ 07030-5774, (201) 748-6011, fax (201) 748-6008, website
www.wiley.com/go/permissions.

To order books or for customer service, please call 1-800-CALL WILEY (225-5945).

Library of Congress Cataloging-in-Publication Data
Sciore, Edward.
Databasc design and impl ion/Edward Sciorc.
p-cm.
Includes index.
ISBN 978-0-471-75716-0 (cloth)

1. Database design. 2. Comp softy Develop . L Tite.
QA76.9.D26838 2008
005.1—dc22 2008032213

Printed in the United States of America
10987654321

Preface

A database system is a common, visible tool in the corporate world—employees fre-
quently interact directly with database systems to submit data or create reports.
Database systems are also common, but invisible, as components of software systems.
For example, consider an e-commerce website that uses a server-side database to hold
customer, product, and sales information. Or consider a GPS navigation system that uses
an embedded database to manage the road maps. In both of these examples, the pres-
ence of the database system is hidden from the user; the application code performs all
of the database interaction.

From the point of view of a software developer, using a database directly is rather
mundane, because modern database systems contain sophisticated front ends that make
the creation of queries and reports straightforward. On the other hand, the possibility
of incorporating database functionality into a software application is exciting, because it
opens up a wealth of new and unexplored opportunities.

But what does “incorporating database functionality” mean? A database system pro-
vides many things, such as persistence, transactional support, and query processing.
Which of these features are needed, and how should they be integrated into the software?
Suppose for example that a programmer is asked to modify an existing application, say to
add the ability to save state, or to increase reliability, or to improve the efficiency of file
access. The programmer is faced with several architectural options. She could:

iv

Preface

@ purchase a full-featured, general-purpose database system, and then modify the appli-
cation to connect to the database as a client;

@ obtain a more specialized system that contains only the desired features, and whose
code can be embedded directly into the application; or

® write the necessary functionality herself.

In order to make the proper choice, the programmer needs to understand what each
of these options entail. She needs to know not only what database systems do, but also
how they do it, and why.

This text examines database systems from the point of view of the software devel-
oper. It covers the traditional database system concepts, but from a systems perspective.
This perspective allows us to investigate why database systems are the way they are. It
is of course important to know how to write queries, but it is equally important to
know how they are processed. We don’t want to just use JDBC, we want to know why
the API contains the classes and methods that it does. We need a sense of how hard
is it to write a disk cache or logging facility. And what exactly is a database driver,
anyway?

Organization of the Text

The text begins with an introductory chapter on the purpose and features of a database
system. The remaining chapters are arranged into four parts:

Part 1 covers the fundamentals of relational databases. It contains five chapters,
which respectively examine the concepts of table, relationship, query, integrity, and effi-
ciency. In particular, Chapter 2 covers tables and their constraints, including keys and
foreign keys. Chapter 3 introduces database design using UML diagrams, and normal-
ization using BCNF. Chapter 4 examines both relational algebra and SQL in significant
detail. Chapter 5 discusses database features that help ensure that the data remains accurate,
namely assertions, triggers, and authorization. And Chapter 6 examines how indexes and
materialized views can be used to make queries more efficient.

Part 2 is devoted to how to write a database application using Java. Chapter 7 intro-
duces the client-server paradigm and the premise that application programs can act as
clients of a database server. Chapter 8 presents the basics of JDBC, which is the funda-
mental API for Java programs that interact with a database. Chapter 9 examines how a
Java application, by encapsulating its interaction with the database system, is able to pro-
vide the concept of persistent objects. Chapter 10 considers how XML can be a database-
independent representation of data, and how it can be used for exchanging data between
database systems. And Chapter 11 considers webserver-based applications that use
servlets, and examines how their interaction with a database server compares with that
of stand-alone applications.

Part 3 considers the internals of a database server. Each of its eight chapters covers
a different database component, starting with the lowest level of abstraction (the disk
and file manager) and ending with the highest (the JDBC client interface). The chapter
for each component explains the issues and considers possible design decisions. As a

Preface v

result, the reader can see exactly what services each component provides, and how it inter-
acts with lower-level components to get what it needs. By the end of this part, the reader
will have witnessed the gradual development of a simple but completely functional system.
Part 4 contains four chapters on efficient query processing. This part studies the sophis-
ticated techniques and algorithms that can replace the simple design choices described in
Part 3. Topics include indexing, sorting, intelligent buffer usage, and query optimization.

@ - simpiens software

In my experience, most students can grasp conceptual ideas (such as concurrency con-
trol, buffer management, and query optimization) much more easily than they can grasp
how these ideas are embodied inside a database system. Ideally, a student should write
an entire database system as part of his coursework, just as the student would write an
entire compiler in a compiler course. However, database systems are much more com-
plex than compilers, so that approach is not practical. My solution was to write a simple
but fully functional database system, called SimpleDB. Students can apply their concep-
tual knowledge by examining SimpleDB code and modifying it.

SimpleDB “looks” like a commercial database system, both in its function and
structure. Functionally, it is a multi-user, transaction-oriented database server that exe-
cutes SQL statements and interacts with clients via JDBC. Structurally, it contains the
same basic components as a commercial system, with similar APIs. Each component of
SimpleDB has a corresponding chapter in the text, which discusses the component’s
code and the design decisions behind it.

SimpleDB is a uscful educational tool because its code is small, easily readable, and eas-
ily modifiable. It omits all unnecessary functionality, implements only a tiny portion of SQL,
and uses only the simplest (and often very impractical) algorithms. There consequently are
numerous opportunities for students to extend the system with additional features and
more efficient algorithms; many of these extensions appear as end-of-chapter exercises.

SimpleDB can be downloaded from the URL www.wiley.com/college/sciore. Details on
installing and using SimpleDB are in its distribution file and in Chapter 7. I welcome sug-
gestions for improving the code, as well as reports of any bugs; send email to sciore@bc.edu.

- End-of-Chapter Readings

This text is motivated by the following two questions:

® What Java tools and techniques will best help us build an application that uses a data-
base system?

® What functionality do database systems provide, and what algorithms and design
decisions will best implement this functionality?

Of course, entire shelves can be filled with books that address one aspect or another of
these questions. Since there is no way that a single text could hope to be comprehensive, I

vi Preface

have chosen to present only those algorithms and techniques that most clearly illustrate the
issues involved. My overriding goal is to teach the principles behind a technique, even if it
means omitting (or reducing) discussion of the most commercially viable version of it.
Instead, the end of each chapter contains a “suggested reading” section. Those sections
discuss interesting ideas and research directions that went unmentioned in the text, and
provide references to relevant web pages, research articles, reference manuals, and books.

- Suggested Course Contents

This book is best read sequentially, from cover to cover. However, there is much more
material than typically fits into a single one-semester college course; thus some picking
and choosing is necessary, depending on the goals of the course and the background of
the students. Here are outlines for three possible courses that use this book.

A Usage-Centric Introductory Course

This course corresponds to the traditional first database course, but with a Java slant.
The course covers Parts 1-2 in detail.

A System-Oriented Introductory Course

This course assumes that students have had no prior exposure to databases, leaving the
teaching of “how to use a database” to another non-prerequisite course. This course lightly
covers Chapters 1-2 and skims through Chapter 4, covering only the select, project, group-
by, and product operators and their corresponding SQL. It skims Chapters 7-8 to establish
JDBC competence. It then covers Part 3 in detail, and Chapters 21 and 24 of Part 4.

An Advanced Course in Database Implementation

This course assumes that students have alrcady had a traditional first database course,
and are familiar with SQL and relational algebra. The course covers Chapters 7-8 if stu-
dents are not familiar with JDBC, and then does Parts 3 and 4 in detail. If desired, the
instructor can supplement the text with the advanced readings suggested at the end of
cach chapter.

- Text Prerequisites

This text is intended for upper-level undergraduate or beginning graduate courses in
Computer Science. It assumes that the reader is comfortable with basic Java program-
ming; for example, it uses the classes in java.util extensively, particularly collections and
maps. Advanced Java concepts (such as RMI, JDBC, JPA, and servlets) are fully explained
in the text.

Preface vii

SimpleDB implements each of its components as a Java package. Many students may
have not had to deal with packages before; if so, I am glad that this text can rectify that
deficiency.

- Acknowledgements

Writing this text was a labor of love. I am grateful to all of the people who supported
me in this endeavor. In particular, earlier versions of this text were class-tested by Kate
Lowrie at Boston College, Ronnie Ward at Texas A&M University, and Brian Howard
at DePauw University. Their enthusiasm and detailed feedback helped to make the book
considerably better.

I am also indebted to the reviewers of the text, including:

Hani Abu-Salem - DePaul University

Cindy Chen — University of Massachusetts, Lowell
Evangelos Christidis — Florida International University
Martin H. Davis Jr. — Wright State University

Henry Etlinger — Rochester Institute of Technology
Amrit Goel — Syracuse University

Delbert Hart — University of Alabama, Huntsville
Latifur Khan — University of Texas, Dallas

Andreas Koeller — Montclair State University

Herman Lam — University of Florida

Mohamed F. Mokbel — University of Minnesota

Glen Nuckolls — University of Texas

Iqbal Omar - Texas AG*M University, Kingsville
Richard Orwig — Susquehanna University

Hassan Reza — University of North Dakota

Lisa Singh — Georgetown University

11-Yeol Song — Drexel University

Greg Speegle — Baylor University

Chengyu Sun - California State University, Los Angeles
Ankur Teredesai — Rochester Institute of Technology
James Terwilliger — Portland State University

Traian Truta — Northern Kentucky University

Larry West — Columbia College

Xiong Whang — California State University, Fullerton
Xintao Wu - University of North Carolina at Charlotte
Mohammed J. Zaki — Rensselaer Polytechnic Institute
Lu Zhang — DePaul University

Hairong Zhao — Purdue University, Calumet

Finally, I feel very fortunate to have the love and unwavering encouragement of my
family, especially my wife, Amy, and my children, Leah and Aaron. Amy’s presence graces
many of the examples in this book. Leah’s name also appears in the text, but I’'m not
going to tell her where.

About the Author

Edward Sciore is an Associate Professor in the Computer Science Department at
Boston College. He received his Ph.D. from Princeton University in 1980, and has been
studying and teaching about database systems ever since. He is the author of numerous
research articles about database systems. His favorite activity, however, is to teach data-
base courses to college students. These teaching experiences, accumulated over a 25-
year period, are what led to the writing of this text.

Contents

1 2
Introduction: Data Definition 17
Why a Database System? 1 2.1 Tables 17
1.1 Databases and Database Systems 1 2.2 Null Values 18
1.2 Record Storage 4 2.3 Keys 19
1.3 Multi-User Access 5 2.4 Foreign Keys and Referential Integrity 21
1.4 Memory Management 6 2.5 Integrity Constraints 24
1.5 Data Models and Schemas 6 2.6 Specifying Tables in SQL 26
1.6 Physical Data Independence 9 2.7 Chapter Summary 27
1.7 Logical Data Independence 10 2.8 Suggested Reading 29
1.8 Chapter Summary 12 2.9 Exercises 29
1.9 Suggested Reading 13
1.10 Exercises 13
3
Data Design 31
Retational Detabases 15 3.1 Designing Tables Is Difficuit 32

3.2 Class Diagrams 33

X Contents

3.3 Transforming Class Diagrams to Tables 36

3.4 The Design Process 39

3.5 Relationships as Constraints 54

3.6 Functional Dependencies and
Normalization 57

3.7 Chapter Summary 63

3.8 Suggested Reading 64

3.9 Exercises 65

4
Data Manipulation 70

4.1 Queries 70

4.2 Relational Algebra 71
4.3 SQL Queries 91

4.4 SQL Updates 109

4.5 Views 111

4.6 Chapter Summary 114
4.7 Suggested Reading 116
4.8 Exercises 117

5
Integrity and Security

5.1 The Need for Integrity and Security 121
5.2 Assertions 122

5.3 Triggers 124

5.4 Authorization 126

5.5 Mandatory Access Control 133

5.6 Chapter Summary 135

5.7 Suggested Reading 136

5.8 Exercises 136

6

Improving Query Efficiency 139

6.1 The Virtues of Controlled Redundancy 139
6.2 Materialized Views 141

6.3 Indexes 148

6.4 Chapter Summary 158

6.5 Suggested Reading 159

6.6 Exercises 160

PA

2 Client-Server Database 163

Systems

7

Clients and Servers 165

7.1 The Data-Sharing Problem 165

7.2 Database Clients and Servers 166

7.3 The Derby and SimpleDB Database
Servers 168

7.4 Running Database Clients 171

7.5 The Derby jj Client 173

7.6 The SimpleDB Version of SQL 174

Chapter Summary 176

7.8 Suggested Reading 176

7.9 Exercises 176

Using JDBC 178

8.1 Basic JDBC 178

8.2 Advanced JDBC 190

8.3 Computing in Java vs. SQL 206
8.4 Chapter Summary 209

8.5 Suggested Reading 211

8.6 Exercises 212

9

Persistent Java Objects 214

9.1 The Domain Model and View of a

Client Program 214
9.2 The Problems with Our Domain Model 233
9.3 The Java Persistence Architecture 237
9.4 The Java Persistence Query Language 246
9.5 Downloading a JPA Implementation 253
9.6 Chapter Summary 253
9.7 Suggested Reading 255
9.8 Exercises 255

10

Data Exchange 257

Sharing Database Data with Nonusers 257
Saving Data in an XML Document 259
Restructuring an XML Document 264

10.4 Generating XML Data from the Database 276
10.5 Chapter Summary 281

10.6 Suggested Reading 282

10.7 Exercises 283

10.1
10.2
10.3

Contents Xi

14.6 Testing Transactions 422
11 14.7 Chapter Summary 424
Webserver-Based Database Clients 286 14.8 Suggested Reading 425

11.1 Types of Database Clients 286 14.9, Exerclses 126

11.2 Interacting with a Web Server 288
11.3 Basic Servlet Programming 293 15
11.4 Managing Database Connections 301

11.5 Configuring a Serviet Container 302 Rerond Management 433
11.6 Chapter Summary 305 15.1 The Record Manager 433

11.7 Suggested Reading 306 15.2 Implementing a File of Records 440

11.8 Exercises 307 15.3 The SimpleDB Record Manager 446

15.4 Chapter Summary 462

15.5 Suggested Reading 463
SUIBER Inside the Database Server 309 15.6 Exercises 464

12 16
Disk and File Management 313 Metadata Management 467
12.1 Persistent Data Storage 313 16.1 The Metadata Manager 467
12.2 The Block-Level Interface to the Disk 324 16.2 Table Metadata 469
12.3 The File-Level Interface to the Disk 326 16.3 View Metadata 473
12.4 The Database System and the OS 330 16.4 Statistical Metadata 475
12.5 The SimpleDB File Manager 331 16.5 Index Metadata 480
12.6 Chapter Summary 339 16.6 Implementing the Metadata Manager 484
12.7 Suggested Reading 340 16.7 Chapter Summary 486
12.8 Exercises 341 16.8 Suggested Reading 487
16.9 Exercises 487
13
Memory Management 345 17
) Query Processing 490
13.1 Two Principles of Database Memory
Management 345 17.1 Scans 490
13.2 Managing Log Information 347 17.2 Update Scans 495
13.3 The SimpleDB Log Manager 349 17.3 Implementing Scans 496
13.4 Managing User Data 356 17.4 Pipelined Query Processing 504
13.5 The SimpleDB Buffer Manager 362 17.5 The Cost of a Scan 506
13.6 Chapter Summary 372 17.6 Plans 511
13.7 Suggested Reading 372 17.7 Predicates 517
13.8 Exercises 373 17.8 Chapter Summary 526

17.9 Suggested Reading 527
17.10 Exercises 527

14
Transaction Management 376
. 18
14.1 Transactions 377 Parsing 531

14.2 Using Transactions in SimpleDB 379

14.3 Recovery Management 381 18.1 Syntax vs. Semantics 531
14.4 Concurrency Management 398 18.2 Lexical Analysis 532

14.5 Implementing SimpleDB Transactions 418 18.3 Implementing the Lexical Analyzer 534

xil Contents

18.4 Grammars 537

18.5 Recursive-Descent Parsers 540
18.6 Adding Actions to the Parser 542
18.7 Chapter Summary 555

18.8 Suggested Reading 556

18.9 Exercises 556

19

Planning 561

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8

The SimpleDB Planner 561

Verification 563

Query Planning 564

Update Planning 570

Implementing the SimpleDB Planner 572
Chapter Summary 575

Suggested Reading 576

Exercises 576

22

Materialization and Sorting 651

22.1 The Value of Materialization 651
22.2 Temporary Tables 652

22.3 Materialization 653

22.4 Sorting 658

22.5 Grouping and Aggregation 670
22.6 Merge Joins 676

22.7 Chapter Summary 682

22.8 Suggested Reading 683

22.9 Exercises 684

20

The Database Server 580

20.1 Server Databases vs. Embedded
Databases 580

Client-Server Communication 583
Implementing the Remote Interfaces 586
Implementing the JDBC Interfaces 592
Chapter Summary 595

Suggested Reading 596

Exercises 596

20.2
20.3
20.4
20.5
20.6
20.7

P

L® Efficient Query Processing 599

21
Indexing 601
21.1
21.2
21.3
21.4
21.5

The Index Interface 601

Static Hash Indexes 605

Extendable Hash Indexes 608

B-Tree Indexes 613

Index-Aware Operator Implementations 635
21.6 Index Update Planning 641

21.7 Chapter Summary 644

21.8 Suggested Reading 645

21.9 Exercises 646

23

Effective Buffer Utilization 687

23.1
23.2
233
23.4
23.5

Buffer Usage in Query Plans 687

Multibuffer Sorting 688

Muiltibuffer Product 691

Implementing the Multibuffer Operations 692
Hash Joins 699

23.6 Comparing the Join Algorithms 703

23.7 Chapter Summary 705

23.8 Suggested Reading 706

23.9 Exercises 707

24
Query Optimization 710
24.1
24.2
24.3
24.4
24.5
24.6

Equivalent Query Trees 711
The Need for Query Optimization 720
The Structure of a Query Optimizer 724
Finding the Most Promising Query Tree 725
Finding the Most Efficient Plan 737
Combining the Two Stages of
Optimization 739

24.7 Merging Query Blocks 747

24.8 Chapter Summary 748

24.9 Suggested Reading 750
24.10 Exercises 750

References 754

Index 757

Chapter
Figure 1-1

Figure 1-2

1

Some records for a university
database 2

Implementing the STUDENT records
in a text file 4

Figure 1-3 Two ways to retrieve the name of
students graduating in 1997 8
Figure 1-4 The three schema levels 11
Chapter 2
Figure 2-1 The schema of the university
database 18
Figure 2-2 Foreign keys for the university
database 22
Figure 2-3 An example of referential integrity 23
Figure 2-4 The SQL specification of the STUDENT
table 26
Chapter 3
Figure 3-1 A class diagram for the university
database 34
Figure 3-2 A class diagram for the example CD
database 37
Figure 3-3 The algorithm to transform a relational
schema to a class diagram 37
Figure 3-4 The algorithm to transform a class
diagram to a relational schema 38
Figure 3-5 Two relational schemas generated
from Figure 3-1 39
Figure 3-6 The requirements specification for the
university database 40
Figure 3-7 Extracting nouns and verbs from the
requirements specification 41
Figure 3-8 A preliminary class diagram
based on the nouns and verbs
in Figure 3-7 42
Figure 3-9 A class diagram containing an

inadequate relationship 43

List of Figures

Figure 3-10 Two ways to handle a multi-way
relationship 44
Figure 3-11 The class diagram that results
from reifying the inadequate
relationships 45
Figure 3-12 The class diagram that results
from removing redundant
relationships 46
Figure 3-13 Reifying a many-many
relationship 47
Figure 3-14 The need to reify a many-many
relationship 48
Figure 3-15 Reifying a weak-weak many-one
relationship 49
Figure 3-16 Reifying a weak one-one
relationship 50
Figure 3-17 Dealing with strong-strong
relationships 51
Figure 3-18 An algorithm to turn a class into an
attribute 52
Figure 3-19 Adding attributes to a class
diagram 53
Figure 3-20 Adding a requirement that cannot be
easily enforced 56
Figure 3-21 Adding the car manufacturer to the
database 59
Figure 3-22 Dealing with an omitted
relationship between PROF and
COURSE 60
Figure 3-23 Redundancy that FDs cannot
catch 62
Chapter 4
Figure 4-1 A query tree for Q3 73
Figure 4-2 A query tree for Q6 74
Figure 4-3 The output of query Q12 77
Figure 4-4 The output of query Q13 77
Figure 4-5 The output of queries Q18-Q20 79
Figure 4-6 The query tree for Q21 80
Figure 4-7 The output of query Q22 81
Figure 4-8 The query tree for Q23 82
Figure 4-9 The query tree for Q25-Q29 83

Xiv List of Figures
Figure 4-10 The query tree to find the grades
Joe received during his graduation
year 85
Figure 4-11 The query tree for Q38-Q40 87
Figure 4-12 The query tree for Q49-Q51 89
Figure 4-13 The output of query Q55 90
Figure 4-14 Numeric types in SQL 93
Figure 4-15 Some common SQL string
functions 95
Figure 4-16 Some common SQL date/interval
functions 96
Figure 4-17 The result of query Q68 97
Figure 4-18 A query tree for Q72 98
Chapter 5
Figure 5-1 The SQL specification of the integrity
constraint “No section can have more
than 30 students” 123
Figure 5-2 The SQL specification of the integrity
constraint “A student’s graduation year
must be at least 1863" 123
Figure 5-3 The SQL specification of the integrity
constraint “Students can take a course
at most once” 124
Figure 54 An SQL trigger that logs changes to
student grades 125
Figure 5-5 An SQL trigger that replaces
inappropriate graduation years
with nulls 126
Figure 5-6 Some SQL grant statements for the
university database 127
Figure 5-7 Some SQL statements and their
required privileges 130
Figure 5-8 Using a view to limit the power of
professors 131
Figure 5-9 An easy way to abuse
authorization 133
Figure 5-10 What should be the classification
of this query’s output table? 134
Chapter 6
Figure 6-1 The effect of a redundant
relationship 140
Figure 6-2 The value of a redundant

Courseld field 141

Figure 6-3 A materialized view that adds
Courseld to ENROLL 143

A materialized view defined by
aggregation 144

An example of denormalization 145
Materialized views that simulate
denormalization 146

Two queries that find the courses
taken by Joe 147

SQL statements to create indexes 150
The SID_IDX and MAJOR_IDX indexes
for STUDENT 151

Implementing a query with and
without an index 152

Implementing another query with
and without an index 153
Implementing a range query 155
Implementing a join query 156

Two ways to use indexes to
implement a query 157

Figure 6-4

Figure 6-5
Figure 6-6

Figure 6-7

Figure 6-8
Figure 6-9

Figure 6-10
Figure 6-11
Figure 6-12

Figure 6-13
Figure 6-14

Chapter 7

Figure 7-1 Setting the classpath for an installation

of Derby 169

Figure 7-2 An jj session to find the two
professors who taught the most
courses 174

Figure 7-3 An jj session to change the titles of
various courses 175

Chapter 8
Figure 8-1 The API for basic JDBC 179
Figure 8-2 The JDBC code for the StudentMajor
client 181
Figure 8-3 JDBC code for the ChangeMajor
client 184
Figure 8-4 Using ResultSetMetaData to print the

schema of a result set 187

The JDBC code for the SQLInterpreter
client 189

Part of the API for the class
DriverManager 190

Connecting to a Derby server using
DriverManager 191

Creating a data source for a Derby
server 192

Figure 8-5
Figure 8-6
Figure 8-7

Figure 8-8

Figure 8-9

Code that could behave incorrectly in
autocommit mode 194

List of Figures XV

Figure 8-10 More code that could behave
incorrectly in autocommit mode 194
Figure 8-11 The Connection API for handling
transactions explicitly 195
Figure 8-12 A revision of Figure 8-9 that handles
transactions explicitly 196
Figure 8-13 Two concurrent transactions that could
manage to “lose” an update 198
Figure 8-14 A transaction that could give out
more rebates than expected 199
Figure 8-15 The JDBC code for the FindMajors
client 201
Figure 8-16 Revising the FindMajors client to use
prepared statements 202
Figure 8-17 Part of the API for
PreparedStatement 203
Figure 8-18 Using a prepared statement in
aloop 203
Figure 8-19 Part of the API for ResultSet 204
Figure 8-20 Revising the code of Figure 8-9 205
Figure 8-21 An alternative (but bad) way to code
the StudentMajor client 207
Figure 8-22 A clever way to recode Step 2 of the
FindMajors client 209
Chapter 9
Figure 9-1 A code fragment of a more object-
oriented version of FindMajors 215
Figure 9-2 The API for the object-relational
mapping of the university
database 218
Figure 9-3 Printing the titles of the courses
taken by a given student 219
Figure 9-4 An API for the model class
DatabaseManager 221
Figure 9-5 Using the class
DatabaseManager 221
Figure 9-6 A screenshot of the Studentinfo
client 222
Figure 9-7 The code for the Studentinfo
view 223
Figure 9-8 The code for the model class
Student 226
Figure 9-9 The code for the DAO class
StudentDAO 228
Figure 9-10 The code for the class

DatabaseManager 231

Figure 9-11 Terminology used by JPA 237
Figure 9-12 Part of the API for the EntityManager
interface 238
Figure 9-13 A JPA client to test the entity
manager 239
Figure 9-14 The JPA version of the Student model
class 241
Figure 9-15 A typical JPA persistence
descriptor 245
Figure 9-16 Part of the API that supports JPA
queries 246
Figure 9-17 Queries to retrieve the students who
took basket weaving 248
Figure 9-18 Two JPQL queries that use path
expressions 248
Figure 9-19 A JPQL query that retrieves triples of
objects 249
Figure 9-20 A JPA client to print the name of
students graduating in 2005 251
Figure 9-21 Two ways to find the students in Joe’s
calculus section 252
Chapter 10
Figure 10-1 A possible format for data on
graduating students 258
Figure 10-2 An XML document that
represents data on graduating
students 260
Figure 10-3 Revising Figure 10-2 so that the
graduation year appears once 261
Figure 10-4 Using nested XML tags to represent
data on graduating students 262
Figure 10-5 A tree representation of the XML
document of Figure 10-4 264
Figure 10-6 Extracting the student names from
Figure 10-4 265
Figure 10-7 An iterative XSLT program to extract
student names 267
Figure 10-8 A browser-based view of the student
data 268
Figure 10-9 An XSLT program to transform
Figure 10-4 into HTML 268
Figure 10-10 SQL insert commands corresponding
to Figure 10-4 270
Figure 10-11 An XSLT program to transform
Figure 104 into SQL insert
commands 271
Figure 10-12 An XSLT program to transform

Figure 10-4 into Figure 10-2 272

