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PREFACE

This book contains an ordered presentation of practical modern control
engineering techniques with explanations, formulas, and examples, but
without mathematical proofs. Many detailed suggestions are made for the
construction of computer aided design (CAD) algorithms suited to readily
available microcomputers supporting BASIC. At the end of each chapter a
limited but carefully selected bibliography helps the reader to explore further.
Continuous and discrete time systems are given equal emphasis.

Chapter 1 sets the mathematical background with topics such as
differential and difference equations, Laplace, z, Fourier transforms, and
stochastic system definitions. It includes CAD algorithm designs which are
useful in themselves and as subroutines for larger programs. Chapter 2 deals
with ‘classical’ techniques for continuous and discrete time systems. Chap-
ters 3 and 4 describe modern control ideas for linear systems including pole
shifting, state estimation, stochastic systems, and Kalman filters. Chapter S is
devoted to computing methods for function optimization and system
identification since these are keys to the future development of this subject.
The appendixes contain basic definitions, methods, and algorithms.

This material, which has been warmly welcomed by many short-course
students, is suited to professional engineers, postgraduates, and advanced
undergraduates. It is not intended as a first introduction to control
engineering.

The author is grateful to the considerable number of Cranfield students
who have investigated the methods and algorithms outlined in this book. He is
also indebted to the staff members who have developed the laboratory
experiments. These have provided valuable insight without being unduly
complex, and can perhaps be copied by the interested reader.
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1 BASIC DEFINITIONS AND
MATHEMATICAL TECHNIQUES

1.1 INTRODUCTION

Some basic definitions and mathematical techniques are set out in this chapter
in a compact form, together with suggestions for the design of CAD
algorithms. Topics covered include linear differential and difference equations,
Laplace, z, and Fourier transforms and basic stochastic system definitions.
The reference books listed at the end provide thorough introductions to these
topics from a fairly elementary level.

1.2 ORDINARY DIFFERENTIAL EQUATIONS

‘he behavior of many dynamical systems can be modeled by one or more
;ifferential equations of the form:

F(y,y,y?, ....y™ =0 ©(LY)

where ¢t represents time, y represents some aspect of the system, typically its
dutput, and

d™y

e’

dy, mzﬁ- .
a ¥ Tar

Equation (1.1) is mth order (the highest order of derivative) and ordinary (only
ordinary derivatives involved).

The general solution, i.e. the function y(t) which satisfies Eq. (1.1), is of the
form:

(1) —

y(M) -

y(t) =Y(I,Co,‘31,---,cm—1)

where ¢y, ¢,,...,c,_, are constants which can usually be determined if values
of y,yM,y®, ., y™~ 1 are known for some specific value of t, say t,.
Typically, ‘initial’ values y(0), y'*(0),..., y"™~1Y0) are known.
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EXAMPLE

Consider the first-order differential equation:
dy n
—+2yt—e " =0. 1.
g T t—e (1.2)

This has the general solution:
y= e_tz(t + CO)

where ¢, is a constant.

Given the ‘initial’ value y(0) = 1, it is easy to show by substitution that the
solution is:

y=e"(t+1)

While some useful types of differential equation do have analytic
solutions (ref. 1), numerical solutions can very often be found for these and less
tractable cases. This topic is of intc:=st here.

If Eq. (1.1) can be rewritten with the highest-order derivatives on the left-
hand side (LHS)—and it usually can—it can be recast as two equations, one
first and one (m — 1)th order. Repeating this process, Eq. (1.1) can finally be
cast as a set of m first-order equations which in vector format (App. A.1) is:

x =1(x,1) (1.3)
with initial conditions:
x(0) =x,
where
X Wi 2 Kig)
EXAMPLE
Consider the third-order differential equation:

d*y d’ _ dy

2406 My 1=1 1.4

dt3+9dt2+ dt+ y (14)
with initial conditions:

y0)=4, yM0)=3, yH0)=2

By setting x, = y, rewriting Eq. (1.4) with d*x,/dt* on the LHS and
substituting x, = dx,/dt, two equations are generated, and by repeating the
process with x; = dx,/dt, Eq. (1.4) is recast:

Xy X2
i = )222 = x3
X3 —9x3 —26x, —24x, + 1
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with initial conditions:

4
x(0)=| 3
2

This is in the form of Eq. (1.3)
Once a differential equation, or set of equations, has been cast in this form,
it can be fed to a fairly simple CAD algorithm to yield a numerical solution.

CAD Facility
Equations in the form of Eq. (1.3) with x(0) = x,, can be solved numerically; i.e.
the value x(nh),n =0, 1,2,..., h a calculation interval, can be found by several
well-known methods.
An interactive CAD algorithm is shown in the flow diagram of Fig. 1.1.
The operation of the algorithm is as follows.

BLOCK 1

The differential equation is input in the form of Eq. (1.3) or in a manner
allowing easy conversion to this format. It is displayed and corrected if
necessary.

BLOCK 2
The calculation interval h, a printout ratio, R, and the total number of
iterations required, N, are input.

BLOCK 3
x(nh),n=0,1,2,...,N, are calculated. Two types of mathematically stable
method are outlined here.

(a) Runge—Kutta Methods (refs. 5, 7). These are based on the Taylor
expansion:
2 3

h h
x((n + 1h) = x(nh) + hxV(nh) + jx(z’(nh) + ?x“’(nh) + 0 (LS)
Commonly, four terms in this series are used to derive the fourth-order
Runge—Kutta algorithm:

Calculate:

k; = hf (x(nh), nh)

k, = hf (x(nh) + 3k,, nh + 1h)

ks = hf (x(nh) + 3k,, nh + 1h)

k, = hf (x(nh) + k3, nh + h).
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Input
X =f(x,1),
Xo
®
Input
h,N,R
)
Calculate

x(nh),n=0,1,...,N
©)

Output
N
y(nRh),n=0,1,..., —
R

Change
h.N.R?

Fig. 1.1 CAD program for solving differential equations.
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Then:
x((n + 1)h) = x(nh) + L(k, + 2k, + 2k; + k).

Higher accuracy, at the cost of added complexity, can be achieved using a
fifth-order Runge—Kutta algorithm (ref. 7). For simple cases, only two terms
need be considered to yield the second-order algorithm:

Calculate:

k, = hf(x(nh), nh)

k, = hf(x(nh) + 3k, nh + Jh).
Then:

x((n + 1)h) = x(nh) + k,.

In each of these algorithms, since x((n + 1)h) can be found from x(nh), the
starting data x(0) are sufficient to allow the algorithm to proceed.

The Runge—Kutta method yields estimates of calculation errors only
with some difficulty (ref. 7). Predictor—corrector methods are better in this
respect, and one of these is outlined next.

(b) Predictor—Corrector Methods. Perhaps the simplest such method, due to
Adams—Moulton (ref. 5), uses the information x(nh), x((n + 1)h), to predict
x((n + 2)h) by linear extrapolation.

X(n + 2)h = x(nh) + g (3f[x((n + Dh, (n + 1)h] — f(x(nh), nh)}.
This is then used in the correction formula:
X((n+ 2)h) = x((n + 1)h) + g{f[x((n + 1)h), (n + 1)h]

+f[x((n + 2)h), (n+ 2)h)]}.

The second equation can be used a number of times to improve
X((n + 2)h) until a stable value is obtained.

More sophisticated algorithms of this kind are based on nonlinear
extrapolation formulas using three or more initial known values, typically x(0),
x(h), x(2h). The initial information required by such algorithms is usually
generated by Runge—Kutta methods.

BLOCK 4

The calculation interval may be shortened after a run, and the process
repeated. If compatible results are obtained, the solution may be judged
satisfactory and the longer interval selected for further runs. Otherwise the
process is repeated.



