

NEIL C. ROWE

U.S. Naval Postgraduate School

|

PRENTICE HALL, Englewood Cliffs, New Jersey 07632

Library of Congress Cataloging-in-Publication Data

Rowe, Neil C.
Artificial intelligence through Prolog / Neil €. Rowe.
. cm.
Bibliography: p.
Includes index.
ISBN 0-13-048679-5

1. Prolog (Computer program language) 2. Artificial intelligence.

1. Title.
QA76.73.PT6R69 1988
005. 13'3—dcl9

Editorial/production supervision: Claudia Citarella
Cover design: Lundgren Graphics, Ltd.
Manufacturing buyer: S. Gordon Osbourne

© 1988 by Prentice-Hall, Inc.
A Division of Simon & Schuster
Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

ISBN 0-13-048kL79-5 025

Prentice-Hall International (UK Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

87-26219
CIP

PREFACE

Artificial intelligence is a hard subject to learn. I have written a book to make it
easier. I explain difficult concepts in a simple, concrete way. I have organized the
material in a new and (I feel) clearer way, a way in which the chapters are in a logical
sequence and not just unrelated topics. I believe that with this book, readers can learn
the key concepts of artificial intelligence faster and better than with other books. This
book is intended for all first courses in artificial intelligence at the undergraduate or
graduate level, requiring background of only a few computer science courses. It can
also be used on one’s own. No prior knowledge of the language Prolog is assumed.

Students often complain that while they understand the terminology of artifical
intelligence, they don’t have a gut feeling for what’s going on or how you apply the
concepts to a situation. One cause is the complexity of artificial intelligence. Another
is the unnecessary baggage, like overly formal logical calculi, that some books and
teachers saddle students with. But an equally important cause is the often poor
connection made between abstract concepts and their use. So I considered it essential
to integrate practical programming examples into this book, in the style of
programming language and data structures books. (I stress practical, not missionaries
and cannibals, definitions of “‘grandfather,” or rules for identifying animals in
zoos—at least rarely.) This book has about 500 chunks of code. Clear, concrete
formalization of artificial-intelligence ideas by programs and program fragments is
all the more critical today with commercialization and media discovery of the field.
which has caused a good deal of throwing around of artificial-intelligence terms by
people who don’t understand them.

xiii

Xiv Preface

But artificial intelligence 1s a tool for complex problems. and its program
examples can easily be forbiddingly complicated. Books attempting to explain
artificial intelligence with examples from the programming language Lisp have
repeatedly demonstrated this. But I have come to see that the fault lies more with Lisp
than with artificial intelligence. Lisp has been the primary language of artificial
intelligence for many years, but it is a low-level language, too low for most students.
Designed in the early 1960s, Lisp reflects the then-primitive understanding of good
programming, and requires the programmer to worry considerably about actual
memory references (pointers). Furthermore, Lisp has a weird, hard-to-read syntax
unlike that of any other programming language. To make matters worse, the
widespread adoption of Common Lisp as a de facto standard has discouraged
research on improved Lisps.

Fortunately there is an alternative: Prolog. Developed in Europe in the 1970s,
the language Prolog has steadily gained enthusiastic converts, bolstered by its
surprise choice as the initial language of the Japanese Fifth Generation Computer
project. Prolog has three positive features that give it key advantages over Lisp. First,
Prolog syntax and semantics are much closer to formal logic, the most common way
of representing facts and reasoning methods used in the artificial-intelligence
literature. Second, Prolog provides automatic backtracking, a feature making for
considerably easier ““search,’’ the most central of all artificial-intelligence techniques.
Third, Prolog supports multidirectional (or multiuse) reasoning, in which arguments
to a procedure can freely be designated inputs and outputs in different ways in
different procedure calls, so that the same procedure definition can be used for many
different kinds of reasoning. Besides this, new implementation techniques have given
current versions of Prolog close in speed to Lisp implementations, so efficiency is no
ionger a reason to prefer Lisp.

But Prolog also, I believe, makes teaching artificial intelligence easier. This
book is a demonstration. This book is an organic whole, not a random collection of
chapters on random topics. My chapters form a steady, logical progression, from
knowledge representation to inferences on the representation, to rule-based systems
codifying classes of inferences, to search as an abstraction of rule-based systems, to
extensions of the methodology, and finally to evaluation of systems. Topics hard to
understand like search, the cut predicate, relaxation, and resolution are introduced
late and only with careful preparation. In each chapter, details of Prolog are
integrated with major concepts of artificial intelligence. For instance, Chapter 2
discusses the kinds of facts about the world that one can put into computers as well as
the syntax of Prolog’s way; Chapter 3 discusses automatic backtracking as well as
Prolog querying; Chapter 4 discusses inference and inheritance as well as the
definition of procedures in Prolog; Chapter 5 discusses multidirectional reasoning as
well as the syntax of Prolog arithmetic; and so on. This constant tying of theory to
practice makes artificial intelligence a lot more concrete. Learning is better motivated
since one doesn’t need to master a lot of mumbo-jumbo to get to the good stuff. I
can’t take much of the credit myself: the very nature of Prolog, and particularly the
advantages of the last paragraph, make it easy.

Despite my integrated approach to the material, I think I have covered nearly

Preface XV

all the topics in ACM and IEEE guidelines for a first course in artificial intelligence.
Basic concepts mentioned in those guidelines appear toward the beginning of
chapters, and applications mentioned in the guidelines appear toward the ends.
Beyond the guidelines however, I have had to make tough decisions about what to
leave out—a coherent book is better than an incoherent book that covers everything.
Since this is a first course, I concentrate on the hard core of artificial intelligence. So
I don’t discuss much how humans think (that’s psychology), or how human language
works (that’s linguistics), or how sensor interpretation and low-level visual processing
are done (that’s pattern recognition), or whether computers will ever really think
(that’s philosophy). I have also cut corners on hard noncentral topics like computer
learning and the full formal development of predicate calculus. On the other hand, I
emphasize more than other books do the central computer science concepts of
procedure calls, variable binding, list processing, tree traversal, analysis of processing
efficiency, compilation, caching, and recursion. This is a computer science textbook.

A disadvantage of my integrated approach is that chapters can’t so easily be
skipped. To partially compensate, I mark some sections within chapters (usually
sections toward the end) with asterisks to indicate that they are optional to the main
flow of the book. In addition, all of Chapters 7, 10, and 14 can be omitted, and
perhaps Chapters 12 and 13 too. (Chapters 7, 10, 13, and 14 provide a good basis for
a second course in artificial intelligence, and I have used them that way myself.)
Besides this, I cater to the different needs of different readers in the exercises.
Exercises are essential to learning the material in a textbook. Unfortunately, there is
little consensus about what kind of exercises to give for courses in artificial
intelligence. So I have provided a wide variety: short-answer questions for checking
basic understanding of material, programming exercises for people who like to
program, ‘“‘play computer’ exercises that have the reader simulate techniques
described, application questions that have the reader apply methods to new areas
(my favorite kind of exercise because it tests real understanding of the material),
essay questions, fallacies to analyze, complexity analysis questions, and a few
extended projects suitable for teams of students. There are also some miscellaneous
questions drawing on the entire book, at the end of Chapter 15. Answers to about one
third of the exercises are provided in Appendix G, to offer readers immediate
feedback on their understanding, something especially important to those tackling
this book on their own.

To make learning the difficult material of this book even easier, I provide other
learning aids. I apportion the book into short labeled sections, to make it easier for
readers to chunk the material into mind-sized bites. I provide reinforcement of key
concepts with some novel graphical and tabular displays. I provide ““glass box”’
computer programs (that is, the opposite of “*black box’) for readers to study. I mark
key terms in italics where they are defined in the text, and then group the most
important of these terms into keyword lists at the end of every chapter. I give
appendices summarizing the important background material needed for this book,
concepts in logic, recursion, and data structures. In other appendices, I summarize the
Prolog dialect of the book, make a few comments on Micro-Prolog, and provide a
short bibliography (most of the artificial intelligence literature is now either too hard

XVi Preface

or too easy for readers of this book). The major programs of the book are available
on tape or diskette from the publisher for a small fee. Also, I have prepared an
instructor’s manual.

It’s not necessary to have a Prolog interpreter or compiler available to use this
book, but it does make learning easier. This book uses a limited subset of the most
common dialect of Prolog, the “‘standard Prolog’” of Programming in Prolog by
Clocksin and Mellish (second edition, Springer-Verlag. 1984). But most exercises do
not require programming.

I’ve tried to doublecheck all examples, programs. and exercises, but some errors
may have escaped me. If you find any, please write me in care of the publisher, or
send computer mail to rowe@nps-cs.arpa.

ACKNOWLEDGMENTS

Many people contributed ideas to this book. Michael Genesereth first suggested
to me the teaching of introductory artificial intelligence in a way based on logic.
David H. Warren gradually eroded my skepticism about Prolog. Harold Abelson and
Seymour Papert have steered my teaching style toward student activity rather than
passivity.

Judy Quesenberry spent many long hours helping me with the typing and
correction of this book, and deserves a great deal of thanks, even if she ate an awful
lot of my cookies. Robert Richbourg has been helpful in many different ways, in
suggesting corrections and improvements and in testing out some of the programs,
despite his having to jump through all the hoops Ph.D. students must jump through.
Richard Hamming provided valuable advice on book production. Other people who
provided valuable comments include Chris Carlson, Daniel Chester, Ernest Davis,
Eileen Entin, Robert Grant, Mike Goyden, Simon Hart, Greg Hoppenstand, Kirk
Jennings, Grace Mason, Bruce MacLennan, Norman McNeal, Bob McGhee, James
Milojkovic, Doug Owen, Jim Peak, Olen Porter, Brian Rodeck, Jean Sando, Derek
Sleeman, Amnon Shefi, and Steve Weingart. Mycke Moore made the creative
suggestion that I put a lot of sex into this book to boost sales.

Besides those named, I am grateful to all my students over the years at the
Massachusetts Institute of Technology. Stanford University, and the Naval
Postgraduate School for providing valuable feedback. They deserve a good deal of
credit for the quality of this book—but sorry, people, I’'m poor and unwilling to share
royalties.

xvii

TO THE READER

Artificial intelligence draws on many different areas of computer science. It is
hard to recommend prerequisites because what you need to know is bits and pieces
scattered over many different courses. At least two quarters or semesters of computer
programming in a higher-level language like Pascal is strongly recommended, since
we will introduce here a programming language several degrees more difficult,
Prolog. If you can get programming experience in Prolog, Lisp, or Logo, that’s even
better. It also helps to have a course in formal logic, though we won’t use much of the
fancy stuff they usually cover in those courses; see Appendix A for what you do need
to know. Artificial intelligence uses sophisticated data structures, so a data structures
course helps; see Appendix C for a summary. Finally, you should be familiar with
recursion, because Prolog is well suited to this way of writing programs. Recursion is
a difficult concept to understand at first, but once you get used to it you will find it
easy and natural; Appendix B provides some hints.

Solving problems is the best way to learn artificial intelligence. So there are lots
of exercises in this book, at the ends of chapters. Please take these exercises seriously;
many of them are hard, but you can really learn from them, much more than by just
passively reading the text. Artificial intelligence is difficult to learn, and feedback
really helps, especially if your’re working on your own. (But don’t plan to do all the
exercises: there are too many.) Exercises have code letters to indicate their special
features:

XixX

XX To The Reader

® R means a particularly good problem recommended for all readers:
* A means a question that has an answer in Appendix G:

¢ H means a particularly hard problem:

¢ P means a problem requiring actual programming in Prolog;

e E means an essay question;

e G means a good group project.

In addition to exercises, each chapter has a list of key terms you should know. Think
of this list, at the end of the text for each chapter, as a set of “‘review questions.”’

The symbol * on a section of a chapter means optional reading. These sections
are either significantly harder than the rest of the text or significantly far from the core
material.

CONTENTS

PREFACE xiii
ACKNOWLEDGMENTS xvii
TO THE READER xix
INTRODUCTION /

1.1 What artificial intelligence is about |
1.2 Understanding artificial intelligence 2
1.3 Preview 3

REPRESENTING FACTS 74

2.1 Predicates and predicate expression§ 4

2.2 Predicates indicating types 6

2.3 About types 8

2.4 Good naming 8

2.5 Property predicates ¢

2.6 Predicates for relationships /10

2.7 Semantic networks /2

2.8 Getting facts from English descriptions /3
2.9 Predicates with three or more arguments /4

vi

2.10
2.11

Probabilities /5
How many facts do we need? 15

3 VARIABLES AND QUERIES 19

3.1
32
33
34
3.5
3.6
3.7
3.8
3.9
3.10

3.11
3.12
3.13
3.14
3.15

Querying the facts /9

Queries with one variable 2/

Multidirectional queries 2/

Matching alternatives 22

Multicondition queries 23

Negative predicate expressions 25

Some query examples 26

Loading a database 27

Backtracking 27

A harder backtracking example:
superbosses 30

Backtracking with “‘not™s 32

The generate-and-test scheme 34

Backtracking with “or’’s* 34

Implementation of backtracking 35

About long examples 36

4 DEFINITIONS AND INFERENCES 43

4.1
4.2
43
4.4
4.5
4.6
4.7
4.8
4.9
4.10

4.11
4.12
4.13

Rules for definitions 43
Rule and fact order 44
Rules as programs 47
Rules in natural language 47
Rules without right sides 48
Postponed binding 49
Backtracking with rules 49
Transitivity inferences 52
Inheritance inferences 44
Some implementation problems

for transitivity and inheritance 58
A longer example: some traffic laws 60
Running the traffic lights program 64
Declarative programming 65

5 ARITHMETIC AND LISTS IN PROLOG

L L W L
DN AW N —

Arithmetic comparisons 74

Arithmetic assignment 7%

Reversing the *“Is™” 76

Lists in Prolog 78

Defining some list-processing predicates 80
List-creating predicates 83

/4

Contents

Contents

vii

5.7 Combining list predicates 87
5.8 Redundancy in definitions 88
5.9 An example: dejargonizing

bureaucratese* 89

6 CONTROL STRUCTURES
FOR RULE-BASED SYSTEMS 99

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12

Backward-chaining control structures 700
Forward chaining 102

A forward chaining example 703

Hybrid control structures 105

Order variants 108

Partitioned control structures /09
Meta-rules 709

Decision lattices 770

Concurrency in control structures //2
And-or-not lattices 173

Randomness in control structures 175
Grammars for interpreting languages* 115

7 IMPLEMENTATION OF RULE-BASED
SYSTEMS 125

Fl
7.2

7.3
7.4
A
7.6
7.7
7.8
7.9
7.10
7.11
7.12

7.13
7.14
7.15
7.16
7.17
7.18

7.19

Implementing backward chaining 725
Implementing virtual facts

and caching 726
Input coding 127
Output coding 128
Intermediate predicates /30
An example program /3]
Running the example program /33
Partitioned rule-based systems /34
Implementing the rule-cycle hybrid 735
Implementing pure forward chaining® 137
Forward chaining with “‘not’’s* 740
General iteration with ““forall”’

and “doall’™* 4]
Input and output of forward chaining* 143
Rule form conversions* 146
Indexing of predicate expressions*]48
Implementing meta-rules* 749
Implementing concurrency* /5]
Decision lattices: a compilation

of a rule-based system™ 151/
Summary of the code described

in the chapter* 7155

viii

8 REPRESENTING UNCERTAINTY
IN RULE-BASED SYSTEMS /44

8.1
8.2
8.3

8.4

8.5

8.6
8.7
8.8
8.9
8.10

8.11
8.12
8.13
8.14
8.15

Probabilities in rules 7164

Some rules with probabilities /166

Combining evidence assuming
statistical independence 167

Prolog implementation of independence-assumption
‘“and-combination’> 170

Prolog implementation of independence-assumption
‘“or-combination’ 7]

The conservative approach 173

The liberal approach and others 175

Negation and probabilities 177

An example: fixing televisions 177

Graphical representation of probabilities
in rule-based systems /80

Getting probabilities from statistics /80

Probabilities derived from others /182

Subjective probabilities 183

Maximum-entropy probabilities* 184

Consistency* 185

9 SEARCH 791/

9.1
9.2
9.3
9.4
9.5
9.6

9.7
9.8
9.9
9.10
9.11
9.12
9.13
9.14

9.15
9.16

Changing words 1921

States 192

Three examples 793

Operators 193

Search as graph traversal 194

The simplest search strategies:
depth-first and breadth-first 797

Heuristics 7199

Evaluation functions 200

Cost functions 202

Optimal-path search 203

A route-finding example 204

Special cases of search 205

How hard is a search problem? 207

Backward chaining
versus forward chaining* 208

Using probabilities in search* 27]

Another example: visual
edge-finding as search* 271

Contents

Contents

10 IMPLEMENTING SEARCH 223

10.1
10.2

10.3
10.4
10.5
10.6

10.7
10.8
10.9
10.10
10.11
10.12

Defining a simple search problem 223
Defining a search problem

with fact-list states 226
Implementing depth-first search 229
A depth-first example 230
Implementing breadth-first search 232
Collecting all items that satisfy

a predicate expression 236
The cut predicate 238
Iteration with the cut predicate* 240
Implementing best-first search* 24/
Implementing A* search* 244
Implementing search with heuristics* 249
Compilation of search* 250

11 ABSTRACTION IN SEARCH 243

1.1
11.2
43
11.4
11.5
11.6
11.7
11.8
11.9

Means-ends analysis 263

A simple example 264

Partial state description 268

Implementation of means-ends analysis 268
A harder example: flashlight repair 27/
Running the flashlight program 274
Means-ends versus other search methods 282
Modeling real-word uncertainty* 283
Procedural nets* 283

12 ABSTRACTION OF FACTS 285

12.1
12.2
12.3
12.4
12.5
12.6
12.7
12.8
12.9
12.10
12.11
12.12
12.13

Partitioning facts 285
Frames and slots 284
Slots qualifying other slots 287
Frames with components 288
Frames as forms: memos 288
Slot inheritance 290
Part-kind inheritance 29/
Extensions versus intensions 29]
Procedural attachment 292
Frames in Prolog 292
Example of a frame lattice 293
Expectations from slots 297
Frames for natural language
understanding*® 298

12.14 Multiple inheritance* 299
12.15 A multiple inheritance example:

custom operating systems* 299

13 PROBLEMS WITH MANY
CONSTRAINTS 307

13.1
13.2

13.3
13.4

13.5
13.6
13.7
13.8
13.9
13.10
13.11
13.12
13.13
13.14

13.15
13.16

Two examples 307
Rearranging long queries
without local variables 371
Some mathematics 372
Rearranging queries
with local variables 3173
Rearranging queries based
on dependencies 3/4
Summary of guidelines for optimal query
arrangements 375
Rearrangement and improvement
of the photo interpretation query 376
Dependency-based backtracking 379
Reasoning about possibilities 327
Using relaxation for the photo
interpretation example 322
Quantifying the effect* 324
Formalization of pure relaxation 325
Another relaxation example:
cryptarithmetic 326
Implementation of pure relaxation* 330

Running a cryptarithmetic relaxation® 334

Implementing double relaxation* 336

14 A MORE GENERAL LOGIC
PROGRAMMING 349

14.1
14.2

14.3
14.4
14.5
14.6
14.7

14.8
14.9

Logical limitations of Prolog 349
The logical (declarative) meaning

of Prolog rules and facts 350
Extending Prolog rules 352
More about clause form 353
Resolution 354
Resolution with variables 356
Three important applications

of resolution 357
Resolution search strategies 357
Implementing resolution

without variables* 359

Contents

Contents xi

15 TESTING AND DEBUGGING
OF ARTIFICIAL-INTELLIGENCE
PROGRAMS 364

15.1 The gold standard 364

152 Cases 365

15.3 Focusing on bugs 366

15.4 Exploiting pairs of similar cases 367

15.5 Composite results 368

15.6 Numbers in comparisons 369

15.7 Preventive measures 370

15.8 Supporting intuitive debugging
by explanations 370

15.9 Evaluating cooperativeness 371/

15.10 On problems unsuitable
for artificial intelligence 372

Miscellaneous exercises covering

the entire book 375

BASICS OF LOGIC 381
BASICS OF RECURSION 385

BASICS OF DATA STRUCTURES 38¢

o O % »

SUMMARY OF THE PROLOG DIALECT
USED IN THIS BOOK 393

D.1 Managing facts and rules 393
D.2 The format of facts, rules,

and queries 395
D.3 Program layout 395
D.4 Lists 396
D.5 Numbers 396
D.6 Output and input 396
D.7 Strings 397
D.8 Treating rules and facts as data 397
D.9 Miscellaneous predicates 397
D.10 Definable predicates 397
D.11 Debugging 398

E USING THIS BOOK WITH
MICRO-PROLOG 399

