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PREFACE

Artificial intelligence is a hard subject to learn. I have written a book to make it
easier. I explain difficult concepts in a simple, concrete way. I have organized the
material in a new and (I feel) clearer way, a way in which the chapters are in a logical
sequence and not just unrelated topics. I believe that with this book, readers can learn
the key concepts of artificial intelligence faster and better than with other books. This
book is intended for all first courses in artificial intelligence at the undergraduate or
graduate level, requiring background of only a few computer science courses. It can
also be used on one’s own. No prior knowledge of the language Prolog is assumed.

Students often complain that while they understand the terminology of artifical
intelligence, they don’t have a gut feeling for what’s going on or how you apply the
concepts to a situation. One cause is the complexity of artificial intelligence. Another
is the unnecessary baggage, like overly formal logical calculi, that some books and
teachers saddle students with. But an equally important cause is the often poor
connection made between abstract concepts and their use. So I considered it essential
to integrate practical programming examples into this book, in the style of
programming language and data structures books. (I stress practical, not missionaries
and cannibals, definitions of “‘grandfather,” or rules for identifying animals in
zoos—at least rarely.) This book has about 500 chunks of code. Clear, concrete
formalization of artificial-intelligence ideas by programs and program fragments is
all the more critical today with commercialization and media discovery of the field.
which has caused a good deal of throwing around of artificial-intelligence terms by
people who don’t understand them.
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Xiv Preface

But artificial intelligence 1s a tool for complex problems. and its program
examples can easily be forbiddingly complicated. Books attempting to explain
artificial intelligence with examples from the programming language Lisp have
repeatedly demonstrated this. But I have come to see that the fault lies more with Lisp
than with artificial intelligence. Lisp has been the primary language of artificial
intelligence for many years, but it is a low-level language, too low for most students.
Designed in the early 1960s, Lisp reflects the then-primitive understanding of good
programming, and requires the programmer to worry considerably about actual
memory references (pointers). Furthermore, Lisp has a weird, hard-to-read syntax
unlike that of any other programming language. To make matters worse, the
widespread adoption of Common Lisp as a de facto standard has discouraged
research on improved Lisps.

Fortunately there is an alternative: Prolog. Developed in Europe in the 1970s,
the language Prolog has steadily gained enthusiastic converts, bolstered by its
surprise choice as the initial language of the Japanese Fifth Generation Computer
project. Prolog has three positive features that give it key advantages over Lisp. First,
Prolog syntax and semantics are much closer to formal logic, the most common way
of representing facts and reasoning methods used in the artificial-intelligence
literature. Second, Prolog provides automatic backtracking, a feature making for
considerably easier ““search,’’ the most central of all artificial-intelligence techniques.
Third, Prolog supports multidirectional (or multiuse) reasoning, in which arguments
to a procedure can freely be designated inputs and outputs in different ways in
different procedure calls, so that the same procedure definition can be used for many
different kinds of reasoning. Besides this, new implementation techniques have given
current versions of Prolog close in speed to Lisp implementations, so efficiency is no
ionger a reason to prefer Lisp.

But Prolog also, I believe, makes teaching artificial intelligence easier. This
book is a demonstration. This book is an organic whole, not a random collection of
chapters on random topics. My chapters form a steady, logical progression, from
knowledge representation to inferences on the representation, to rule-based systems
codifying classes of inferences, to search as an abstraction of rule-based systems, to
extensions of the methodology, and finally to evaluation of systems. Topics hard to
understand like search, the cut predicate, relaxation, and resolution are introduced
late and only with careful preparation. In each chapter, details of Prolog are
integrated with major concepts of artificial intelligence. For instance, Chapter 2
discusses the kinds of facts about the world that one can put into computers as well as
the syntax of Prolog’s way; Chapter 3 discusses automatic backtracking as well as
Prolog querying; Chapter 4 discusses inference and inheritance as well as the
definition of procedures in Prolog; Chapter 5 discusses multidirectional reasoning as
well as the syntax of Prolog arithmetic; and so on. This constant tying of theory to
practice makes artificial intelligence a lot more concrete. Learning is better motivated
since one doesn’t need to master a lot of mumbo-jumbo to get to the good stuff. I
can’t take much of the credit myself: the very nature of Prolog, and particularly the
advantages of the last paragraph, make it easy.

Despite my integrated approach to the material, I think I have covered nearly
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all the topics in ACM and IEEE guidelines for a first course in artificial intelligence.
Basic concepts mentioned in those guidelines appear toward the beginning of
chapters, and applications mentioned in the guidelines appear toward the ends.
Beyond the guidelines however, I have had to make tough decisions about what to
leave out—a coherent book is better than an incoherent book that covers everything.
Since this is a first course, I concentrate on the hard core of artificial intelligence. So
I don’t discuss much how humans think (that’s psychology), or how human language
works (that’s linguistics ), or how sensor interpretation and low-level visual processing
are done (that’s pattern recognition), or whether computers will ever really think
(that’s philosophy). I have also cut corners on hard noncentral topics like computer
learning and the full formal development of predicate calculus. On the other hand, I
emphasize more than other books do the central computer science concepts of
procedure calls, variable binding, list processing, tree traversal, analysis of processing
efficiency, compilation, caching, and recursion. This is a computer science textbook.

A disadvantage of my integrated approach is that chapters can’t so easily be
skipped. To partially compensate, I mark some sections within chapters (usually
sections toward the end) with asterisks to indicate that they are optional to the main
flow of the book. In addition, all of Chapters 7, 10, and 14 can be omitted, and
perhaps Chapters 12 and 13 too. (Chapters 7, 10, 13, and 14 provide a good basis for
a second course in artificial intelligence, and I have used them that way myself.)
Besides this, I cater to the different needs of different readers in the exercises.
Exercises are essential to learning the material in a textbook. Unfortunately, there is
little consensus about what kind of exercises to give for courses in artificial
intelligence. So I have provided a wide variety: short-answer questions for checking
basic understanding of material, programming exercises for people who like to
program, ‘“‘play computer’ exercises that have the reader simulate techniques
described, application questions that have the reader apply methods to new areas
(my favorite kind of exercise because it tests real understanding of the material),
essay questions, fallacies to analyze, complexity analysis questions, and a few
extended projects suitable for teams of students. There are also some miscellaneous
questions drawing on the entire book, at the end of Chapter 15. Answers to about one
third of the exercises are provided in Appendix G, to offer readers immediate
feedback on their understanding, something especially important to those tackling
this book on their own.

To make learning the difficult material of this book even easier, I provide other
learning aids. I apportion the book into short labeled sections, to make it easier for
readers to chunk the material into mind-sized bites. I provide reinforcement of key
concepts with some novel graphical and tabular displays. I provide ““glass box”’
computer programs (that is, the opposite of “*black box’) for readers to study. I mark
key terms in italics where they are defined in the text, and then group the most
important of these terms into keyword lists at the end of every chapter. I give
appendices summarizing the important background material needed for this book,
concepts in logic, recursion, and data structures. In other appendices, I summarize the
Prolog dialect of the book, make a few comments on Micro-Prolog, and provide a
short bibliography (most of the artificial intelligence literature is now either too hard
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or too easy for readers of this book). The major programs of the book are available
on tape or diskette from the publisher for a small fee. Also, I have prepared an
instructor’s manual.

It’s not necessary to have a Prolog interpreter or compiler available to use this
book, but it does make learning easier. This book uses a limited subset of the most
common dialect of Prolog, the “‘standard Prolog’” of Programming in Prolog by
Clocksin and Mellish (second edition, Springer-Verlag. 1984). But most exercises do
not require programming.

I’ve tried to doublecheck all examples, programs. and exercises, but some errors
may have escaped me. If you find any, please write me in care of the publisher, or
send computer mail to rowe@nps-cs.arpa.
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TO THE READER

Artificial intelligence draws on many different areas of computer science. It is
hard to recommend prerequisites because what you need to know is bits and pieces
scattered over many different courses. At least two quarters or semesters of computer
programming in a higher-level language like Pascal is strongly recommended, since
we will introduce here a programming language several degrees more difficult,
Prolog. If you can get programming experience in Prolog, Lisp, or Logo, that’s even
better. It also helps to have a course in formal logic, though we won’t use much of the
fancy stuff they usually cover in those courses; see Appendix A for what you do need
to know. Artificial intelligence uses sophisticated data structures, so a data structures
course helps; see Appendix C for a summary. Finally, you should be familiar with
recursion, because Prolog is well suited to this way of writing programs. Recursion is
a difficult concept to understand at first, but once you get used to it you will find it
easy and natural; Appendix B provides some hints.

Solving problems is the best way to learn artificial intelligence. So there are lots
of exercises in this book, at the ends of chapters. Please take these exercises seriously;
many of them are hard, but you can really learn from them, much more than by just
passively reading the text. Artificial intelligence is difficult to learn, and feedback
really helps, especially if your’re working on your own. (But don’t plan to do all the
exercises: there are too many.) Exercises have code letters to indicate their special
features:
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XX To The Reader

® R means a particularly good problem recommended for all readers:
* A means a question that has an answer in Appendix G:

¢ H means a particularly hard problem:

¢ P means a problem requiring actual programming in Prolog;

e E means an essay question;

e G means a good group project.

In addition to exercises, each chapter has a list of key terms you should know. Think
of this list, at the end of the text for each chapter, as a set of “‘review questions.”’

The symbol * on a section of a chapter means optional reading. These sections
are either significantly harder than the rest of the text or significantly far from the core
material.
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