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PREFACE

NETFLOW, an ‘International Workshop on Network Flow Optimization: Theory
and Practice’, was held in Pisa from March 28 to 31, 1983. Jointly promoted and
organized by the IBM Scientific Center, the Department of Computer Science of
the University of Pisa and the Istituto di Elaborazione dell’ Informazione (CNR)
of Pisa, the workshop intended to provide updated tutorials and advanced research
papers on network flow models and optimization techniques.

The increasing interest in mathematical methods for network flow optimization
comes from their elegant simplicity, efficiency and from the numerous relevant
applications of network flow models. Examples are production-distribution, urban
traffic, railway systems, communications, facility location, routing and scheduling,
file management, eiectrical and pipe networks. Optimization algorithms that exploit
network structures can be one-hundred times faster than general algofithms, to
produce solutions of the same quality. The possibility of displaying the network
relationships in two-dimensional drawings greatly simplifies the input of modéls
and the interpretation of output resuits, especially using the sophisticated graphical
equipment now available. All these appealing features have made the network flow
optimization theory, since the appearance of a systematic development in the early
fifties, a well defined mathematical programming area, provided with a vast literature
even in dedicated books and journals.

In so far as its size allows, this volume collects the workshop material, with
selection criteria mainly based on the purpose of covering as many topics as possible.
To achieve this overall view of the field, many contributions have been included as
short papers. Items are presented in the volume according to the workshop structure:
the series of full papers is opened and closed by two surveys, on shortest path
algorithms and on non linear network flow models respectively. The former is
addressed to what can be considered as the simplest, and yet very important, network
optimization problem; the latter is concerned with a quite advanced topic, mainly
focusing on transportation planning. In between, two expository papers deal with
fundamental problems such as max flow and min-cost flow. In these papers, state-of-
the-art algorithms are described in full detail with great attention to the data structure
needed for their implementation. The remaining full papers contain particular
research contributions in relevant areas such as assignment, transportation, vehicle
routing and network design. The short papers cover almost all the network flow
optimization field, again from the basic topics such as mathematical properties of
network flow models, matching algorithms, single and multicommodity solution
procedures, to specialized models arising in routing, scheduling, network design,
location problems, and to the wide area of nonlinear models.



Preface

The organization of the Workshop, which was directed by the Editors of this
Study, has relied upon the secretarial and administrative skill of Ms. Elena Avancini
and Ms. Giuliana Tedeschi. We wish to take this opportunity to express our gratitude
to them. The Editors are also indebted to Ms. Jean E. Cupit for the professional
assistance with contributions from non-English speaking authors. A sincere thanks
is finally due to the referees, who provided a crucial support to this effort.
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This paper is a survey, from the point of view of a theoretical, computer scientist, of efficient
algorithms for the maximum flow problem. Included is a discussion of the most efficient known
algorithm for sparse graphs, which makes use of a novel data structure for representing rooted
trees. Also discussed are the potential practical significance of the algorithms and open problems.

Key word: Maxflow.

1. Introduction

The maximum network flow problem is one of the classical problems of network
optimization. From the point of view of the complexity theorist, it is also one of
the most intrigning, because of the number, variety; and rich structure of the
algorithms that have been proposed to solve it. This paper is a survey of the known
maximum flow algorithms and the techniques they use. Our emphasis is on theoretical
efficiency, as measured by the worst-case running time of an algerithm on a random-
access computer. We shall generally use the ‘unit-cost’ measure: any operation on
real numbers is assumed to take unit time. We shall occasionally use the ‘logarithmic-
cost’ measure, under which any operation on real numbers takes time proportional
to the number of bits of precision. For more information on our theoretical
framework and in particular on these cost measures, see the books by Aho, Hopcroft
and Ullman [1], Papadimitriou and Steiglitz [16], and Tarjan [24].

In Section 2 we define the maximum flow problem and discuss algorithms for
solving it. The best methods are based on algorithms for the blocking flow groblem,
which we consider in Section 3. On sparse graphs, the most efficient known algorithm
is due to Sleator and Tarjan [20, 21]. It uses a novel data structure for repr&nting
and manipulating rooted trees. Recently Gabow [9] has discovered a new maximum
flow algorithm that combines a scaling technique with Dinic’s algorithm. If the edge
capacities are integers of moderate size, Gabow’s method is competitive with that
of Sleator and Tarjan. We discuss Gabow’s method in Section 4, which also contains
additional remarks, including a discussion of the potential practical significance of
the theoretically fast algorithms and some open problems. Throughout the paper
we omit many of the details and all of the proofs; these may be found in.[24].-

1
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Let G =(V, Ej be a directed graph with two distinguished vertices, a source s and
‘a sink t, and a positive real-valued capacity c(v, w) on every directed edge [v, w]. If
- [ov, w] is not an edge, we define (v, w)=0. We denote the number of vertices by n
and the number of edges by m. For ease in stating time bounds we assume n = O(m).
A flow on G is a real-valued function f on the vertex pairs satisfying

(i) (skew symmetry) f(v, w)=—f(w, ») for all v, w.
(i) (capacity constraint) f(v, w)< ¢(p, w) for all v, w.
(iii) (flow conservation) For every vertex v other than s and ¢,

2 f(v, w)=0.

We impose skew symmetry merely for technical convenience. Note that skew
_ symmetry and the capacity constraint imply f(v, w) =0 if neither [v, w] nor [w, v] is
an edge. If f(v, w)> 0, we say there is a flow from v to w of magnitude f(v, w). Flow
conservation states that the total flow into any vertex other than s and ¢ equals the
total outgoing flow. The value of a flow f, denoted by |f], is the net flow out of the
source, )., (s, v). The maximum flow problem is that of finding a flow of maximum
value, called a maximum flow.

The classical theory of network flows was developed by Ford and Fulkerson [8].
To understand it, we need one more concept, that of a cut. A cut X, X is a partition
of the vertex set into two parts, such that s€ X and 1€ X. The capacity of the cut is

X, X)= L c(nw.

ve X,we X

The net fiow across the cut is

X X)= T flo,w).

ve X, we X

Flow conservation implies the following lemma:
Lemma 1. For any flow f, the net flow across any cut X, X equals the flow value.

Ford and Fulkerson’s main result is the max—_ﬂo_w, min-cut theorem:
Theorem 1. A flow fis maximum if and only if there is a cut X, X such that | f] = ¢(X, X).

The capacity constraint and Lemma [ imply that, for any flow f and any cut X,

fi= I flow=dXX)

veX,we X

This gives the easy half of theorem 1. Ford and Fulkerson proved the converse by
giving 2 method to increase the value of a flow if it is not maximum. For any flow
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/, let us define the residual graph R for f to be the graph with vertex set V, source
s, sink t, and an edge [v, w] of capacity ¢'(v, w)= c(v, w) — f(v, w) for every pair v,
w such that ¢(v, w)— f(v, w) >0. We can puskh up to ¢'(v, w) additional units of flow
from v to w by increasing f(v, w).' An augmenting path for f is a path from s to ¢
in R. Given an augmenting path p, we can increase the value of f by increasing
f(v, w) for every edge [v, w] on p by any amount up to its residual capacity, defined
to be min{c'(v, w)|[v, w] on p}.

Lemma 2. Let f be any flow and ' a maximum flow on G. If R is the residual graph
for f, then the value of a maximum flow on R is | f'| —|f]. :

Corollary 1. A flow is maximum if and only if it has no augmenting path.

We can find a maximum flow by beginning with the zero flow (the flow that is
identically zero on all vertex pairs) and repeating the following step until obtaining
a flow with no augmenting path:

Augmenting Step. Find an augmenting path p for the current flow and increase the
value of the flow by pushing along the path an amount of flow equal to its residual
capacity.

K]

This is Ford and Fulkerson's augmenting path method. Once a flow f with no
augmenting path is found, the set of vertices reachable from s in the residual graph
for f defines a minimum cut. Thus we can compute both a maximum flow and a
minimum cut by the augmenting path method.

Remark. Although we can compute 2 minimum cut from a maximum flow in O(m)
time, no similarly easy way is known of computing a maximum flow from a minimum
cut.

Finding one augmenting path takes O(m) time with any standard search method,
such as depth-first or breadth-first search [24]. If all the capacities are integers, each
augmentation increases the flow value by at least one, and the running time of the
augmenting path method is O(m|f]). The existence of this method implies the
important integrality theorem: ’

Theorem 2. If all capacities are integers, there is an integral maximum flow (a flow "
that is an integer on every edge).

Unfortunately, if the capacities are large integers, the running time of the augment-
ing path method can be very large. Furthermore, if the capacities are arbitrary real
numbers the method need not terminate, and although successive flow values will

! Whenever we increase f(v, w), we must decrease f(w, v) by the same amount to maintain skew
iymmetry. We shall generally not mention this explicitly.
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converge they need not converge to the value of the maximum flow [8]. In spite of
these theoretical drawbacks, the augmenting path method has been used with
practical success for many years. '

Edmonds and Karp [7] and independently Dinic [6] were the first to propose
maximum flow algorithms efficient in the worst case. Edmonds and Karp's paper
contains several interesting results on both the maximum flow and the minimum-cost
flow problems. (We shall not discuss the latter problem here.) For the maximum
flow problem, they proposed two ways of selecting augmenting paths to make Ford
and Fulkerson’s method efficient. One way is to always choose an augmenting path
of maximum residual capacity. With this method, each augmenting step takes O(m)
time using a variant of Dial's implementation of Dijkstra’s shortest path algorithm
[5]. (See the appendix.) If the edge capacities are integers, the number of augmenta-
tions is O(m log ¢), where c is the maximum edge capacity, and the total running
time is O(m’ log ¢). If the edge capacities are arbitrary numbers, the method need
not terminate, but the flow value will converge to that of a maximum flow [17].

. The other method proposed by Edmonds and Karp is to always augment along
a shortest path (one containing fewest edges). With this method each augmentation
takes O(m) time using breadth-first search, and there are are O(nm) augmentations,
for a total running time of O(nm?). Thus this algorithm has a worst-case polynomial
running time, independent of the magnitudes of the edge capacities (for the uniform-
cost complexity measure). It is natural to speculate that one reason Ford and
Fulkerson’s method works so well in practice is that it is generally implemented to
select shortest augmenting paths.

Dinic independently proposed the idea of augmenting along shortest paths but
went one step further. He described an algorithm that augments simultaneously
along all paths of shortest length. To understand this algorithm we need two new
concepts. !

\/ A blocking flow is a flow such that every path from s to t contains at least one
X;dge [v, w] such that f(v, w) = c(v, w). (We call such an edge saturated.) A blocking
ow need not be maximum, since it may be possible to increase the flow value by
rerouting some of the flow. Let f be a flow and R its residual graph. The level graph
L for f is the subgraph of R containing only the vertices reachable from s and only
the edges [v, w] such that level(w) = level(v) + 1, where level(v) for any vertex v is
the length of a shortest path from s to v in R. The level graph contains every shortest
augmenting path for f and is acyclic.

Dinic’s algorithm consists of repeatedly augmenting the current flow using a
blocking flow on its level graph. More precisely, we begin with the zero flow and
repeat the following step until ¢ is not in the level graph for the current flow:

Blocking Step. Find a blocking flow f' on the level graph for the current flow f
Replace f by the flow f+ /" defined by (f +f)(v, w) = f(v, w)+f'(v, w).

Dinic proved that each blocking step increases the distance from s to ¢ in the
residual graph. Thus there are at most n— 1 blocking steps, each of which requires

\
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finding a blocking flow on an acyclic graph. The overall running time of the algorithm
depends upon the time needed to find a blocking flow. In the next section we discuss
tlocking flow algorithms.

3. Blocking flow algorithms

Dinic’s main contribution was in showing that the maximum flow problem can
be reduced to n—1 blocking flow problems on acyclic graphs. In this section we
shall survey blocking flow algorithms. Each of these algorithms gives a corresponding
algorithm for maximum flow whose running time is larger by a factor of n. In'this
section we assume that G is acyclic. '

Dinic suggested an algorithm that constructs a blocking flow by pushing flow
along one path at a time. The algorithm consists of repeating the following step
until there is no path from s to 1:

Saturating Step. Find a path p from s to 1. Send along p an amount of flow equal
to 4 = min{c(v, w)|[v, w] on p}. Reduce the capacity of each edge on p by 4. Clean
up the graph by deleting every edge of zero capacity and then deleting every vertex
and edge not on a path from s to .

Cleaning up the graph can be done by deleting all vertices of in-degree zero other
than s and all vertices of out-degree zero other than t and repeating until there are
no such vertices. With Dinic’s method, the time per saturating step is O(n), not
counting clean-up, and the time for clean-up summed over all steps is O(m). Since
each saturating step removes at least one edge, there are at most m steps, giving a
time of O(nm) to find a blocking flow and O(n’m) to find a maximum flow.

Dinic’s blocking flow algorithm saturates one edge at a time, spending O¢n) time
per edge saturated. On dense graphs there are faster methods that in effect saturate
one vertex at a time, attaining an O(n”) time bound for the blocking flow problem.
Karzanov [14] presented the first such algorithm. Although his original method was
rather complicated, there is a simplified variant, called the wave method [23, 24],
that we shall present here. ]

We need the idea of a preflow. A preflow f is a skew-symmetric function on vertex
pairs that satisfies the capacity constraint and has a non-negative net flow Af(v)
into every vertex v other than s and t, where we define Af(v)=Y  f(u, v). A vertex
v is balanced if Af(v)=0 and unbalanced if Af(v)> 0. The preflow is blocking if it
saturates at least one edge on every path from s to t. The wave method starts with
a blocking preflow and gradually converts it into a blocking flow by balancing
vertices in successive forward and backward passes over the graph.

Each vertex is in one of two states: unblocked or blocked. An unblocked vertex
can become blocked but not vice-versa. We balance an unblocked vertex by increas-
ing the flow out and balance a blocked vertex by decreasing the flow in. More
precisely, we balance an unblocked vertex v by repeating the following step until
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Af(v)=0 (thi balancing succeeds) or there is no unsaturated edge [v, w] such that
ﬁ‘ﬁﬂé&e& (the balancmg fails):

Ingmasingsup. Choose an unsaturated edge [v, w] such that w is unblocked.
lnu!eascf(v w) by min{c(v, w)— f(v, w), Af(v)}. \

=  We balance a blocked vertex v by repeating the following step until 4f(v)=0
(such a balancing always succeeds):

Decreasing Step. Choose an edge [u, v] with positive flow. Decrease f(u, v) by

min{ f(y, v), Af(‘v)}-

To find a blocking flow, we begin with the preflow that saturates every edge out
of s and is zero on every other edge, make s blocked and all other vertices unblocked,
and repeat increase flow followed by decrease flow until there are no unbalanced
vertices.

Increase Flow. Scan the vertices other than s and ¢ in tbpological order (an order
such that if [v, w] is an edge, v is scanned before w). When scanning a vertex v,
balance v ifitis unbalanced and unblocked, and if the balancing fails make v blocked.

Decrease Flow. Scan the vertices other than s and ¢ in reverse topological order.
When scanning a vertex v, balance v if it is unbalanced and blocked.

With an appropriate implementation, the wave algorithm will ﬁnd a blocking flow
in O(n’) time and a maximum flow in O(n”) time. ;

Shiloach and Vishkin [19] have proposed a variant of Karzanov s algorithm that
is more cofplicated than the wavé method but suited for parallel implementation.
Using k < n processors, it will find a maximum flow in O((n’ log n)/ k) time. With
one processor its time bound is the same as that of the wave method.

Malhotra, Kumar, and Maheshwari [15] suggested another O(n”)-time blocking
flow method that is conceptually very simple. Initially we delete from G every vertex
and edge not on a path from s to . We maintain for each vertex v the potential
throughput of v, defined by

thruput(v) = min{ Y cu,v)—flu,v), Y c(v,w)—f(v, w)}.
[wvle E [v,w]e E
(To define thruput(s) and thruput(7), we assume the existence of a dummy edge of
infinite capacity from ¢ to s.) To find a blocking flow we repeat the following step
until ¢ is not reachable from s:

Saturating Step. Let v be a vertex of minimum potential throughput. Send thruput(v)
units of flow forward from v to t and backward from v to s by scanning the vertices
in topological and reverse topological order. Update all throughputs, delete all
newly saturated edges, and delete all vertices and edges not on a path from s to 1.
Although this method is simple, it has two drawbacks. When actually implemented
itis at least as complicated as the wave method, because of the necessity to maintain
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potential throughputs for each vertex. Furthermore it preferentially sends flow
through narrow bottlenecks, which may cause it to perform many more augmenta-
tions than necessary.

For dense graphs, the O(n”)-time blocking flow algorithms are the fastest known.
- For sparse graphs, there are faster algorithms that obtain their speed by using
sophisticated data structures. Cherkasky [2] discovered an O(nm'/?)-time method.
Galil [10] improved the bound to O((nm)*¥?) and Galil and Naamad [11] to
O(m(log n)®). Shiloach [ 18] independently discovered the O(m(log n)’)-time method.
The fastest known blocking flow algorithm for sufficiently sparse graphs, with a
time bound of O(m log n), was discovered by Sleator and Tarjan [20, 21]. (For
sufficiently dense graphs, Galil’s O((nm(*>)-time method is faster by a factor of up
to O(log n).)

The Sleator-Tarjan algorithm is an implementation of Dinic’s original method
using an appropriate data structure. The data structure allows us to maintain a
collection of vertex-disjoint rooted trees, each of whose vertices has a real-valued
capacity and at most one outgoing edge (so that the edges are directed toward the
tree roots), under the following operations:

maketree(v): Create a new tree containing the single vertex v, of capacity zero.

findroot(v): Return the root of the tree containing vertex v.

findcap(v): Return the pair [w, x], where x is the minimum capacity of a vertex
on the tree path from v to findroot(v) and w is the vertex on this path of capacity
x closest to the root.

addcap(v, x): Add x to the capacity of every vertex on the tree path from v to
findroot(v). ’

link(v, w): Combine the two trees containing vertices v and w by adding the edge
[v, w] (v must be a root).

cut(v): divide the tree containing vertex v into two trees by deleting the edge out
of v (v must not be a root).

We can use such a data structure to find a blocking flow. The forest consists of
edges along which it may be possible to send additional flow. Specifically, we
maintain for certain vertices v an outgoing current edge [v, p(v)] with positive
capacity. These edges form a collection of trees. The capacity of a vertex v is
c(v, p(v)) if v is not a tree root, huge if v is a tree root, where huge is a constant
chosen larger than the sum of all the edge capacities. The following steps reformulate
Dinic’s blocking flow algorithm using the five tree operations. We find a blocking

ow by first executing maketree(v) followed by addcap(v, huge) for all vertices, then
going to advance and proceeding as directed.

Advance. Let v = findroot(s). If there is no edge out of v, go to retreat. Otherwise,

let [v, w] be an edge out of v. Perform addcap(v, c(v, w)-huge) followed by link(v, w).
Define p(v) to be w. If w3 1, repeat advance; if w=1, go to augment.

Augment. Let .[v, A]=findcap(s). Perform addcap(s, —A4). Go to delete.
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Delete. Perform cut(v) followed by addeap(v, huge). Define f(v, p(v))= c(v, p(v)).
Delete [v, p(v)] from the graph. Let [v, A]=findcap(s). If A =0, repeat delete; if
A =0, go to advance.

Retreat. If v=s, halt. Otherwise, for every edge [u, v], delete [u, v] from the graph
and, if p(u)';é v, define f(u, v)=0; if p(u)= v, perform cut(u), let [u, A | = findcap(u),
perform addcap(u, huge-4), and define f(u, v) = é(u, v)— A. After deleting all edges
[u, v], go to advance.

Once the algorithm halts, we can use cut, findcap, and addcap as in rerreat to find
the flow f on every remaining edge. With this method, computing a blocking flow
takes O(m) tree operations.

The most direct way to implement the tree operations is to store with each vertex
v its parent and its capacity. With such a representation each tree operation takes
O(n) time and the time to find a blocking flow is O(nm). This method is essentially
a reinterpretation of Dinic’s algorithm.

Sleator and Tarjan proposed a more sophisticated way of implementing the tree
operations that gives a time bound of O(log n) per tree operation, for a total time
of O(m log n) to find a blocking flow and O(nm log n) to find a maximum flow. On
sparse graphs, this algorithm is asymptotically the fastest known. Details can be
found in [20, 21, 22, 24].

4. New directions

The ultimate maximum flow algorithm has yet to be discovered. Recently Gabow
[9] proposed an algorithm that combines a scaling technique with Dinic’s algorithm.
The idea of scaling was first applied to network flow problems by Edmonds and
Karp [7], who devised an O(m’ log n log ¢)-time algorithm for the minimum-cost
flow problem, assuming integer edge capacities. Gabow’s method also requires
integer edge capacities and has a time bound of O(nm log c), where c is the maximum
edge capacity. Thus if the edge capacities arc of moderate size, the algorithm is
competitive in speed with that of Sleator and Tarjan.

Gabow’s algorithm is quite simple to describe. Given a graph G with integer
capacity function c(v, w), we define a reduced capacity function c'(v, w)=
Le(v, w)/2], find a maximum flow on G with respect to the reduced capacities by
applying the algorithm recursively, and double the flow. The result is a legal flow
for G with respect to the original capacities, with the additional property that any
augmenting path for f has residual capacity at most one. This means that |f] is
within_m units of the value of a maximum flow, and to make f maximum, we need
only perform at most m augmentations. If we apply Dinic’s algorithm to the residual
capacity graph, the total time needed to increase f to a maximum flow is O(nm).
- An overall time bound of O(nm log c) for the algorithm follows.
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There are both theoretical and practical questions one may ask about the varicus
network flow algorithms. On the theoretical side, we may ask whether the Sleator—
Tarjan data structure can be used in a Karzanov-type algorithm to give a method
as fast as any on both sparse and dense graphs. We conjecture that the answer is
yes and that an O(m log n°/ m)-time blocking flow algorithm can be obtained in
this way. We leave this as an open problem. Any more substantial improvement in
maximum flow algorithms will probably require major new ideas, such as how to
combine the various blocking flow calculations of Dinic’s method.

On the practical side, we would like to know which algorithms perform best on
actual computers. Experiments are needed to answer this question. The results are
likely to depend strongly on the detailed implementation of the algorithms and on
the size, density, and structure of the problem graphs. We make no conjecture as
to the best practical method, except to observe that as problems become larger and
larger in size, data structures as sophisticated as that of Sleator and Tarjan will
become important in practice as well as in theory. Experimental studies of most of
the older algorithms can be found in [3, 12, 13].
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Appendix: A fast algorithm for maximum-capacity augment-ation »

Suppose we wish to carry out Ford and Fulkerson’s augmenting path algorithm
using Edmonds and Karp’s rule of aiways selecting an augmenting path of maximum
residual capacity. We can find augmenting paths efficiently as follows. In a prepro-
cessing step, we sort all the edges by capacity, from largest to smallest. To find a
single augmenting path, we number the edges from one to m in order by residual
capacity, breaking ties arbitrarily. Then we use Dial’s implementation [4] of Dijkstra’s
shortest path algorithm [5], modified to find a bottleneck shortest path (i.e. a path
that minimizes the maximum edge length instead of minimizing the total edge
length). As edge lengths, we use the computed edge numbers. Since these are all
integers between | and m, Dial’s algorithm runs in O(m) time (and O(m) space).
The bottleneck shortest path is a maximum-capacity augmenting path.

After the augmentation, we must rearrange the edges in decreasing order by
residual capacity. The augmentation changes the residual capacities only of edges
along the augmenting path and their reversals, and all these capacities change by
the same amount (negative for edges along the path, positive for their reversals).
Thus the reordering can be performed by merging three sorted lists (of the edges
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on the path, the edges whose reversals are on the path, and the remaining ea"ges).
This merging takes O(m) time.

We conclude that the time for finding a maximum flow is O(m log m) plus O(m)
per augmentation, for a total of O(m” log ¢) time, since by the analysis of Edmonds
and Karp the number of augmentations is O(m log c).

 References

[1] A.V. Aho, J.E. Hopcroft and J.D. Uliman, The design and analysis of computer algorithms (Addison-
Wesley, Reading, MA, 1974).

[2] R.V. Cherkasky, “Algorithm of construction of maximai flow in networks with complexity of
O(V*/E operations” (in Russian), Mathematical Methods of Solution of Ec ical Problems 7
(1977) 112-125.

[3] T-Y. Cheung, “Computational comparison of eight methods for the maximum flow problem”,
ACM Transactions on Mathematical Seftware 6 (1980) 1-16.

[4] R.B. Dial, “Algorithm 360: Shortest path forest with topological ordering”, Communications of the
ACM 12 (1969) 632-633. : -

[5] E.W. Dijkstra, ‘A note on two problems in connexion with graphs”, Numerische Mathematik 1
(1959) 269-271.

[6] E.A. Dinic, “Algorithm for solution of a problem of maximum flow in a network with power
estimation”, Soviet Mathematics Doklady 11 (1970) 1277-1280.

[7] J. Edmonds and R.M. Karp, “Theoretical improvements in algorithmic efficiency for network flow
problems”, Journal of the ACM 19 (1972) 248-264.

[8] L.R. Ford and D.R. Fulkerson, Flows in networks (Princeton University Press, Princeton, NJ, 1962).

[9] H.N. Gabow, *“‘Scaling algorithms for network problems™, Proceedings of the 24th Annual Symposium
on Foundations of Computer Science (1983) 248-258.

[10] Z. Galil, *An O(V*/*E?**) algorithm for the maximal flow problem™, Acta Informatica 14 (1980)
221-242.

[11] Z. Galil and A. Naamad, *An O(EV log” V) algorithm for the maximal flow problem”, Journal of
Computer and System Sciences 21 (1980) 203-217.

[12] F. Glover, D. Klingman, J. Mote and D. Whitman, “Comprehensive computer evaluation and
enhancement of maximum flow algorithms™, MS/IS Report 79-1, Graduate School of Business
Administration, University of Colorado, Boulder, CO, 1979, extended abstract in Discrete Applied
Mathematics 2 (1980) 251-254.

[13] H. Hamacher, *Numerical investigations on the maximal flow algorithm of Karzanov", Computing
22 (1979) 17-29.

[14] A.V. Karzanov, “Determining the maximal flow in a network by the method of prefiows”, Soviet
Mathematics Doklady 15 (1974) 434-437.

[15] V.M. Malhotra, M.P. Kumar and S.N. Maheshwari, “An O(| V|) algorithm for finding maximum
flows in networks", Information Processing Letters 7 (1978) 277-278.

[16] C.H. Papadimitriou and K. Steiglitz, Combinarorial optimization: Algorithms and complexity (Pren-
tiEe-HalI, Englewood Cliffs, NJ, 1982).

[17] M. Queyranne, “Theoretical efficiency of the algorithm ‘capacity’ for the maximum flow problem”,
Mathematics of Operations Research 5 (1980) 258-266.

[18] Y. Shiloach, “*An O(n- I log? I) maximum-flow algorithm”, Technical Report STAN-CS-78-802,
Computer Science Department, Stanford University (Stanford, CA, 1978).

[19] Y. Shiloach and U. Vishkin, “An O(a’ log n) parallel max-flow algorithm”, Journal of Algorithms
3 (1982) 128-146.

[20] D.D. Sleator, **An O(nm log n) algorithm for maximum network flow™, Technical Report STAN-CS-
80-831, Computer Science Department, Stanford University (Stanford, CA, 1980).




