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PREFACE

Since 1966, when the first edition of this book was published, our
knowledge of the detailed pathways concerned in addition reactions has been
extended greatly, both by new experimental findings and by important reviews
of special aspects where major developments have been made. The general
framework of the first edition, however, remains in our view soundly based
and useful: we have aimed to show relationships between observations covering
a wide range of chemical phenomena in which an unsaturated compound reacts
with an electrophilic reagent to form an intermediate or a transition state
which has carbocationic character. Addition by saturation or partial
saturation of the original multiple bond then may be a consequence of this
carbocationic character.

In this new edition, even more than in the first, exhaustive treatment of
the material has not been possible. We have tried to stress such general
principles as we consider most important, and to draw attention to the most
significant new experimental work and to relevant monographs and reviews.
From the cited material we believe that the reader will be led into the
existing literature relating to his or her specialised interests.

This book would not have been possible without criticism derived over
many years from our seniors, colleagues, co-workers, and friends. We thank
them all, and we thank also the University of Auckland and Bedford College
(University of\London) for periods of study leave essential to the completion
of this revision.

We are greatly indebted to Mrs. Doris Storey, who typed the final copy and
prepared the diagrams.

P.B.D. de la Mare
R. Bolton

Auckland, New Zealand
and London, England.
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CHAPTER 1
INTRODUCTION; DEFINITIONS, AND CRITERIA FOR CLASSIFICATION

1.1 INTRODUCTION .

Unsaturated compounds characteristically react by addition, in which a
multiple bond is attacked by a:reagent (the addendum) to form an adduct which
has thus become partly or wholly saturated. The addition of bromine to ethylene
(equation (1.1)) is typical:

CH,:CH, + Brp, —> Br.CHy.CHp.Br ' (1i1)

The term addition is used to describe a reaction in which both atoms of the
multiple bond are attacked in such a way as to decrease the multiplicity of the
bond; olefins therefore give saturated compounds (equation (1.1)) and acetylenes
give olefins analogously (equation (1.2)). )

R.CiCH + Br, —> R.C(Br):CHBr ; (1.2)
The product need not be stable in the sense that it can be isolated, nor in the
sense that it is the final product of the sequence in which we are interested;
but it must be at least a true intermediate on the reaction path, and correspond
with a minimum in the profile of free energy against reaction coordinate.

Both the above reactions (equations (1.1) and (1>2» are viec-, or 1,2-,
additions. These should be distinguished from 1,1-, 1,3-, and other modes of
addition in which the reagent provides two new covalent bonds to the substrate.
However, this review is concerned mainly with 1,2-additions, and the prefix
shall only be used where there may be confusion with the other modes.

The formation of one covalent bond, by a reversal of a heterolytic process,
is in Ingold's terminology [1] a co-ordination reaction. Equation (1.3), in
which E* represents a general electrophile, therefore does not qualify as an
addition which has only occurred after subsequent reaction with a nucleophile.

rd /
N T\
E

\\C.C E+ ————9—\\6;~ (1 3)
/ : + / .

Likewise equation (1.4) is not an example of an addition, since only a loose
complex (a T-complex) is formed between the olefin and the electrophile; the
double bond is perturbed, but not saturated: :



i3 7 + \ v d
. — s o
/C C\ + E /CTC\ (1.4)

E
The formation of a cyclic structure (equation (1.5)), however, is an addition
within our definition.

S + N
/C.C\. + E —> /Q\+//Q< (1.5)
) E

As two bonds are formed to carbon during an addition, they may form either
synchronously or in a multi-stage process; it is equally acceptable that either
bond may arise from an intramolecular attack. ‘Thus, the reaction shown in
equation (1.6) is an addition in which the nucleophile is provided intra-
molecularly [2].

OH

BrOH 7 0\ )

Me,C.CH:CH, > Me,C——CH.CH,.Br (+ H,0) (1.6)

The dividing line between complex formation and addition is a narrow one
(cf. equations (1.4) and (1.5)) because of the difficulty in defining at what
stage the T-electrons are merely perturbed by the reagent without forming a
covalent bond with it. However, the distinction is useful, even if sometimes
difficult to draw experimentally. There are, indeed, good precedents for making
such a ruling; Huisgen et al. [3] did so when they excluded the formation of
complexes between olefins and silver ions from their classification of cyclo-
additions.

1.2 SCOPE OF THE WORK

This book deals primarily with homogeneous reactions in solution; although
the related heterogeneous processes and their corresponding eliminations are of
considerable theoretical and technical importance, little reference is made to
them.

There are three main, mechanistically useful, divisions. Firstly, homolytic
additions include all processes in which the addition is initiated by a free
radical; they are often characterised by the development of a chain process in
which the initiating radical is regenerated and in which one act of homolytic
fission produces many molecules of product. Peroxide-induced additions of
hydrogen bromide to olefins are well-known examples (equation (1.7)).

Me.CH:CH, + HBr ——> Me.CH,.CH,.Br . 1.7

Secondly, heterolytic additions arise when the first new bond formed to the
unsaturated compound involves the co-ordination: of reagent to substrate, or of
substrate to reagent, -through the donation of an electron pair. In the following
examples (sequences (1.8) and (1.9)) the role of the reagent as generalised acid
(electrophile) or as generalised base (nucleophile) may be identified:



J

L]

+ + +
Me.CH:CH, + H' —> Me.CH.CHj; Me.CH.CH; + H,0 —> Me,CH(OH,).CH; (1.8)

Et0,C.CH:CH7 + CH(COyEt), ——> Et0,C.CH.CH,.CH(CO,Et),;
Et0,C.CH.CH, .CH(CO2Et)y + EtOH -——> Et0,C.CH,.CH,.CH(CO,Et), + EtO  (1.9)

Consideration of the termolecular process formulated in equation (1.10)
suggests the possible existence of a heterolytic addition in which the two new
bonds are formed concurrently in a concerted process (see section 1.13).

R.CiC.CO2Et + Bry + Cl ——> R.C(C1):C(Br).CO,Et + Br (1.10)

Thirdly, cyclic additions may occur, in which the two new bonds which complete
the addition process are formed in a concerted fashion through a cyclic
transition state. The Diels-Alder reaction (equation (1.11)),  which involves
1,4-addition with rearrangement in one unsaturated substrate and 1,2-addition
in another, is a well-known example in which both the transition state and the
product are cyclic.

7 CH, - cnz\

H CH CH CH '
T : . " 2 L i l 2 (1.11)
CH CH.CHO CH . CH.CHO

N CH, o~ cuz/

It is not impossible, however, for a reaction involving a cyclic transition
state to give an acyclic product. An example is provided by the equilibrium
shown in equation (1.12), which in the gas phase can be established through a
cyclic transition state [4].

CHj CHj3 Cis
CH-++++H CH
i I o), |: v g™ ? (1.12)
CH, 1 CHy++++C1 CH,.C1

Cyclic additions in general may have a wide range of transition states; some
have characteristics of radical processes, as in photochemically activated
additions. Equation (1.13) gives an example of a reaction which can be
activated in this way, and under these conditions is homolytic in nature.

2 Ph.CH:CH.COoH —> Ph.CH—CH.CO2H (and its isomers) (1.13)

HO,C.CH—CH.Ph



1.3 CONCERTED PROCESSES

Equations (1.10) and (1.11) provide examples of reactions which are described
as concerted because two or more bonds are being formed or broken concurrently.
In any single-step process, the formation or breaking of bonds proceeds in such
a way as to minimise the activation energy needed for attainment of the
transition state. The resulting partial bonds are not necessarily all. formed or
broken to the same extent in the transition state. Indeed, in the gén%ral case
the reverse is true. Consequently it is not possible to predict, a priori,
what effect substituents or solvents may have on the rates of such reactions,
although these effects themselves help in defining the detailed structure of
rate-determining transition states in which more than one bond is being formed
or broken. For some replacements and eliminations, attempts have been made to

obtain more definitive information from studies of heavy-atom isotope effects [5]

for all the atomic centres involved, but so far there is very little information
of this kind available for addition reactions. Theoretical calculations of
energies of atomic assemblies, which in principle could provide the necessary
information, in practice have not yet been developed sufficiently.

The term "synchronous'" has sometimes been used as a synonym for "concerted";
it is now considered better to restrict the former to reactions in which the new
bonds are formed or broken to the same extent.

1.4 ELECTROPHILIC ADDITIONS

Different conventions have been used in the past to refer to a triligant
cationic carbon species, R3C ; we shall use the term carbocation for such ions
and the term carbocationic centre to mean such a centre within 3 molecule,
irrespective of its charge-type. The related species, RpC:C(R) and R.C:C ,
are likewise carbocations. ' Both co-ordination (equations (1.8) and (1.9)) and
heterolysis (equations (1.14) and (1.15)) can form carbocations or carbanions.

RyC.C1 —> R3C' + C17 (1.14)
HCCly — H' + CCl _ (1.15)

In this book we shall regard a reaction as an electrophilic addition if an
unsaturated compound can be shown to react with a reagent (the electrophilic
reagent) to give first an intermediate or transition state having carbocatioric
character. A subsequent stage, essential to the addition, must result in the
development of a full bond between the carbocationic centre and a nucleophilic
centre. The sequence shown in (1.8) is an example; the relative rates of the
various processes which make up the addition and its reverse are regarded as
irrelevant to the classification.

Evidence to support the .inclusion of a particular reaction within our
classification is for some reactions very strong, and may be based upon
structural effects on rate or orientation and on identification of carbonium
jons as intermediates through their physical properties or other reactions.
For concerted processes, whether cyclic or otherwise, the justification can
become a matter for argument; we shall put particular weight upon the
information- derived from the effect of change in structure and of the
environment on the rate of the reaction. Reactions for which we believe the
evidence supports the view that the intermediate is carbanionic in character

2
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shall not be discussed as a separate group, and cyclic additions shall be
discussed only for those cases in which structural effects, or other reactions,
appear to show the carbocationic nature of the transition state to be well
developed. .

For sub-classification, it is convenient to use the position in the Periodic
Table of the element which becomes eléctrophilically bound to an atom of the
multiple bond. Electrophiles of different charge-types will be met, particularly
cations and neutral molecules; we shall also encounter reaction paths leading to
syn-addition (where reagents attach themselves to the same side of the multiple
bond) and those which conversely give anti-addition.

1.5 EFFECTS OF SUBSTITUENTS UPON REACTIVITY
Two related, but not identical, methods are used to describe the effects of
substituents upon reactivity.

The first (the qualitative theory) uses Ingold's concepts and terminology [1].

Steric effects are first differentiated from polar effects. The first arise
from the bulk of the substituent, and can in principle result in either steric
acceleration or steric retardation (steric hindrance) of a reaction. Primary
steric effects are those in which the bulk of the substituent affects reactivity
by its direct influence upon the reacting centre. Secondary steric effects arise
when the subs  ituent, through its bulk, changes the effect (either steric or
polar) of another substituent which influences the reacting centre. Stereo-
electronic effects arise when the electronic movements in the transition state
have special geometric requirements which are influenced by restrictions of
movement within the reacting molecule. )

Polar effects themselves can be divided into two main classes: those of
electrostatic induction (inductive effects: symbol,-iI) and those involving
electronic delocalisation (conjugative effects: symbol,-fK). A positive sign
refers to electron-release to the reaction centre; conversely, a negative sign
describes electron-withdrawal. Both of these effects vary with the system and
the reaction, and so sometimes an attempt is made to distinguish between effects
of polarisation, which reflect only the properties of the ground state of the
organic molecule and its influence on the transition, and effects of
polarisability, by which the influences specific to the acquisition of
particular transition states is described. Differentiation between these two
types of structural influence is experimentally difficult, so we shall not
normally attempt to make the distinction; some of the problems involved are
discussed by de la Mare and Ridd [6].

The second approach to the effects of substituents upon reactivity uses
linear free energy relationships. The Hammett equation [7] takes the form of
equation (1.16) where kR is the rate coefficient for some substrate in which R
is the generalised substituent influencing the rate of reaction (kH) at one
site of the unsubstituted compound; Ogr is a substituent constant defined as
loglO(Kg-Ceﬂu~CQZH/Kg6H5002H), where Kg.CGHu.COZH is the dissociation constant
of the correspondingly substituted benzoic acid under standard conditions; and
0 is the slope of the plot of logqo(kR/KkH) against OR-

loglo(kR/kH) = o0 (1.16)



