


SHARON K. TUGGLE Vassar College

Assembler Language Programming:
Systems/360 and 370

Bnu SCIENCE RESEARCH ASSOCIATES, INC.
Chicago, Palo Alto, Toronto, Henley-on-Thames, Sydney, Paris

A Subsidiary of IBM



© 1975, Science Research Associates, Inc. All rights reserved.
Printed in the United States of America.

Library of Congress Cataloging in Publication Data

Tuggle, Sharon K
Assembler language programming, systems/360 and 370.

Includes index.

1. Assembler language (Computer program language)
2. IBM 360 (Computer)—Programming. 3. IBM 370
(Computer)—Programming. 1. Title.

QAT76.73.A8T83 001.6"424 74-84276
ISBN 0-574-19160-7

Appendixes 3. 5, and 6 and form X28-6509 are reprinted by permission of International
Business Machines Corporation.



PREFACE

This text covers Systems/360 and 370 Assembler Language, as used on both
0S- and DOS-based operating systems. Where important, the differences in
the two families of operating systems are discussed; for example, job control
language and input and output instructions. Where possible, the tone of the
language used in the text is conversational, allowing the student to interact
with the author as if attending a lecture. Questions that are likely to arise in
the reader’s mind are carefully anticipated, and answers or explanations dis-
cussed at that point.

At the end of each chapter is a series of questions that can be used as a self-
testing device. Following the questions, most chapters have a series of exer-
cises that can be assigned as formal problems or done as inclass exercises to
solidify the information presented. In addition, at the end of most chapters is a
quick-reference list for easy location of specific items, terms, or instructions.

The book is divided into three parts: Introduction to Computers and Com-
puter Programming, Introduction to Assembler Language, and Program
Management and the Assembly Process. Part I contains an explanation of
punched cards, flowcharts, and loops. It provides a good introduction for stu-
dents taking their first course in programming. (For those who have had some
previous computer experience, such as a course in one of the higher-level lan-
guages, this part may be reviewed, or skipped all together.)

Part II contains all that a student needs to know to code problems of simple
to average complexity. Chapter 3 contains an explanation of the basic com-
ponents of Systems/360 and 370, chapter 4 explains the representations of data
within the machine, and chapter 5 describes how to define storage and con-

xi



stants. Chapter 6 presents the student with his first machine instructions, the
move instructions. This is followed by chapters 7 through 10, which cover the
three different types of arithmetic instructions—fixed-point binary, packed
decimal, and floating point—along with the conversion instructions necessary
to make input data ready for calculations and prepare output data for printing.
In part I, transfer of control—branches and jumps—is also explained.

If further detail is desired and more time is available, part III contains many
topics of interest to the individual who wants to understand more about assem-
bler language and its more advanced capabilities. Topics covered are: the
assembler’s scanning process and the two passes of the assembler, the handling
of absolute and relocatable values, and the fundamentals of addressing. Chap-
ter 14 goes into collecting data into tables and how they are referenced (index
registers) and some of the more complicated branch instructions (BAL, BALR,
BXH, and BXLE). Chapter 15 covers program sectioning and linking—the
whole area of handling subroutines.

Chapter 16 treats the areas of debugging and dump reading. Chapters 17
and 18 cover the remainder of the machine language instructions—those in-
volved in the manipulation of bytes and bits within bytes, and the powerful
special-purpose instructions (ED, EDMK, EX, TR, TRT) and the instructions
found only on System/370.

The last four chapters, 19 through 23, each contain topics that can enrich
any course. Each can be covered in depth or just introduced. The topics are:
DSECTS, Job Control Language, Input and Output, macros and the macro
language, and virtual storage. There is very little interdependence in part III.
These chapters can be discussed in any order or interleaved with the chapters
in part IIL.

The contents of this book comply with Course B2, Computers and Program-
ming; and the majority of Course B, Introduction to Computing, as set forth
in the 1968 Course Curriculum, recommended for Academic Programs in
computer science by the ACM Curriculum Committee on Computer Science.
It can be used in either a one-semester course or a two-semester course, through
expanded use of the topics in part III.

I want to express my sincere thanks and appreciation to all who have been
so helpful in the completion of this text: Shirley Mayewski and Pat Caswell,
for their patience in typing the manuscript; to my reviewers, whose comments
were so helpful in making this a better book: G. G. Casper, Weber State Col-
lege; Carl Eckberg, California State University; Marilyn Bohl and William
Lewis, of IBM; as well as Sallyann Hanson and Eric Weiss; also to Jim Budd,
whose attention to detail has made this a better book.

To the computer-center staff at Vassar College, and to my many students,
who suffered through the preliminary drafts, I give my appreciation. Most
of all, I wish to thank my parents, Eleanor and Cully Krenek, who forged in
me the habits and attitudes to accomplish this task, and my husband, Mike,
who provided moral support and editorial comment.

S. K. T.



TABLE OF CONTENTS

PARTI: INTRODUCTION to COMPUTERS and COMPUTER PROGRAMMING

Chapter 1 Introduction to Computers
Data Processing Systems
Standardization
The Use of Punched Cards
Punched Cards as Input to a Data Processing System
Stored Program Concept

Chapter 2 Basic Computer Programming Techniques
Problem Solving
Program Flowcharts
Programming Techniques
Program Loops

PART II: INTRODUCTION to ASSEMBLER LANGUAGE

Chapter 3 Fundamentals of Assembler Language

Introduction to Programming Languages
Machine Language Programming
Symbolic Language Programming
Assembler Language Programming

Basic Components of Systems/360 and 370
The Byte as the Basic Building Block
Fixed- and Variable-Length Data
Registers

3

12

29



Assembler Language Instruction Format
The Four Fields of Information
Full-Line Comments

Types or Classes of Instructions

The Coding Form

Overview of the Programming Job

Chapter 4 Representation of Data 46
Positional Notation
Decimal Number System
Binary Number System
Conversion of Decimal to Binary
Hexadecimal Number System
Conversion of Decimal to Hexadecimal
The Use of Conversion Tables
Arithmetic in Different Number Systems
Binary Addition and Subtraction
Hexadecimal Addition and Subtraction
Internal Data Representation
Character Information
Fixed-Point Binary
Two’s Complement Notation

Chapter 5 Definition of Storage and Constant Description 63
Introduction to Defining Constants
Examination of the Subfields
Character Constant (C)
Fixed-Point Constants (F, H)
Submitting Your First Job to the System
Necessary Job Control Language
Information Available in a Listing
Syntax Error Examples
Introduction to Defining Storage Areas

Chapter 6 Information Move Instructions 87
Three Basic Groups of Instructions to Move Data
Register-to-Register Move Instruction
Instructions to Move Data Between Registers and Storage
Storage-to-Storage Move Instructions
Submitting Your Job for Assembly and Execution

Chapter 7 Fixed-Point Binary Arithmetic Instructions 107
General Requirements for Binary Arithmetic Operations
Binary Addition and Subtraction
Binary Multiplication and Division

Chapter 8 Arithmetic Conversions 123
Introduction to the Input and Output of a Data Processing System
Zoned-Decimal Format
Packed-Decimal Format



The Input Conversion Process

The Pack Instruction (PACK)

The Convert to Binary Instruction (CV.B)
Statements Necessary for Providing the Input Function
Preparing to Write Output

Convert to Decimal Instruction (CVD)

The Unpack Instruction (UNPK)

The Move Zones Instruction (MVZ)

Statements Necessary to Perform the Write Operation

Chapter 9 Packed-Decimal Arithmetic
Advantages
The Packed-Decimal Format
General Structure of the Decimal Instructions
Decimal Constants (P)
The Decimal Instructions
Zero and Add Instruction (ZAP)
Add and Subtract Decimal (AP and SP)
Multiply Decimal (MP)
Divide Decimal (DP)
Printing the Results of Decimal Arithmetic Operations

Chapter 10 Floating-Point Arithmetic
The Floating-Point Format
Floating-Point Constants
Floating-Point Instructions
Normalization Process
Unnormalized Addition and Subtraction
The Halve Operations

Chapter 11 Transfer of Control: Branches and Jumps
Introduction to Condition Codes
Deciding Among Alternate Groups of Instructions
Extended Mnemonics
The Overflow Condition
Repetition of Groups of Instructions
Loop Structure
Flowchart Examples of Loops
Programming the Decision for Exit from the Loop

Setting the Condition Code Using the Compare Instructions

Algebraic Compares

Decimal Comparison

Floating-Point Comparisons

Logical Comparisons
Other Instructions that Set the Condition Code

The Load and Test (LTR)

Floating-Point Load and Tests (LTDR and LTER)
Testing the Condition Code Using the BC Instruction

149

160

174



Testing the Condition Code Using the BCR Instruction
Introduction to the Load Address Instruction (LA)
The Branch on Count Instructions (BCT, BCTR)

PART III: PROGRAM MANAGEMENT and THE ASSEMBLY PROCESS

Chapter 12 The Assembler and the Assembly Process
The Assembler Program
The Assembler’s Scanning Process
Introduction to the Assembler’s Two Passes
The Location Counter
The Symbol (Cross-Reference) Table
The First Pass in Detail
The Second Pass in Detail
Handling and Addressing Operands
Absolute Values—Self-Defining Terms
Symbols: Relocatable and Absolute
Relocatable Values: Location Counter References
Relocatable Values: Literals
The Evaluation of Expressions

Chapter 13 Fundamentals of Systems/360 and 370 Addressing
The Concept of Addressing
The Need for Relocation
The Means for Relocation
The Process of Establishing Addressability
The Programmer’s Responsibilities
Fulfilling the Programmer’s Responsibilities
Execution Time, Calculation of Effective Addresses
Using the FIRST and LAST Macros

Chapter 14 Data Structures, Looping, and Address Modification
Referencing Collections of Data
Introduction to Tables
Using Index Registers in Address Modification
Search Reference and Direct Reference Tables
Search Reference Tables
Direct Reference Tables
Explicit Addressing
Special Uses for Instructions
The LA Instruction
The BCTR Instruction
Special Branching Instructions
The Branch and Link Instructions (BAL, BALR)
Branch on Index Low or Equal (BXLE)
Branch on Index High (BXH) )
Introduction to Chained Lists, or Queues
Construction of a Chained List
Adding and Removing Data Items
Double-Threaded Chained Lists

209

232

245



Chapter 15 Program Sectioning and Linking

Introduction

The Terminology Used .
Need for Standard Linkage Conventions

The Use of Save Areas

Register Usage

Differences Under DOS-Based Systems
Communications Between Control Sections

Branching Tables

Symbolic Linkage

Passing Control and Handling Parameters
Review of Subroutine Responsibilities

Chapter 16 Dumps and Debugging
Importance of Debugging
Three Times for Debugging
Desk Checking
Assembler Diagnostics
Errors During Execution
The Interrupt Procedure
Information Found in a Dump
Locating Cause of an Error at Execution Time
Debugging Errors in Logic
Different Types of Dumps
The PDUMP Macro (DOS-Based Systems)
The SNAP Macro (OS-Based Systems)

Chapter 17 Coding at the Bit and Byte Level
Logical Operation on Fullwords
The Meaning of the Word Logical
Arithmetic on Unsigned Numbers
Fullword Logical Compare Instructions
Character or Byte Manipulation
Byte Transfer or Move Instructions
Comparison of Characters
Bit Manipulations
The Shift Operations
Bit Manipulations Based on the Functions of Logic
The Test Under Mask Instruction

Chapter 18 Powerful Special-Purpose Instructions
Editing of Output Fields
The Edit Instruction (ED)
The Edit and Mark Instruction (EDMK)
The Execute Instruction (EX)
Translation of Character Strings (TR)
Character Scan or Search (TRT)
Instructions Available Only on System/370
The Move Long Instruction (MVCL)
The Compare Logical Long Instruction (CLCL)

Character Operations Executed Under Mask (CLM, ICM, STCM)

275

289

319

334



Chapter 19 Additional Facilities of the Assembler 363
Controlling the Assembler Program
Listing Control
Changing Statement Formats
Alteration of the Location Counter Setting (ORG)
Pooling Literals (LTORG)
Use of Multiple Base Registers
Control Section Longer than 4096 Bytes
Dummy Control Sections (DSECT)

Chapter 20 Job Control Language 372
Structure of a Job
Job Control Statements for DOS-Based Systems
Using Tapes on DOS-Based Systems
Label Processing
Using Direct-Access Storage Devices on DOS-Based Systems
Job Control Statements under OS-Based Systems
The JOB Statement
The EXECute Statement
Using Cataloged Procedures
The Data Definition Statement (DD)
Overriding Statements in Cataloged Procedures
Using Standard Cataloged Procedures
The Linkage Editor
OS-Based Systems
DOS-Based Systems

Chapter 21 Input and Output through the Operating System 399
Generalities about Data Sets
Describing Physical Characteristics of Data—DOS
Describing Sequential Data Sets Under DOS
Describing Physical Characteristics of Data—OS
Opening and Closing a Data Set
Accessing Records in a Data Set
Comprehensive Examples

Chapter 22 Macros and the Macro Language 414
Introduction
Concept of Macros
Elements of Macro Definitions
Placement of the Definition
The Prototype Statement
Positional and Keyword Parameters
Conditional Assembly Features
Sequence Symbols
The Branching Statements
Exit From a Macro Definition
Concatenating Symbolic Parameters



Use of Assembler Attributes
Set Symbols

Defining Set Symbols

Assigning Values to Set Symbols
Adding Macro Definitions to a Library

Chapter 23 Coding for Virtual Storage
Why Virtual Storage?
The Concept of Relocation
Types of Relocation
Static Relocation
Dynamic Relocation
Virtual Storage
Coding Practices for Virtual Storage

APPENDIXES

Appendix 1 The FIRST, LAST, MREAD, and MRITE Macros
Appendix 2 Answers to Selected Chapter Exercises

Appendix 3 System/370 Reference Summary

Appendix 4 Possible Program Interruptions

Appendix 5 Comparison of Assemblers

Appendix 6 Hexadecimal and Decimal Fraction Conversion Table
GLOSSARY

INDEX

437

453
460
468
475
477
481

483

503



PART I

Introduction to
Computers and
Computer Programming






CHAPTER 1

Introduction to
Computers

Since the beginning of time, man has been forced to adapt to an ever-
changing environment. Today’s environment is changing rapidly, in part
because of the development and expanded uses of the electronic digital com-
puter. And today, as often in the past, some people fear that advances in
technology will encroach on their friendly, familiar environment. Man’s first
reaction to a new and powerful invention is frequently fear and apprehension.
He fears for his job, his safety, and his security. It is understandable, then,
why many people fear the computer.

And yet the computer, when reduced to its simplest components, is easy to
understand. It is made up of relatively uncomplicated parts. Men build into the
computer a language—that it understands and follows; to communicate with
the computer, we need only to learn that language. Anyone knowing the com-
puter’s language can tell it exactly what to do, step by step. Built into the
computer is the ability to perform any number of operations when given a
sequence of orders. Change the sequence of orders, and the computer performs
a different sequence of operations.

Give the computer no orders and it just sits there—an inanimate box of wires,
circuitry, and switches. It needs you, the programmer, to tell it what to do.

Note: The remainder of this chapter, as well as all of chapter 2, may be re-
view if you can already program in a higher-level language such as FORTRAN
or PL/1. If so, you may wish to skim them. '



4 CHAPTER |

DATA PROCESSING SYSTEMS

A data processing system is a network of machine components capable of
accepting information, processing this information according to plan (a pro-
gram), and producing the desired results. Regardless of what type of equip-
ment is used, all systems perform the same five basic functions:

Input makes data available to the system

Storage provides devices into which data can be entered and held
and from which it can be retrieved at a later time

Control the order for performing basic functions

Processing arithmetic operations or other manipulations on data

Output the results

One example often used to illustrate the use of these terms is the preparation
of an electric bill. Each customer of an electric company has a meter that
registers the amount of electricity he uses. At periodic intervals a company
representative reads the meter. This reading and the one taken for the previous
billing period, make up the input. These two readings are stored, and the re-
sults of any calculations produce the customer’s bill. The processing of data
involves:

1. subtracting last month’s meter reading from this month’s reading to
determine the amount of electricity used

2. multiplying the amount of electricity used by the rate charged for it

3. calculating any taxes or discounts that may be applicable

The output is the entry into the company’s accounting records and the custo-
mer’s bill. The control function is performed throughout the entire operation.
It determines the sequence of the other functions. It ensures that subtraction
is performed before multiplication by the rate, and it sees to it that taxes and
discounts are applied before producing the bill.

The data processing system described above might involve only human
processors, human and mechanical processors (such as adding machines), or
human, mechanical, and electronic processors (computers). If only human
processors are used in the system, the brain of a human being controls the
entire operation. As long as the human can read the handwriting of the meter
reader and has access to the accounting records, he can take the input, perform
the proper calculations in his head or on a piece of paper, and write out a bill.

If the electric company expands, so that it is no longer feasible to perform
all the basic functions by hand, the company could purchase adding machines.
If, as time passes, the area the company services becomes a booming metropo-
lis, hiring more people and buying more adding machines becomes impractical.
The decision is then made to introduce a computer and let it perform the repet-
itive task of processing mountains of bills.



INTRODUCTION TO COMPUTERS 5

When a human being is processing data by hand, there is a great deal of
latitude in the inputs and outputs that can be interpreted and produced. How-
ever, while input numbers scribbled on scraps of paper are fine for human
processors, they have no meaning to a computer. A computer requires stan-
dardization of its input.

STANDARDIZATION

The data used in conjunction with nonhuman processors, computers in partic-
ular, needs to be standardized in two ways:

1. standardization of the medium on which the data is recorded
2. standardization of the method by which data is recorded on the medium

The medium must be standard in size, quality, and composition. The basic
and most frequently used medium in the data processing industry is the
Hollerith punched card, which is shown in figure 1-1. It is rectangular in shape
and measures 7%; inches by 37/, inches (18.6 by 8.3 cm). The corners of the card
may be squared, rounded (to prevent wear), or cut off (to make sure that no
cards in a deck are upside down or backwards).

Rectangular holes may be punched into a card. There are 12 horizontal
rows and 80 vertical columns on the card, thus 960 positions where a hole may
be punched. The rows are numbered 12, 11,0, 1, 2, 3,4, 5,6, 7, 8, and 9 from
top to bottom on the card. On an IBM punch card, the 80 columns may be
identified by column numbers in two locations: at the bottom of the card and
just below the zero row. The numbers 0-9 fill each of the 80 positions in each
respective row. Punches in any of these 10 rows are referred to as numeric

00000000000000000000D000000000000000000000000000000000000000000000000000000000020
123456 7 8 91010 1213141516 1718 192021 222324 25 26 27 282930 31 32 33 34 3536 37 38 39 4D 41 €2 43 44 4546 47 4B 4950 51 52 53 54 55 56 57 58 59 60 61 52 63 54 65 66 67 68 69 70 71 72 73 14 15 15 17 78 19 8O
AR R RN R R R R R R AR R R R R R R R R R R R R R R NN R R RRERE|
22222222222222222222222222222222222222222222222222222222222222222222222222222222
333333333333333333333333333333333333333333333333333333333333333333333333333333133
44444444444444408084444444444844444440844440404444444444404444444444448444444448444444424
55059509009 599959909099955095559550095099595905999595995595095509555595955055555555955853
66666666666666666666666666666666666666666666666666666666666666666666666666666666
1171071007772 07070071200 001010000100 07701000 0777107107171 77171711707171771017717171111117117

8888888888888 88838888388888888888688888883888888888388888688888888888888888888838

Fig. 1-1 The 80-column punch card



