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PREFACE

This text covers Systems/360 and 370 Assembler Language, as used on both
0S- and DOS-based operating systems. Where important, the differences in
the two families of operating systems are discussed; for example, job control
language and input and output instructions. Where possible, the tone of the
language used in the text is conversational, allowing the student to interact
with the author as if attending a lecture. Questions that are likely to arise in
the reader’s mind are carefully anticipated, and answers or explanations dis-
cussed at that point.

At the end of each chapter is a series of questions that can be used as a self-
testing device. Following the questions, most chapters have a series of exer-
cises that can be assigned as formal problems or done as inclass exercises to
solidify the information presented. In addition, at the end of most chapters is a
quick-reference list for easy location of specific items, terms, or instructions.

The book is divided into three parts: Introduction to Computers and Com-
puter Programming, Introduction to Assembler Language, and Program
Management and the Assembly Process. Part I contains an explanation of
punched cards, flowcharts, and loops. It provides a good introduction for stu-
dents taking their first course in programming. (For those who have had some
previous computer experience, such as a course in one of the higher-level lan-
guages, this part may be reviewed, or skipped all together.)

Part II contains all that a student needs to know to code problems of simple
to average complexity. Chapter 3 contains an explanation of the basic com-
ponents of Systems/360 and 370, chapter 4 explains the representations of data
within the machine, and chapter 5 describes how to define storage and con-
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stants. Chapter 6 presents the student with his first machine instructions, the
move instructions. This is followed by chapters 7 through 10, which cover the
three different types of arithmetic instructions—fixed-point binary, packed
decimal, and floating point—along with the conversion instructions necessary
to make input data ready for calculations and prepare output data for printing.
In part I, transfer of control—branches and jumps—is also explained.

If further detail is desired and more time is available, part III contains many
topics of interest to the individual who wants to understand more about assem-
bler language and its more advanced capabilities. Topics covered are: the
assembler’s scanning process and the two passes of the assembler, the handling
of absolute and relocatable values, and the fundamentals of addressing. Chap-
ter 14 goes into collecting data into tables and how they are referenced (index
registers) and some of the more complicated branch instructions (BAL, BALR,
BXH, and BXLE). Chapter 15 covers program sectioning and linking—the
whole area of handling subroutines.

Chapter 16 treats the areas of debugging and dump reading. Chapters 17
and 18 cover the remainder of the machine language instructions—those in-
volved in the manipulation of bytes and bits within bytes, and the powerful
special-purpose instructions (ED, EDMK, EX, TR, TRT) and the instructions
found only on System/370.

The last four chapters, 19 through 23, each contain topics that can enrich
any course. Each can be covered in depth or just introduced. The topics are:
DSECTS, Job Control Language, Input and Output, macros and the macro
language, and virtual storage. There is very little interdependence in part III.
These chapters can be discussed in any order or interleaved with the chapters
in part IIL.

The contents of this book comply with Course B2, Computers and Program-
ming; and the majority of Course B, Introduction to Computing, as set forth
in the 1968 Course Curriculum, recommended for Academic Programs in
computer science by the ACM Curriculum Committee on Computer Science.
It can be used in either a one-semester course or a two-semester course, through
expanded use of the topics in part III.

I want to express my sincere thanks and appreciation to all who have been
so helpful in the completion of this text: Shirley Mayewski and Pat Caswell,
for their patience in typing the manuscript; to my reviewers, whose comments
were so helpful in making this a better book: G. G. Casper, Weber State Col-
lege; Carl Eckberg, California State University; Marilyn Bohl and William
Lewis, of IBM; as well as Sallyann Hanson and Eric Weiss; also to Jim Budd,
whose attention to detail has made this a better book.

To the computer-center staff at Vassar College, and to my many students,
who suffered through the preliminary drafts, I give my appreciation. Most
of all, I wish to thank my parents, Eleanor and Cully Krenek, who forged in
me the habits and attitudes to accomplish this task, and my husband, Mike,
who provided moral support and editorial comment.

S. K. T.
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CHAPTER 1

Introduction to
Computers

Since the beginning of time, man has been forced to adapt to an ever-
changing environment. Today’s environment is changing rapidly, in part
because of the development and expanded uses of the electronic digital com-
puter. And today, as often in the past, some people fear that advances in
technology will encroach on their friendly, familiar environment. Man’s first
reaction to a new and powerful invention is frequently fear and apprehension.
He fears for his job, his safety, and his security. It is understandable, then,
why many people fear the computer.

And yet the computer, when reduced to its simplest components, is easy to
understand. It is made up of relatively uncomplicated parts. Men build into the
computer a language—that it understands and follows; to communicate with
the computer, we need only to learn that language. Anyone knowing the com-
puter’s language can tell it exactly what to do, step by step. Built into the
computer is the ability to perform any number of operations when given a
sequence of orders. Change the sequence of orders, and the computer performs
a different sequence of operations.

Give the computer no orders and it just sits there—an inanimate box of wires,
circuitry, and switches. It needs you, the programmer, to tell it what to do.

Note: The remainder of this chapter, as well as all of chapter 2, may be re-
view if you can already program in a higher-level language such as FORTRAN
or PL/1. If so, you may wish to skim them. '
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DATA PROCESSING SYSTEMS

A data processing system is a network of machine components capable of
accepting information, processing this information according to plan (a pro-
gram), and producing the desired results. Regardless of what type of equip-
ment is used, all systems perform the same five basic functions:

Input makes data available to the system

Storage provides devices into which data can be entered and held
and from which it can be retrieved at a later time

Control the order for performing basic functions

Processing arithmetic operations or other manipulations on data

Output the results

One example often used to illustrate the use of these terms is the preparation
of an electric bill. Each customer of an electric company has a meter that
registers the amount of electricity he uses. At periodic intervals a company
representative reads the meter. This reading and the one taken for the previous
billing period, make up the input. These two readings are stored, and the re-
sults of any calculations produce the customer’s bill. The processing of data
involves:

1. subtracting last month’s meter reading from this month’s reading to
determine the amount of electricity used

2. multiplying the amount of electricity used by the rate charged for it

3. calculating any taxes or discounts that may be applicable

The output is the entry into the company’s accounting records and the custo-
mer’s bill. The control function is performed throughout the entire operation.
It determines the sequence of the other functions. It ensures that subtraction
is performed before multiplication by the rate, and it sees to it that taxes and
discounts are applied before producing the bill.

The data processing system described above might involve only human
processors, human and mechanical processors (such as adding machines), or
human, mechanical, and electronic processors (computers). If only human
processors are used in the system, the brain of a human being controls the
entire operation. As long as the human can read the handwriting of the meter
reader and has access to the accounting records, he can take the input, perform
the proper calculations in his head or on a piece of paper, and write out a bill.

If the electric company expands, so that it is no longer feasible to perform
all the basic functions by hand, the company could purchase adding machines.
If, as time passes, the area the company services becomes a booming metropo-
lis, hiring more people and buying more adding machines becomes impractical.
The decision is then made to introduce a computer and let it perform the repet-
itive task of processing mountains of bills.
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When a human being is processing data by hand, there is a great deal of
latitude in the inputs and outputs that can be interpreted and produced. How-
ever, while input numbers scribbled on scraps of paper are fine for human
processors, they have no meaning to a computer. A computer requires stan-
dardization of its input.

STANDARDIZATION

The data used in conjunction with nonhuman processors, computers in partic-
ular, needs to be standardized in two ways:

1. standardization of the medium on which the data is recorded
2. standardization of the method by which data is recorded on the medium

The medium must be standard in size, quality, and composition. The basic
and most frequently used medium in the data processing industry is the
Hollerith punched card, which is shown in figure 1-1. It is rectangular in shape
and measures 7%; inches by 37/, inches (18.6 by 8.3 cm). The corners of the card
may be squared, rounded (to prevent wear), or cut off (to make sure that no
cards in a deck are upside down or backwards).

Rectangular holes may be punched into a card. There are 12 horizontal
rows and 80 vertical columns on the card, thus 960 positions where a hole may
be punched. The rows are numbered 12, 11,0, 1, 2, 3,4, 5,6, 7, 8, and 9 from
top to bottom on the card. On an IBM punch card, the 80 columns may be
identified by column numbers in two locations: at the bottom of the card and
just below the zero row. The numbers 0-9 fill each of the 80 positions in each
respective row. Punches in any of these 10 rows are referred to as numeric

00000000000000000000D000000000000000000000000000000000000000000000000000000000020
123456 7 8 91010 1213141516 1718 192021 222324 25 26 27 282930 31 32 33 34 3536 37 38 39 4D 41 €2 43 44 4546 47 4B 4950 51 52 53 54 55 56 57 58 59 60 61 52 63 54 65 66 67 68 69 70 71 72 73 14 15 15 17 78 19 8O
AR R RN R R R R R R AR R R R R R R R R R R R R R R NN R R RRERE|
22222222222222222222222222222222222222222222222222222222222222222222222222222222
333333333333333333333333333333333333333333333333333333333333333333333333333333133
44444444444444408084444444444844444440844440404444444444404444444444448444444448444444424
55059509009 599959909099955095559550095099595905999595995595095509555595955055555555955853
66666666666666666666666666666666666666666666666666666666666666666666666666666666
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Fig. 1-1 The 80-column punch card



