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Jreface

In the last two or three decades a new branch of chemical engineering has been
synthesized. “This transition from descriptive technology to modern engineering
came ... at the First Symposium on Chemical Reaction Engineering (1957), where a
number of earlier developments were brought together ... into a discipline ... called
Chemical Reaction Engineering” [O. Levenspiel, Chem. Engng. Sci. 35 (1980) p.
1821].

Physical effects in chemical reactors, however, are difficult to separate from the
chemical rate processes. In trying to do so one usually distinguishes between
chemical kinetics and fluid dynamics, putting down the “performance equation” of
a chemical reactor as follows:

output = f (input, kinetics, flow pattern)

When constructing a flow model for a given reactor, we must know the pattern of
fluid passage through the reactor. This flow behavior could be determined by
finding the complete history of each fluid element. However, Danckwerts pointed
out in his famous paper (1953) that, instead of this complexity of the flow pattern, it
is enough to know how long the fluid elements stay in the reactor, in other words, to
determine the residence time distribution of the fluid particles in the exit stream.
We can then select a model to represent the real process which has the same or
similar type of residence time distribution.

The primary goal of the Bad Honnef Summer School 1982 is to offer the possibility
of basic unterstanding of the above system identification process, which is,
however, by far not as simple as it may seem, through lecturers who are experts of
world niveau in the field. General mathematical background, both deterministic and
stochastic, are being taught besides the more sophisticated, newly developed tech-
niques. However, another principal aim of the Summer School is to draw attention
to the various fields of application.

A. Petho
R. D. Noble
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The Scope of R.T.D. Theory

R. Aris

Department of Chemical Engineering and Materials Science, University of Minmnesota,

Minneapolis, MN 55455

SUMMARY

An attempt is made to survey the scope of RTD theory discussing first the general
concepts and broad principles, the looking at some of the systems considered and
their applications to mixing, reaction. The stochastic approach and the direct

derivation of moments are discussed.

1. Introduction- general concepts

This workshop is the lineal descendent of that oldest of symposia, the English
tea-break. For it was during such an interlude of praiseworthy academic indolence
that the central idea of Danckwerts' paper on continuous flow systems came to him
[1]. The paper that he subsequently wrote [2] is not as often cited as it might be
for it has become so primary a reference, that like ignorance of Latin, it is

usually taken for granted.

In it he defined the internal and external age distributions, I(t) and E(t), and
related them to the F-diagram, the fraction of material introduced after a given
instant that emerges at a time t later. This is the response of the system to a
step change of tracer concentration in the input. The C-diagram is the response to
an impulse of tracer at the inlet and thus gives E(t) directly on normalization.
The relations between these functions and the intensity function A(t), later intro-

duced by Shinnar and Naor [3], are given by:



2 R. Aris

s
E(t) = F'(t) = = 8I'(t) = A(t) exp — [[ A(t')dt'] (1)
0
t t
J E(e™ae' = F(t) =1 -0I(t) =1 - exp - [J A(t')dt'] (2)
0 0
-1% -1 -1 E
6 " [ E(e")de’ =6 (1-F(t)) = I(t) =8 exp - [[ A(t')dt'] (3)
t 0
E(t)/] E(t')de' = - & 2n{1-F(e)} = - & 2n 01(t) = ACr) (4)
t dt dt

where 6 = V/q = volume of system/perfusion rate. We note in passing that

L ©

W= [ tE(t)dt = - 6 [ tI'(t)dt = 6 [ I(t)dt = o (5)
0 0 0

Danckwerts went on to discuss two parameters which might give indications of the
physical situation from the inspection of the F or E curves. The first is the hold-
back

F(t)dt (6)

m

[
N [
o—o

which is zero for plug flow and might approach 1 if there is much dead space in the
system. Thus it is a comparison of the residence time distribution with the plug-
flow system. The other parameter compares the F-curve with that of the perfectly

mixed single stage by the integral

s =1L -t/
2

o— 8

| F(t) -1+ &7 | ae (7

~tia - F(t)} for small

t. He then discussed flow through a bed of solids with longitudinal dispersion

He called this the segregation and gave it the sign of {1 - e

obtaining
1 (L-vt) 1 1-(t/6) 2
F(t) = 5 erfc ——* = = erfc ———~ A = D6/L 8
(t) = 5 erfc oo 3 . T , (8)

and laminar flow in pipes for which

0 t < 1pe
F(t) = {

9
1 - 62/4t2 t > lpe 9

In a later paper [4] Danckwerts used the idea of local residence times based on
the observation of Spalding [5] that in a tracer test the f ¢ dt is constant through-
out the system and equal to Q/q, where Q is the total quangity of tracer and q the

volumetric flow rate. This gives a local average age of particles

© 0

u(x) =f tC(X,t)dt/I c(x,t)dt (10)
0 0

In 1963, Shinnar and Naor [3] introduced the escape probability or intensity
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function, A(t)dt, or the fraction of material of age t that will leave the system in
-the interval (t,t+dt) to give a clearer insight into stagnancy. A system with stag-
nancy has an escape probability that decreases over some interval for in such an
interval the longer a particle stays the less likely is it to leave. The intensity
function shows a maximum when there is stagnancy both in experimental and model

situations.

As probability densities the functions E(t) etc. have their characteristic func-
tions and the Laplace transform has often been used in this one. It serves usefully
as a moment generating function for Eks), the Laplace transform of E(t), is analytic
in the right half plane. Denoting by u and 02 the mean residence time and the var-

iance of residence times

oo

= [ tE(t)dt , g = [ (t=u)2E(t)de (10)
0 0
we have
E(s) = 1 - ps +2l(oz+u2)sz_. @ (11)
and
= - @t ——— b
u = - E'"(0) s [#¢n E (s)]s=0 (12)
2 = = 2 g* =
0" = E"(0) - [E"(0)]" = — [4n E(s)]s=0 (13)
ds

When a model is governed by linear equations the Laplace transform can be used to
obtain E(t) and if only the moments are required a difficult inversion may often be
avoided. Matching moments is one technique that can be used for parameter estima-—
tion though it needs to be used with care (Seinfeld and Lapidus give a careful

treatment in their text [5]).

Following Spalding [6] it is worth commenting on the general structure of the
linear process. Let the system of volume V occupy a region £ with boundary 99,
which consists of three types of region: 390, over which no transport takes place;
BQi, over which fluid enters the system; and ane, over which it leaves the system.
Thus if c(x,t) is the concentration of tracer at a point x within

38 o Yailis = Powa (14)
at

where D is a local Fickian coefficient and v the local velocity. Both of these can

be functions of position but we assume the fluid is incompressible.

Vev = 0

and that there are no density partitions in the system — a condition that can be

relaxed — so that ¢ = constant is a solution of the equations. Then (14) has to be
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solved subject to

e(x,0) =0 (15)
ven = 0 and D(3¢c/9n) = 0 on 890 (16)
D(3c¢/dn) - meve = £ on 39, (17)
3¢/dn = 0 on 20 (18)

where n is the outward normal to 9. The function f is the local flux into the

system over 3Qi and

[/ - mevas =q (19)
EYo)
J[ - £ds =q6(t) (20)
EYo)

§(t) being the unit Dirac measure. Then

ECt) == [[ nev c ds (21)
1 39

Of these equations we take the Laplace transform and use the expansion

c(x,s) = c (x) - sc (x) + % 822 (x) = »eo (22)
Then

v-(Don) - \7-v€0 =0 (23)

v-(nvzl) - v~v'c‘1 = - Eo (24)

v-(nvEZ) - \7-v22 = - 221 (25)

and the boundary conditions (16) and (18) carry over immediately whilst (17) becomes
D(acolan) - meve = - mev (26)
D(azi/an) - n-in =0 ,1i=1,2 27)

Now

E(s) l-ff nevcdS
9 %0

1 -us + % (02 + uz)s2 = sieie

so we should find

1 - 1 — 1 - 2 2

- nevdS =1 , — c,nevdS = - nevdS = o~ + 28

qf':gn% ,quﬂl u,quncz u (28)
The first follows from the fact that E; = 1 is a solution of (23), (16), (26) and
(18). Then integrating (24) over 2 and using Green's theorem and the boundary con-

ditions, gives
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<
]

= [[] (@-DVc, - Veve )av
Q

[1f T .av
Q

ff n°vc1dS = qu
99

Thus

u=06="y/4q (29)

Now the partial differential equation (24)

V-(DVcl) & V'vc1 =-1 (30)

has to be solved before we can calculate the second moment. Again the use of (25)

and Green's theorem gives

a(e® +u?) = [ neve,ds = 2 [f] Tav
Q

1]
e

= 2 [[[{eV-0Ve, - ¢ Veve, fav

2 [f] pe?av - [f rvends (31)

Horn [7] has shown how important the modification to a positive integrand can be for
accurate computation of dispersion coefficients. If the system has internal parti-
tions the volume is weighted according to the equilibrium concentration of each

[24].

Independent of the linearity however is the additivity of moments of systems in
series, for if these have individual distributions El(t) and Ez(t) their joint dis-—
tribution is

t
E(t) = | E, (T)E,(t-T)dt (32)
0

Thus
E(s) =E1(s)fz(s) (33)

and by (12) and (13)
2 2 2
b=y + Hy 5 0" =0, + o, - (34)
If the systems are in parailel with probability 1 that an incoming particle goes to
the system with R.T.D. Ei(t), then

E(t) = ME (£) + AE () , Ap +X, =1 . (35)
Thus
_ 2. 2 2 _ 2
o= Au A, , o= Aoy A0, F Ay iy =y (36)

If the stream passing through the first system is recycled in such a way that A/ (1))
is the probability of passing through the second system and round to the first again,
then
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: A F P ceme | cereey By (en) S
E(t) = — E, (t) + —— E1 t-t* E2 t'-t" E1 t")dat"dt' + ———— | oo
1l (1+2)2 00 0 (3
or _
2 E, (s)
— 1 = K £ A2 -2, =2 T
= — 1 +— ——= E E T ool W —
E(s) 14\ El(s){ * 1+A EZ(S)El(S) * (1+A)2 2()EL(8) } 1+A—AE1(S)E2(S)
Hence 37
W HAGy Fuy) ol = el 4 Aol + o)) + A, +ut (38)

Note that u, = Vl/ql = Vl/(t+X)q, My =
Note also that A +» «

1

Ets) 1+(e1 + 62)5

Systems Considered

V,/q, = V,/Aq so that u = (Vi +V,)/q =8, + 6,.

(39)

So many possible systems have been considered that it is almost impossible to

organize them, let alone record them in detail.

very roughest outline and makes no claim to completeness.

The table which follows is but the

A worth-while task would

be to compile a reference list of systems together with what is known of their dis-

tributions and moments.

This has been done for certain subclasses [l16] or for

systems that might be relevant in particular contexts [8,60,61], but not comprehen—

sively.

able biological literature on compartmental analysis [24,54,62].

In particular the connection has never been well made to the very consider-

When Sheppard's

book was published in 1962, the chemical engineer would probably have recognized

but one of its references, Taylor's 1953 paper on longitudinal dispersion in laminar

flow through a tube and the overlap is still not a large one though such a distin-

guished worker as K. B. Bischoff has made important contributions in both areas.

System

References

Single stirred tank or Plug flow with no diffusion
Sequences of stirred tanks,
with by pass
in parallel
with cross—flow
with back mixing
with end reflux
with stagnant regions
with transport delay
Arrays of stirred tanks
General networks
Systems of compartments
Stochastic flows
Recycle systems
Zone models
Plug-flow with diffusion
Flow in helical coils
Combined stirred tanks and plug flow

2, everybody!

3,5,8,9,46,48
5,9,60,61

3,53,60,61
5,8,11,19,47

5,61

45,61

5,10,12,44

8,14,15
6,13,17,19,28,30,43,49,50,52
24 ,54-59,62

13,58

31-40

6,17,23

2,5,8,16

41,42,51

10,13,18,21
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Zweitering's concept of the degree of mixing

Zweitering [18] noted that two very different systems might have the same resi-
dence time distribution. For example a plug-flow tubular reactor of holding time 91
followed by a mixed reactor of holding time 62 would give

0 0< t< 81
E(t) = t-6 (40)
i )

5, e 2 ,t>8

If the tank preceeded the tube then R.T.D. would be exactly the same, yet the con-
versions in the two schemes for anything but a first-order reaction would be dif-
ferent. Zweitering observed that the residence time t was the sum of the age, a,

and the life expectancy, B. Now during (t,t+St) a volume qSt leaves the system of
which a fraction {1—F(B)} were already in the system at time t-B = a. These had a
life expectancy of B so that if I*(B)GB = fraction within the system with expectancy
(B,B+8B), VI*(B)SB = {l—F(B)}th. But 88 = 8t so 8I*(B) = 1-F(B) = O0I(B) and o and B

©

are distributed in the same way. We note in passing that a = f al(a)da = (u2+02)/2u
0

so that the average residence time of all particle in the system is u + (cz/u),
which is greater than u, the average residence time of those entering or leaving the

system.
o

We have noted above that, since, in a tracer test, f c(x,t)dt =1 everywhere, a
0

local mean age; u(x), can be defined by
0
o (x) = [ te(x,t)de . (10 bis)
0

Now except in the case of complete mixing ua(x) will vary and this variation may be

measured by
2 -2 1 -2
L=<, x) -0 = ;—fff (n (x) - @)“av (41)
This is called the age variance between points. The age variance within points is

£2 = ¢ [ {t - v} etx, ear> (42)
a 0 a

and it can be shown that

(a—E)z I(a)da = si + I (43)

a
I
o— 8
[XINNY

Zweitering shows how to attain any required residence time distribution in a
plug-flow reactor with side-stream take off. Then the section of the tubular reac—

tor which contains material of ages in (a, a+da) has a volume = 4V VIi(a)da =
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[1-F(a)]da. The volume drawn off must contribute that moiety of effluent with

£esidence time in (a, atda) i.e. qE(a)da, so that the flow rate at a is q -
f qE(t)dt = q(1-F(a)). If c(a) is the concentration of a reactant disappearing by
geaction at a rate r(c)
q[1-F(a)]c(a) - q[1-F(a+da)]c(at+da) = qE(a)dac(a) + r(c(a))dV
which reduces to

2o re) (44)

da

with an effluent concentration

E(a)c(a)da (45)

c =

o“— 8

This is the condition of complete segregation; eqn. (44) is solved subject to c(0) =

c

£

On the other hand Zweitering claimed maximum mixedness for the scheme whereby
the residence time distribution is attained by a sidestream of flow rate qE(B)dB
being added to a plug flow reactor at a point of life expectancy B. Since the
distribution of expectancy is the same the volume element is the same as before and

a balance gives
q[1-F(B+dB)]c(B+dB) - q[1l-F(B)]c(B) = qE(B)dBc, = r(c(B))aV

or
de _ r(c(B)) = AB)[c, — c(B)] (46
a8 J

This equation should be solved subject to the condition

de
dB

+> 0 B > = .

since c is bounded. Thus in the limit

_ _ ) Lt 1-F(B)
T % [B-m E(B)j“%) (47)

which for a stirred tank is

= B, = Gr(cw) " (48)

Since A(B) is constant for the stirred tank, the solution of (46) is a constant and
c(0) = c_ satisfies (48).

For first order reaction r(c) = ke

_E = ke - A(B)(cf-c)
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or
K
c(B) = 2—— [ E(E) o %% e (49)
1-F(B) g
whence
e(0) = c_ [ Ect)e °F e (50)
0

Zweitering showed that J = Z:/oz, Danckwert's segregation parameter [20], would be

minimized under conditions of maximum mixedness.

Combinations of these models have been made by Weinstein and Adler [21],
Villermaux and Zoulalian [22] and Ng and Rippin [23]. Asbjprnsen [15] has used a
network model and Kranbeck, Shinnar and Katz [13] a general assemblage of units in

their stochastic model (vide inra).

Reaction transforms

If ¢ is the concentration of a reactant disappearing at a rate r(c), the frac-

tion remaining after time t is Y(t) the solution of

dy

—=-kR 1
e ) (51)
k = R(co)/co »  R(y) = r(coY)/r(co) (52)

Then, by (44) and (45) a completely segregated reactor will give a product with a

fraction of

=3
]

[ ¥(t) E(t)de
0

} X E(l-} ) ay (53)
0 KR(Y) 'k y R(Y')

This may be regarded as an integral transform of the residence time distribution

which is best expressed in dimensionless form. Let 0 be the mean residence time and
T =1t/6 , f(r) =6E(0T) , k = ko = R(co)e/c0 (54)

Then y(t) = y(T;k,R) satisfies

TR, ¥(0) =1 (55)

and
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I(k) = [ y(t)f(t)dr . (56)
0

For example, a pth order reaction with R(Y) = Yp gives

Y(©) = {1+ (p-Lyke} (57)
when

a4 =11, k=keP! (58)

we can unite

repy = pd [ E8) 4o (59)
0

-1
p T = (p-1)x (60)
and I'(p) is the generalized Stieltjes transform of f. Cf. [25,26]. When p = 1 this

degenerates into the Laplace transform as Y(T) = exp—KT.

Some generalized Stieltjes transform pairs are given in [26]. The most impor-

tant one for our purposes is given by the formula

f er—GX(x+y)_udx = F(A+1)a(u_x—2)/2 y()‘_u)/2 eay/Z e“7/2wk m(ay) (61)
0 b
where 2k = = XA -y, 2m =X - pu + 1. The Whittaker function
I'(-
W) =y ey + By Gy
) Iz -mk) Iz +mk)
_ I'(p-A-1) T'(A-p+l)
T s el W (62)
and
1
- +ﬂl _
M n(9Y) = ey)® & “y/lel(% +m-k; 2ml; ay) . (63)

Combining these formulae gives

f xxe_ax(x+y)_udx w DT (A1) y}‘_u+l F. (A+1; A-p+2; ay)
0 T(u) X
+ T (A-u+l) au_)‘_llFl(u; u-A; ay) (64)
where
2 n n
(Fp(asBsz) =1 +2 z pa(etl) z@ o, (@) L (65)
B 1! B(B+l) 2! @) 0!

is Kummer's hypergeometric function



