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INTRODUCTION

"Praise them! The Ring-bearers,
praise them with great praise!"

The Lord of the Rings
J. R. R. Tolkien

The history of coherent algebraic objects starts in 1944, when
Cartan, without mentioning the term coherent, introduced and developed
some properties of coherent sheaves. He gave the object its name in a
paper in 1953. Serre, 1955-56, and Grothendieck and Dieudonne, 1961-
1963, continued in Cartan's tradition and, through the concept of
coherent sheaves, consolidated the foundation of modern algebraic
geometry.

Coherent rings and modules first appear in the literature in
1960, in a paper by Chase, still without being mentioned by name. It
is only in 1964 that coherent rings appear as such named, in Bourbaki.

From 1966 on, coherence in commutative rings became a vigorously
active area of research. The body of research accumulated, beyond
having an interest of its own, had significant impact on other areas
of algebra. It is not my intention here to give a historical account
of this research, since the interested reader can reconstruct it from
the references given in the book; rather, I will briefly outline the
interplay between the research done in coherent rings and the research
done in other areas of commutative algebra.

Part of the research done in coherent rings was influenced by one
of its most important examples, that of Noetherian rings. 1In thf;
direction the questions investigated consisted of asking to what
extent results known to hold in Noetherian rings are still valid for
coherent rings. In some of these investigations the theory developed
in order to obtain the answers has significance in the general theory
of commutative rings. Two such examples are the investigation into

the (nonexistent) analogue of Hilbert basis theorem for coherent rings
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(Chapter 7), and the extension of the notion of regularity from
Noetherian to coherent rings (Chapter 6) with the related questions
pertaining to the weak dimension of a coherent ring.

In investigating the Hilbert basis theorem for coherent rings,
cartesian squares were constructed (Chapter 5); this construction led
to a complete structural description of rings of global dimension two
(Chapter 6). The same question led to the most general definition of
non-Noetherian grade and depth with applications to exactness of
complexes for general commutative rings (Chapter 7).

The extension of the definition of regularity to coherent rings
and its related questions prompted a renewed investigation into the
relation between the minimal prime spectrum of a ring and its total
ring of quotients (Chapter 4). This relation in its turn shed new
light on the nature of flat epimorphic extensions (Chapter 4).
Another influence of the definition of regularity was to start an
investigation into projective dimensions of ideals in polynomial
rings, group rings and symmetric algebras. This led to a better
understanding of the homological properties of these rings (Chapter 7
and Chapter 8).

Not all research done in coherent rings was influenced by
Noetherian rings results. All non-Noetherian classical type rings,
like boolean algebras, absolutely flat rings, valuation and Prufer
domains and semihereditary rings are examples of coherent rings. The
interest in coherence renewed an interest in these rings as a result
of which our knowledge of these rings today is considerably mon%
advanced than it used to be (Chapter 4 and Chapter 7). Moreover, new
finite condition rings were defined and investigated, some as a direct
result of coherence (Chapter 6), some probably influenced by the
investigation into coherence.

Another aspect of research that was strongly influenced by the
investigation into coherent rings is the development of certain ring

constructions and rings extensions. What started as a (not-so-simple)
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question, When is D + M coherent?, evolved later to the generalization
of the definition of rings of type D + M (Chapter 5). A serious
investigation into new properties of trivial ring extensions was
launched in a successful attempt to answer a conjecture arising from a
coherent ring investigation (Chapter 4). The research into the nature
of the integral closure of a one-dimensional coherent domain branched
out into investigating, on one hand, general overrings (Chapter 5)
and, on the other hand, the nature of prime ideals in polynomial rings
(Chapter 7).

The notion of coherence touched other areas of algebra as well.
There is an abundance of results in noncommutative ring theory in that
direction. Coherent groups, coherent categories, and coherent
functors were defined and investigated.

The whole subject of commutative coherent rings, in spite, and
perhaps because, of all the research already done in the area, still
has an unaccountable number of open problems, some of a very basic

nature.

This book provides an extensive and systematic treatment of the
theory of commutative coherent rings, blending and providing a link
between the two sometimes disjoint approaches available in the
literature, the ring theoretic approach and the homological algebra
approach. The book covers most results in commutative coherent ring
theory known to date, as well as a number of new results never
published before. ¢

The book assumes knowledge of basic commutative and homological
algebra. Nevertheless, it is relatively self-contained, in the sense
that, in Chapter 1 and in several later sections, all necessary basic
results are summarized without proofs (references given). Chapter 1
also serves the purpose of setting a uniform notation and terminology
for the book, as many of the notions used do not yet have standard

notation.



Chapter 2, faithful to its title, introduces the reader to
finitely presented modules and basic properties of coherent rings and
modules.

Chapter 3 and section 1 in Chapter 7 develop many of the tools of
modern research in commutative algebra such as several homological
dimensions, Fitting invariants, Euler characteristic, Koszul
complexes, and the general theory of grade.

Chapter 4 through Chapter 8 represent the main body of research
in coherent ring theory. The presentation of most topics is as
general as possible, with the results on coherent rings following from
the general theory. An attempt has been made to provide a short
historical overview with each of the main topics, to include many
examples and counterexamples, and to expose the reader to open
problems in the field, which are either explicitly stated or implied
by the approach to the subject.

Chapters 4 and 5 present topics in ring extensions and ring
constructions such as the total ring of quotients, flat epimorphisms,
trivial ring extensions, cartesian squares, D + M constructions, and a
general overring approach to the study of the integral closure.

Chapter 6 presents several particular rings which are either
coherent or strongly related to coherence. The topic of uniform
coherent rings is essentially a Noetherian ring theory topic with a
strong coherence flavor; so is the syzygetic approach to some results
in regular rings. The structure of rings of global dimension two is
also presented in this chapter. £

Chapter 7 presents the most studied question in coherent ring
theory, namely the question of stable coherence. It also explores the
relation between prime ideals in polynomial rings and the nature of
the integral closure.

Chapter 8 investigates several universal algebras in the

direction of coherence and regularity.



X

The book is suitable as a reference book for researchers and as a

textbook for a second-year graduate course in algebra.
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progress of this book.
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encouragement and interest during this work.
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typescript.
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CHAPTER 1

PRELIMINARIES
SECTION 1. PROJECTIVE AND INJECTIVE MODULES

DEFINITION. Let R be a ring. An R module F is called a free R
module if it is isomorphic to a direct sum of copies of R. If Rag ~ R
and F = GSRaa then the set {a, / a ¢ S} is called a basis of

ae

F over R.
Over a commutative ring R every two bases of a free R module have
the same cardinality. Every R module is isomorphic to a quotient of a

free R module.

THEOREM 1.1.1 ([R2]). Let R be a domain and let M be a finitely

generated torsion free R module, then M can be embedded in a finitely

generated free R module.

THEOREM 1.1.2 ([B7]). Let (R, m) be a local ring and let M and N

be two finitely generated free R modules and f:M + N a

homomorphism. The following conditions are equivalent:

(1) 1R/m ®f:R/m ® M -~ R/m ®, N is injective.

(2) f is injective and coker f = N/M is a free R module.

DEFINITION. Let R be a ring. An R module P is called a

projective R module if the following diagram can be completed, for

every R module M and N and every R homomorphism f and g:



Every free R module is projective. The converse is not
necessarily true. For example, let R = Zq @ Zo, where Z denotes the

integers, then M = Z5 is a projective, but not a free R module.

THEOREM 1.1.3 ([R2]). Let R be a ring and let P be an R module.

The following conditions are equivalent:

(1) P is a projective R module.

(2) Homp(P,-) is an exact functor, that is if

O—+M—+N—L —0 is an exact sequence of R modules, then

0 —Homp (P,M) — Homp(P,N) —Homp(P,L) —0 is an exact sequence

of R modules.

(3) P is a direct summand of a free R module.

(4) Every exact sequence O —M—+N—P —0 , where M and N are R

modules, splits.

(5) Ext}(P,M) = 0 for all R modules M.

(6) ExtB(p,M) 0 for all R modules M and all integers n > O.

An arbitrary direct sum of projective modules is a projective

module. A projective module over a local ring is a free module.

DEFINITION. Let R be a ring and let M be an R module. An exact

’

¢
sequence . . .—>P; —>Pyg—M—0 with P; projective R modules is

called a projective resolution of M. If P; are free R modules, this

exact sequence is called a free resolution of M. If P; are finitely

generated then this exact sequence is called a finite projective

(resp. free) resolution of M. If a module M admits a finite

projective (resp. free) resolution of type

O—P,—. . .—>Pyg—>M—0 , this resolution is called a finite



resolution of length n, or a finite resolution of finite length if

knowledge of n is not important.

Every module admits a projective (in fact free) resolution.

THEOREM 1.1.4 ([B7]). Let R be a ring, let N'- S NYN'' 5 0

"
be an exact sequence of R modules and let pr N'— O and

p''% N'' —0 be two surjective maps. If P'' is a projective R

module then there exists a surjective map a:P' & P'' —N —0 such

that the following diagram commutes:

where i and p are the corresponding inclusion and projection maps.

SCHANUEL'S LEMMA 1.1.5 ([R2]). Let R be a ring and let:

0O —K-—P—M—0

O —K' —P' —-M—0

be two exact sequences of R modules with P and P' projective R

modules. Then K @&P' ~ K' & P.

.

P
DEFINITION. Let R be a ring. An R module E is called an

injective R module if the following diagram can be completed, for

every R module M and N and every R homomorphism f and g:



An important example of an injective module is the Z module

M = Q/Z where Z denotes the integers and Q the rationals.

THEOREM 1.1.6 ([R2]). Let R be a ring and let E be an R module.

The following conditions are equivalent:

(1) E is an injective R module.

(2) Homp(-,E) is an exact functor, that is if O —M >N —L —0 is

an exact sequence of R modules then

O — Homp(L,E) —> Homp(N,E) —+HomR(M,E) —(0 is an exact sequence

of R modules.

(3) E is a direct summand of every module of which it is a submodule.

(4) Every exact sequence O —E —+N —L —0 , where N and L are R

modules, splits.

(5) Exti(N,E) = 0 for all R modules N.

(6) ExtB(N,E) = 0 for all R modules N and all integers n > O.

(7) For every ideal I of R, the following diagram can be completed:

\
\,
\
\

\
0o—14ip where i is the inclusion map.

An arbitrary product of injective R modules is an injective R

module. Every R module can be embedded in an injective R module.

DEFINITION. Let R be a ring and let M be an R module. An exact
sequence 0 —-M —Ej —E; —. . . with E; injective R modules is called

an injective resolution of M.

Every R module admits an injective resolution.

DEFINITION. Let R be a ring. An R module M is called a

divisible R module if rM = M for all r ¢ R.




THEOREM 1.1.7 ([R2]). Let R be a ring, then:

(1) Every injective R module is a divisible R module.

(2) Assume that R is a domain and M is a torsion free R module, then

M is an injective R module iff M is a divisible R module.

(3) Assume that R is a domain with field of quotients K, and M is a

torsion free R module, then M is a divisible R module iff M is a

vector space over K.

THE DUALITY HOMOMORPHISMS ([c5]).

Let R and S be two rings, let M be an R module, E an S module
and N an R and an S module, then there is a natural isomorphism:
Homp (M, Homg(N,E)) =~ Homg(M ® pN,E) which induces the first duality
homomorphisms:

ppnt ExtR(M; Homg(N,E)) — Homg(Torp(M,N),E)

Next consider the homomorphism:
o:Homg(N,E) ® p M — Homg(Homp(M,N),E). If M is a finitely generated
projective R module than o is an isomorphism. In any event, ¢ induces
the second duality homomorphisms:

op: Torp(Homg(N,E),M) — Homg(ExtR(M,N),E)

THEOREM 1.1.8 ([C5]). With the above notation we have:

(1) If E is an injective S module then p.  are isomorphisms for all

integers n > 0.

(2) If E is an injective S module and M has a projective resolution

composed of finitely generated R modules then o are isomorphisms

for all integers n > 0.

DEFINITION. Let R be a ring and let M be an R module, an R

module E is called an essential extension of M, if M € E and for any

nonzero submodule E' of E we have E' N M £ 0.
Every R module M admits an essential injective extension E(M),

which is unique up to isomorphism. This extension is called the



injective envelope of M.

Let E(M) be the injective envelope of M, then there is no
injective proper submodule between M and E(M). In fact, this is
another characterization of an injective envelope.

If M and N are two R modules then E(M ® N) = E(M) @ E(N).

DEFINITION. Let R be a ring. An R module E is called a

universal injective R module if E is an injective R module and if for

any R module M and any nonzero element m € M, there exists a

homomorphism f:M — E satisfying f(m) # O.

THEOREM 1.1.9 ([M4]). Let R be a ring and let E be an R module.

The following conditions are equivalent:

(1) E is a universal injective R module.

(2) E is an injective R module and the map M — Homp(Homp(M,E),E) is

injective for all modules M.

(3) E is an injective R module and every R module can be embedded in

a direct product of copies of E.

(4) 1 is an injective R module and contains a copy of every simple R

module (an R module is simple if it has no proper submodules).

For any ring R, the module E = Homy(R,Q/Z) is a universal
injective R module. It follows from Theorem 1.1.9(4) that if E is the
injective envelope of the direct sum of one copy of each of thelsimple
R modules, then E is a universal injective R module and it is
isomorphic to a direct summand of every other universal injective R

module.



