Wolfgang De Meuter (Ed.)

Advances in
Smalltalk

14th International Smalltalk Conference, ISC 2006
Prague, Czech Republic, September 2006
Revised Selected Papers

LNCS 4406

/) Springer

Wolfgang De Meuter (Ed.)

Advances in
Smalltalk

14th International Smalltalk Conference, ISC 2006
Prague, Czech Republic, September 4-8, 2006
Revised Selected Papers

@ Springer

Volume Editor

Wolfgang De Meuter

Programming Technology Laboratory
Vrije Universiteit Brussel

Belgium

E-mail: wdmeuter@vub.ac.be

Library of Congress Control Number: 2007923851

CR Subject Classification (1998): D.1, D.2, D.3, E3
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-71835-4 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-71835-2 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2007
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12044788 06/3180 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

4406

Preface

The 14th International Smalltalk Conference took place in the first week of
September 2006 in Prague, Czech Republic. This volume contains the peer-
reviewed technical papers that were presented during the academic track of the
conference.

The International Smalltalk Conference evolved out of the annual meeting of
the European Smalltalk User Group (ESUG). This meeting usually lasts about
a week and allows Smalltalk experts to discuss Smalltalk solutions and environ-
ments. The meeting attracts a diverse audience consisting of Smalltalkers from
industry as well as from academia. Thanks to the perpetual effort of people like
Stéphane Ducasse, Noury Bouraqadi, Serge Stinckwich and Roel Wuyts, over
the years the ESUG meeting was provided with a separate academic research
track during which researchers could present academic results about Smalltalk
and its development tools. Unfortunately, no formal publication forum was as-
sociated with this track, which made it less attractive for authors to submit a
paper. Starting with this edition of the conference, we hope this will change. An
agreement was reached with Springer to publish a post-conference proceedings
of this 14th edition. I think our community owes a big thank you to Stéphane
for this! Hopefully next year this agreement can evolve into a 15th edition of the
conference with formally announced proceedings. This will certainly motivate
more Smalltalk researchers to submit a paper!

The conference accepted just over half of the submissions. Although this can
be interpreted as a sign of low quality, I think it is not. The set of researchers
conducting their research in Smalltalk is quite small. However, as is the case with
the code produced by Smalltalkers, the quality-to-quantity ratio of the research is
high. This is confirmed by the fact that all papers were reviewed by at least three
members of the international Program Committee. The committee consisted of
a number of researchers that are highly renowned in the field of object-oriented
programming in general and in the Smalltalk world in particular. I would like to
thank them for their efforts in trying to make this a conference of outstanding
quality.

September 2006 Wolfgang De Meuter

Organization

Program Committee

Dave Simmons, Smallscript Corporation, USA

Noury Bouraqadi, Ecole des Mines de Douai, France
Nathanael Schaerli, Google R&D, Zurich, Switzerland
Andrew Black, Portland State University, USA

Serge Stinckwich, Université de Caen, France

Joseph Pelrine, MetaProg GmbH, Switzerland

Alan Knight, Cincom, USA

Thomas Kuehne, Technische Universitiat Darmstadt, Germany
Christophe Roche, Université de Savoie, France

Maja D’Hondt, Université des Sciences et Technologies de Lille, France
Maximo Prieto, Universidad Nacional de La Plata, Argentina
Brian Foote University of Illinois at Urbana-Champaign, USA
Dave Thomas, Bedarra Research Labs, USA

Gilad Bracha, SUN Java Software, USA

Serge Demeyer, Universiteit Antwerpen, Belgium

Pierre Cointe, Ecole de Mines de Nantes, France

Michel Tillman, Real Software, Belgium

Tudor Girba, Universitat Bern, Switzerland

Lecture Notes in Computer Science

For information about Vols. 1-4342

please contact your bookseller or Springer

Vol. 4453: T. Speed, H. Huang (Eds.), Research in Com-
putational Molecular Biology. XVI, 550 pages. 2007.
(Sublibrary LNBI).

Vol. 4448: M. Giacobini (Ed.), Applications of Evoluti-
nary Computing. XXIII, 755 pages. 2007.

Vol. 4447: E. Marchiori, J.H. Moore, J.C. Rajapakse
(Eds.), Evolutionary Computation,Machine Learning
and Data Mining in Bioinformatics. XI, 302 pages. 2007.

Vol. 4446: C. Cotta, J. van Hemert (Eds.), Evolutionary
Computation in Combinatorial Optimization. XII, 241
pages. 2007.

Vol. 4445: M. Ebner, M. O’Neill, A. Ekart, L. Vanneschi,
ALl Esparcia-Alcézar (Eds.), Genetic Programming. XI,
382 pages. 2007.

Vol. 4444: T. Reps, M. Sagiv, J. Bauer (Eds.), Program
Analysis and Compilation, Theory and Practice. X, 361
pages. 2007.

Vol. 4443: R. Kotagiri, PR. Krishna, M.K. Mohania, E.
Nantajeewarawat (Eds.), Advances in Databases: Con-
cepts, Systems and Applications. XXI, 1126 pages. 2007.

Vol. 4431: B. Beliczynski, A. Dzielinski, M. Iwanowski,
B. Ribeiro (Eds.), Adaptive and Natural Computing Al-
gorithms, Part I. XXV, 851 pages. 2007,

Vol. 4430: C.C. Yang, D. Zeng, M. Chau, K. Chang, Q.
Yang, X. Cheng, J. Wang, F.-Y. Wang, H. Chen (Eds.),
Intelligence and Security Informatics. XII, 330 pages.
2007.

Vol. 4429: R. Lu, J.H. Siekmann, C. Ullrich (Eds.), Cog-
nitive Systems. X, 161 pages. 2007. (Sublibrary LNAI).

Vol. 4427: S. Uhlig, K. Papagiannaki, O. Bonaventure
(Eds.), Passive and Active Network Measurement. XI,
274 pages. 2007.

Vol. 4425: G. Amati, C. Carpineto, G. Romano (Eds.),
Advances in Information Retrieval. XIX, 759 pages.
2007.

Vol. 4424: O. Grumberg, M. Huth (Eds.), Tools and Al-
gorithms for the Construction and Analysis of Systems.
XX, 738 pages. 2007.

Vol. 4423: H. Seidl (Ed.), Foundations of Software Sci-
ence and Computational Structures. XVI, 379 pages.
2007.

Vol. 4422: M.B. Dwyer, A. Lopes (Eds.), Fundamental
Approaches to Software Engineering. XV, 440 pages.
2007.

Vol. 4421: R. De Nicola (Ed.), Programming Languages
and Systems. XVII, 538 pages. 2007.

Vol. 4420: S. Krishnamurthi, M. Odersky (Eds.), Com-
piler Construction. XIV, 233 pages. 2007.

Vol. 4419: P.C. Diniz, E. Marques, K. Bertels, M.M.
Fernandes, J.M.P. Cardoso (Eds.), Reconfigurable Com-
puting: Architectures, Tools and Applications. XIV, 391
pages. 2007.

Vol. 4418: A. Gagalowicz, W. Philips (Eds.), Computer
Vision/Computer Graphics Collaboration Techniques.
XV, 620 pages. 2007.

Vol. 4416: A. Bemporad, A. Bicchi, G. Buttazzo (Eds.),
Hybrid Systems: Computation and Control. XVII, 797
pages. 2007.

Vol. 4415: P. Lukowicz, L. Thiele, G. Troster (Eds.), Ar-
chitecture of Computing Systems - ARCS 2007. X, 297
pages. 2007.

Vol. 4414: S. Hochreiter, R. Wagner (Eds.), Bioinformat-
ics Research and Development. XVI, 482 pages. 2007.
(Sublibrary LNBI).

Vol. 4412: F. Stajano, H.J. Kim, J.-S. Chae, S.-D. Kim
(Eds.), Ubiquitous Convergence Technology. XI, 302
pages. 2007.

Vol. 4410: A. Branco (Ed.), Anaphora: Analysis, Algo-
rithms and Applications. X, 191 pages. 2007. (Sublibrary
LNAI).

Vol. 4407: G. Puebla (Ed.), Logic-Based Program Syn-
thesis and Transformation. VIII, 237 pages. 2007.

Vol. 4406: W. De Meuter (Ed.), Advances in Smalltalk.
VII, 157 pages. 2007.

Vol. 4405: L. Padgham, F. Zambonelli (Eds.), Agent-
Oriented Software Engineering VII. XII, 225 pages.
2007.

Vol.4403: S. Obayashi, K. Deb, C. Poloni, T. Hiroyasu, T.
Murata (Eds.), Evolutionary Multi-Criterion Optimiza-
tion. XIX, 954 pages. 2007.

Vol. 4400: J.F. Peters, A. Skowron, V.W. Marek, E.
Ortowska, R. Slowinski, W. Ziarko (Eds.), Transactions
on Rough Sets VII, Part I1. X, 381 pages. 2007.

Vol. 4399: T. Kovacs, X. Llora, K. Takadama, P.L.. Lanzi,
W. Stolzmann, S.W. Wilson (Eds.), Learning Classifier
Systems. XII, 345 pages. 2007. (Sublibrary LNAI).

Vol. 4398: S. Marchand-Maillet, E. Bruno, A. Niirn-
berger, M. Detyniecki (Eds.), Adaptive Multimedia Re-
trieval: User, Context, and Feedback. XI, 269 pages.
2007.

Vol. 4397: C. Stephanidis, M. Pieper (Eds.), Universal
Access in Ambient Intelligence Environments. XV, 467
pages. 2007.

Vol. 4396: J. Garcia-Vidal, L. Cerda-Alabern (Eds.),

Wireless Systems and Mobility in Next Generation In-
ternet. IX, 271 pages. 2007.

Vol. 4395: M. Daydé, JM.LM. Palma, ALG.A.
Coutinho, E. Pacitti, J.C. Lopes (Eds.), High Perfor-
mance Computing for Computational Science - VEC-
PAR 2006. XXIV, 721 pages. 2007.

Vol. 4394: A. Gelbukh (Ed.), Computational Linguistics
and Intelligent Text Processing. XVI, 648 pages. 2007.

Vol. 4393: W. Thomas, P. Weil (Eds.), STACS 2007.
XVIII, 708 pages. 2007.

Vol. 4392: S.P. Vadhan (Ed.), Theory of Cryptography.
XI, 595 pages. 2007.

Vol. 4391: Y. Stylianou, M. Faundez-Zanuy, A. Esposito
(Eds.), Progress in Nonlinear Speech Processing. XII,
269 pages. 2007.

Vol. 4390: S.O. Kuznetsov, S. Schmidt (Eds.), For-
mal Concept Analysis. X, 329 pages. 2007. (Sublibrary
LNAI).

Vol. 4389: D. Weyns, H.V.D. Parunak, F. Michel (Eds.),
Environments for Multi-Agent Systems III. X, 273
pages. 2007. (Sublibrary LNAI).

Vol. 4385: K. Coninx, K. Luyten, K.A. Schneider (Eds.),
Task Models and Diagrams for Users Interface Design.
XI, 355 pages. 2007.

Vol. 4384: T. Washio, K. Satoh, H. Takeda, A. Inokuchi
(Eds.), New Frontiers in Artificial Intelligence. IX, 401
pages. 2007. (Sublibrary LNAI).

Vol. 4383: E. Bin, A. Ziv, S. Ur (Eds.), Hardware and
Software, Verification and Testing. XII, 235 pages. 2007.

Vol. 4381: J. Akiyama, W.Y.C. Chen, M. Kano, X. Li, Q.
Yu (Eds.), Discrete Geometry, Combinatorics and Graph
Theory. XI, 289 pages. 2007.

Vol. 4380: S. Spaccapietra, P. Atzeni, F. Fages, M.-S.
Hacid, M. Kifer, J. Mylopoulos, B. Pemici, P. Shvaiko, J.
Trujillo, I. Zaihrayeu (Eds.), Journal on Data Semantics
VIIL XV, 219 pages. 2007.

Vol. 4378: 1. Virbitskaite, A. Voronkov (Eds.), Perspec-
tives of Systems Informatics. XIV, 496 pages. 2007.

Vol. 4377: M. Abe (Ed.), Topics in Cryptology — CT-RSA
2007. XI, 403 pages. 2006.

Vol. 4376: E. Frachtenberg, U. Schwiegelshohn (Eds.),
Job Scheduling Strategies for Parallel Processing. VII,
257 pages. 2007.

Vol. 4374: J.F. Peters, A. Skowron, I. Diintsch, J.
Grzymata-Busse, E. Orlowska, L. Polkowski (Eds.),
Transactions on Rough Sets VI, Part 1. XII, 499 pages.
2007.

Vol. 4373: K. Langendoen, T. Voigt (Eds.), Wireless Sen-
sor Networks. XIII, 358 pages. 2007.

Vol. 4372: M. Kaufmann, D. Wagner (Eds.), Graph
Drawing. XIV, 454 pages. 2007.

Vol. 4371: K. Inoue, K. Satoh, F. Toni (Eds.), Compu-
tational Logic in Multi-Agent Systems. X, 315 pages.
2007. (Sublibrary LNAI).

Vol. 4370: P.P Lévy, B. Le Grand, F. Poulet, M. Soto,
L. Darago, L. Toubiana, J.-F. Vibert (Eds.), Pixelization
Paradigm. XV, 279 pages. 2007.

Vol. 4369: M. Umeda, A. Wolf, O. Bartenstein, U. Geske,
D. Seipel, O. Takata (Eds.), Declarative Programming
for Knowledge Management. X, 229 pages. 2006. (Sub-
library LNAI).

Vol. 4368: T. Erlebach, C. Kaklamanis (Eds.), Approxi-
mation and Online Algorithms. X, 345 pages. 2007.

Vol. 4367: K. De Bosschere, D. Kaeli, P. Stenstrom, D.
Whalley, T. Ungerer (Eds.), High Performance Embed-
ded Architectures and Compilers. XI, 307 pages. 2007.

Vol. 4366: K. Tuyls, R. Westra, Y. Saeys, A. Nowé
(Eds.), Knowledge Discovery and Emergent Complex-
ity in Bioinformatics. IX, 183 pages. 2007. (Sublibrary
LNBI).

Vol. 4364: T. Kiihne (Ed.), Models in Software Engineer-
ing. XI, 332 pages. 2007.

Vol. 4362: J. van Leeuwen, G.F. Italiano, W. van der
Hoek, C. Meinel, H. Sack, F. Plasil (Eds.), SOFSEM
2007: Theory and Practice of Computer Science. XXI,
937 pages. 2007.

Vol. 4361: H.J. Hoogeboom, G. Pdun, G. Rozenberg, A.
Salomaa (Eds.), Membrane Computing. IX, 555 pages.
2006.

Vol. 4360: W. Dubitzky, A. Schuster, PM.A. Sloot,
M. Schroeder, M. Romberg (Eds.), Distributed, High-
Performance and Grid Computing in Computational Bi-
ology. X, 192 pages. 2007. (Sublibrary LNBI).

Vol. 4358: R. Vidal, A. Heyden, Y. Ma (Eds.), Dynamical
Vision. IX, 329 pages. 2007.

Vol. 4357: L. Buttyan, V. Gligor, D. Westhoff (Eds.),
Security and Privacy in Ad-Hoc and Sensor Networks.
X, 193 pages. 2006.

Vol. 4355: J. Julliand, O. Kouchnarenko (Eds.), B 2007:
Formal Specification and Development in B. XIII, 293
pages. 2006.

Vol. 4354: M. Hanus (Ed.), Practical Aspects of Declar-
ative Languages. X, 335 pages. 2006.

Vol.4353: T. Schwentick, D. Suciu (Eds.), Database The-
ory — ICDT 2007. XI, 419 pages. 2006.

Vol. 4352: T.-J. Cham, J. Cai, C. Dorai, D. Rajan, T.-S.
Chua, L.-T. Chia (Eds.), Advances in Multimedia Mod-
eling, Part II. X VIII, 743 pages. 2006.

Vol. 4351: T.-J. Cham, J. Cai, C. Dorai, D. Rajan, T.-S.
Chua, L.-T. Chia (Eds.), Advances in Multimedia Mod-
eling, Part I. XIX, 797 pages. 2006.

Vol. 4349: B. Cook, A. Podelski (Eds.), Verification,
Model Checking, and Abstract Interpretation. XI, 395
pages. 2007.

Vol. 4348: S.T. Taft, R.A. Duff, R.L. Brukardt, E. Ploed-
ereder, P. Leroy (Eds.), Ada 2005 Reference Manual.
XXII, 765 pages. 2006.

Vol. 4347: J. Lopez (Ed.), Critical Information Infras-
tructures Security. X, 286 pages. 2006. .
Vol. 4346: L. Brim, B. Haverkort, M. Leucker, J. van de
Pol (Eds.), Formal Methods: Applications and Technol-
ogy. X, 363 pages. 2007.

Vol. 4345: N. Maglaveras, 1. Chouvarda, V. Koutkias, R.

Brause (Eds.), Biological and Medical Data Analysis.
XIII, 496 pages. 2006. (Sublibrary LNBI).

Vol. 4344: V. Gruhn, F. Oquendo (Eds.), Software Archi-
tecture. X, 245 pages. 2006.

Table of Contents

Application-Specific Models and Pointcuts Using a Logic Meta

LaTEEGE - o265 amsins 58 ens @ smmamemmaws soi@mesmesot sninaiBiENiHE s 1
Johan Brichau, Andy Kellens, Kris Gybels, Kim Mens,
Robert Hirschfeld, and Theo D’Hondt

An Object-Oriented Approach for Context-Aware Applications 23
Andrés Fortier, Nicolds Canibano, Julidn Grigera,
Gustavo Rossi, and Silvia Gordillo

Unanticipated Partial Behavioral Reflection . e 47
David Rothlisberger, Marcus Denker, and Eric Tanter

Stateltill TXATES o i vx s a5 e 55 556 500008 5508 5.8 56505 85055005503 556 608 530 956 5% 5 66

Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and
Roel Wuyts

ScL: A Simple, Uniform and Operational Language for
Component-Oriented Programming in Smalltalk 91
Luc Fabresse, Christophe Dony, and Marianne Huchard

Let’s Modularize the Data Model Specifications of the ObjectLens in
VisualWorks/Smalltalk 111
Michael Prasse

Meta-driven Browsers :c:ss«ssssssssmssssmssvsmossaaissgninsinias 134
Alezandre Bergel, Stéphane Ducasse, Colin Putney, and Roel Wuyts

Author Index 157

Application-Specific Models and Pointcuts Using
a Logic Meta Language

Johan Brichau?3*, Andy Kellens!**, Kris Gybels!, Kim Mens?,
Robert Hirschfeld*, and Theo D’Hondt!

! Programming Technology Lab
Vrije Universiteit Brussel, Belgium
{akellens,kris.gybels, tjdhondt}@vub.ac.be
2 Département d’Ingénierie Informatique
Université catholique de Louvain, Belgium
{johan.brichau,kim.mens}@uclouvain.be
3 Laboratoire d’Informatique Fondamentale de Lille
Université des Sciences et Technologies de Lille, France
4 Hasso-Plattner-Institut
Potsdam, Germany
hirschfeld@hpi.uni-potsdam.de

Abstract. In contemporary aspect-oriented languages, pointcuts are
usually specified directly in terms of the structure of the source code. The
definition of such low-level pointcuts requires aspect developers to have
a profound understanding of the entire application’s implementation and
often leads to complex, fragile, and hard to maintain pointcut definitions.
To resolve these issues, we present an aspect-oriented programming sys-
tem that features a logic-based pointcut language that is open such that
it can be extended with application-specific pointcut predicates. These
predicates define an application-specific model that serves as a contract
that base-program developers provide and aspect developers can depend
upon. As a result, pointcuts can be specified in terms of this more high-
level model of the application which confines all intricate implementation
details that are otherwise exposed in the pointcut definitions themselves.

1 Introduction

Aspect-oriented Software Development (AOSD) is a recent, yet established devel-
opment paradigm that enhances existing development paradigms with advanced
encapsulation and modularisation capabilities [1,2]. In particular, aspect-oriented
programming languages provide a new kind of abstraction, called aspect, that al-
lows a developer to modularise the implementation of crosscutting concerns such

* This work was partially supported by the European Network of Excellence AOSD-
Europe.

** Ph.D. scholarship funded by the “Institute for the Promotion of Innovation through
Science and Technology in Flanders” (IWT Vlaanderen).

W. De Meuter (Ed.): ISC 2006, LNCS 4406, pp. 1-22, 2007.
© Springer-Verlag Berlin Heidelberg 2007

2 J. Brichau et al.

as synchronisation, transaction management, exception handling, etc. Such con-
cerns are traditionally spread across various modules in the implementation, caus-
ing tangled and scattered code [3]. The improved modularity and separation of
concerns [4], that can be achieved using aspects, intends not only to aid initial
development, but also to allow developers to better manage software complexity,
evolution and reuse.

One of the most essential characteristics of an aspect-oriented programming
language is that aspects are not ezplicitly invoked but instead, are implicitly
invoked [5]. This has also been referred to as the ‘obliviousness’ property of
aspect orientation [6]. It means that the base program (i.e., the program without
the aspects) does not explicitly invoke the aspects because the aspects themselves
specify when and where they need to be invoked by means of a pointcut definition.
A pointcut essentially specifies a set of join points, which are specific points in
the base program where the aspect will be invoked implicitly. Such a pointcut
definition typically relies on structural and behavioural properties of the base
program to express the intended join points. For example, if an aspect must be
triggered at the instantiation of each new object of a particular class, its pointcut
must capture those join points whose properties correspond with the execution
of the constructor method. As a result, each time the constructor method is
executed (i.e. an instance is created), the aspect is invoked. In most aspect
languages, this corresponds to the execution of an advice, which is a sequence of
instructions executed before, after or around the execution of the join point.

Unfortunately, in many cases, defining and maintaining an appropriate point-
cut is a rather complex activity. First of all, an aspect developer must carefully
analyse and understand the structure of the entire application and the properties
shared by all intended join points in particular. Some of these properties can be
directly tied to abstractions that are available in the programming language but
other properties are based on programming conventions such as naming schemes.
‘Object instantiation’ join points, for example, can be identified as the execution
of constructor methods in languages such as Java. Accessing methods, however,
can be identified only if the developers adhere to a particular naming scheme,
such as through put- and get- prefixes in the method names. In contrast, a
language such as C# again facilitates the identification of such accessor method
join points because they are part of the language structure through the C+#
‘properties’ language feature. In essence, we can say that the more structure is
available in the implementation, the more properties are available for the def-
inition of pointcuts, effectively facilitating their definition. However, structure
that originates from programming conventions rather than language structure
is usually not explicitly tied to a property that is available for use in a pointcut
definition. This is especially problematic in languages with very few structural
elements such as Smalltalk. In such languages, application development typically
relies heavily on the use of programming conventions for the implementation of
particular concepts such as accessors, constructors and many more application-
specific concepts. As a result, aspect developers are forced to explicitly encode

Application-Specific Models and Pointcuts Using a Logic Meta Language 3

these conventions in pointcut expressions, often resulting in complex, fragile, and
hard to maintain pointcut expressions.

The aspect-oriented programming language that is presented in this paper
features an open, logic-based pointcut mechanism that allows to tie structural
implementation conventions to explicit properties available for use in pointcut
definitions. Our approach builds upon previous work on logic-based pointcut
languages where we have described how the essential language features of a
logic language render it into an adequate pointcut definition language [7]. In
this paper, we further exploit the full power of the logic programming language
for the definition of application-specific properties. In particular, we present an
integration of the AspectS [8] and CARMA [9] aspect languages for Smalltalk.
The result is an aspect-oriented programming language in which pointcuts can
be defined in terms of an application-specific model that is asserted over the
program. The application-specific model captures the structural conventions that
are adhered to by the developers of the program and reifies them as explicit
properties available for use in pointcut expressions. The model as well as the
pointcuts are implemented using logic metaprograms in SOUL [10].

In the following section, we present AspectSOUL, the integration of the As-
pectS and CARMA aspect languages. Next, in section 3, we implement a number
of pointcuts that rely on typical structural conventions that are adhered to by ap-
plication developers in a Smalltalk environment. We explain how such pointcuts
are complex, fragile, and hard to maintain and, in section 4, we describe how our
AspectSOUL allows to tackle these issues through the definition of application-
specific pointcuts, expressed in terms of an application-specific model. Section 5
applies the approach to aspects that operate on the drag and drop infrastructure
of the UI framework and the refactoring browser in the Smalltalk environment.
We summarize related and future work in section 6 before concluding the paper.

2 AspectSOUL

AspectSOUL is an integration of the CARMA pointcut language [9] and AspectS
(8], a Smalltalk extension for aspect-oriented programming. Unlike most other ap-
proaches to aspect-oriented programming, AspectS does not extend the Smalltalk
programming language with new language constructs for writing down aspects
and advice expressions. Instead, AspectS is a framework approach to AOP. Point-
cuts are written as Smalltalk expressions that return a collection of joinpoint
descriptors. CARMA on the other hand, is a dedicated pointcut language based
on logic programming. Naturally, such a dedicated query language offers advan-
tages for writing pointcuts, as pointcuts are essentially queries over a joinpoint
database. The integration of this logic-based pointcut language with AspectS
further enforces the framework nature of AspectS by providing a full-fledged
query-based pointcut language that can be extended with application-specific
pointcut predicates. In essence, we combine the advantages of an extensible frame-
work for defining advice expressions with the advantages of a dedicated and

4 J. Brichau et al.

extensible pointcut language. In the remainder of this section, we introduce
AspectS, CARMA, and their integration called AspectSOUL. In subsequent sec-
tions, we focus on how the open, logic-based pointcut language provides devel-
opers with an adequate means to handle complex and hard-to-maintain pointcut
expressions.

2.1 AspectS

In the AspectS framework, aspects are implemented as subclasses of the class
AsAspect. Its advices can be implemented as methods whose name begins with
advice and which return an instance of AsAdvice. Two of the subclasses of
AsAdvice can be used to implement either an around advice or a before/after
advice. An instance can be created by calling a method which takes as its ar-
guments qualifiers, a block implementing the pointcut, and blocks to implement
the before, after or around effects of the advice.

An example advice method is shown in Figure 1. It specifies that any invoca-
tion of an eventDoubleClick: method implemented by WindowSensor or any
of its subclasses should be logged. The effect of the advice is implemented in the
block passed to the beforeBlock: parameter. When one of the methods specified
by the pointcut needs to be executed, this block is executed right before the ex-
ecution of the method’s body. The block is passed a few arguments: the receiver
object in which the method is executed, the arguments passed to the method,
the aspect and the client. In this example, the block simply logs some of its
arguments to the transcript. Note that it calls a method on self, aspect classes
can implement regular methods besides advice methods as well. The pointcut is
implemented by the block passed to the pointcut: argument. It returns a col-
lection of AsJoinpointDescriptor instances. This collection is computed using
the Smalltalk meta-object protocol and collection enumeration messages: the
collection of WindowSensor and all of its subclasses is filtered to only those that
implement a method named eventDoubleClick:, an AsJoinpointDescriptor
is then collected for each of these.

Advice qualifiers specify dynamic conditions that should hold if the advice is to
be executed. These conditions are implemented as activation blocks: blocks that
take as arguments an aspect object and a stack frame. The framework defines a

adviceEventDoubleClick

" AsBeforeAfterAdvice
qualifier: (AsAdviceQualifier attributes: #(receiverInstanceSpecific))
pointcut: [
WindowSensor withAllSubclasses
select: [:each |
each includesSelector: #eventDoubleClick:]
thenCollect: [:each |
AsJoinPointDescriptor targetClass: each targetSelector: #eventDoubleClick:]]
beforeBlock: [:receiver :arguments :aspect :client |
self showHeader: ’>>> EventDoubleClick >>>’
receiver: receiver
event: arguments first]

Fig. 1. Example advice definition in AspectS

Application-Specific Models and Pointcuts Using a Logic Meta Language 5

number of activation blocks, that fall in two categories: checks done on the top
of the stack, or on lower levels of the stack. The former are used for example
to restrict advice execution to sender /receiver-specific activation: an advice on a
method is only executed if the method is executed in a specific receiver object,
or was invoked by a specific sender object, or is associated with a specific thread
of control. The latter are used for control-flow related restrictions, such as only
executing an advice on a method if the same method is not currently on the
stack. The activation blocks have names, which are specified in the attributes of
an AsAdviceQualifier. In the example advice, one activator block is specified:
receiverInstanceSpecific.

Aspects can be woven into the Smalltalk image by sending an explicit install
message to an aspect instance. The install method collects all advice objects
in the class and executes their pointcut blocks to get the collection of joinpoint
descriptors. The methods designated by these descriptors are then decorated by
wrappers [11], one for each advice affecting this particular method. The wrappers
check the activation blocks specified in their advice, passing them the aspect
and the top stack frame (accessed using the thisContext reflective feature of
Smalltalk [12]). If an activation condition does not hold, the wrapper simply
executes the next wrapper (if any), or the original method. If all activation
conditions hold, the wrapper executes the advice’s around, before, and/or after
block, and then proceeds to the next wrapper (if any) in the proper order, or
the original method.

2.2 CARMA

CARMA is a pointcut language based on logic meta programming for reasoning
about dynamic joinpoints. Unlike pointcuts in AspectS, CARMA pointcuts do
not express conditions on methods, its joinpoints are representations of dynamic
events in the execution of a Smalltalk program. CARMA defines a number of
logic predicates for expressing conditions on these joinpoints, and pointcuts are
written as logic queries using these predicates. It is possible to express conditions
on dynamic values associated with the joinpoints. Furthermore, logic predicates
are provided for querying the static structure of the Smalltalk program. These
predicates are taken from the LiCoR library of logic predicates for logic meta
programming [13]. The underlying language of this library and CARMA is the
SOUL logic language [13,10].

The SOUL logic language is akin to Prolog [14], but has a few differences. Some
of these are just syntactical, such as that variables are notated with question
marks rather than capital letters, the “: =" symbol is written as if, and lists are
written between angular (<>) instead of square brackets ([1). More importantly,
SOUL is in linguistic symbiosis with the underlying Smalltalk language, allowing
Smalltalk objects to be bound to logic variables and the execution of Smalltalk
expressions as part of the logic program [15]. The symbiosis mechanism is what
allows CARMA to express conditions on dynamic values associated with join-
points which are actual Smalltalk objects, such as the arguments of a message.

6 J. Brichau et al.

The advantage of building a pointcut language on the logic programming
paradigm lies in the declarative nature of this paradigm. No explicit control
structures for looping over a set of classes or methods are necessary in point-
cuts, as this is hidden in the logic language [16]. A pointcut simply states the
conditions that a joinpoint should meet in order to activate an advice, without
specifying how those joinpoints are computed. This makes declarative pointcuts,
given some basic knowledge of logic programming of course, easier to read. A
logic language also provides some advanced features such as unification that
make it easier to write advanced pointcuts. A full discussion is outside the scope
of this paper, but a more comprehensive analysis was given in earlier work [9]. In
the next sections, we will however show how some of these features — particularly
the ability to write multiple rules for the same predicate — are useful for writing
model-based pointcuts.

Ll o Aeeigh LiCoR X
visitor, factory, CARMA [

T T TN lexical extent joinpoint type-based
class, methodInClass, | within, reception, send,
superclassOf, shadowOf reference,

blockExecution

Fig. 2. Organization of, and example predicates in LiCoR and CARMA

The predicates in CARMA and LiCoR are organized into categories, as shown
in Figure 2. The LiCoR predicates are organized hierarchically, with higher pred-
icates defined in terms of the lower ones. The predicates in the “reification” cat-
egory provide the fundamental access to the structure of a Smalltalk program:
these predicates can be used to query the classes and methods in the program,
and the fundamental relations between them such as which class is a superclass
of which other class. The “basic reasoning” predicates define predicates that can
be used to query more complex relations: which classes indirectly inherit from
another class, which methods are abstract, which types an instance variable can
possibly have etc. The “design” category contains predicates about design infor-
mation in programs: there are for example predicates encoding design patterns
[17] and refactoring “bad smells” [18].

The CARMA predicates access the dynamic structure of a Smalltalk program.
There are two categories of predicates in CARMA, neither is defined in terms

Application-Specific Models and Pointcuts Using a Logic Meta Language 7

of each other, nor in terms of the LiCoR predicates. Nevertheless, the purpose
of the “lexical extent” predicates is to link the dynamic and static structure, so
that reasoning about both can be mixed in a pointcut. The within predicate
for example can be used to express that a joinpoint is the result of executing
an expression in a certain method. The “type-based” joinpoint predicates are
the basic predicates of CARMA, they express conditions on certain types of
joinpoints and basic data associated with those. An example is the reception
predicate which is used to express that a joinpoint should be of the type “mes-
sage reception”, which means it represents the execution of a message to an
object. Besides the joinpoint, the predicate has parameters for the basic associ-
ated data: the selector of the message and its arguments. There are also a few
other predicates in CARMA (not shown in the figure), such as the inObject
predicate which links a joinpoint to the object in which it is executed. In the
case of a reception joinpoint, this is the receiver of the message.

A pointcut in CARMA is written as a logic query that results in joinpoints. By
convention, the variable to which these are bound is called “7jp”. The joinpoint
representations should only be manipulated through the predicates provided by
CARMA. An example pointcut is given in the next section.

2.3 CARMA Pointcuts in AspectS

AspectSOUL, the integration of CARMA with AspectS, is realized by subclass-
ing the advice classes of AspectS so that a CARMA pointcut can be specified
instead of a Smalltalk expression. The signature of the instance creation mes-
sage for these subclasses is similar to the original. It takes as arguments a string
with a CARMA pointcut, qualifiers and an around or before and/or after block.
The message does a mapping to the instance creation message of the super-
class. This is not a direct 1-on-1 mapping however, because CARMA pointcuts
are about dynamic joinpoints, in contrast with the more static joinpoints of
AspectS. Also, because AspectS does not support aspects that intercept block
execution nor variable accesses or assignments, these features of CARMA are
not adopted in AspectSOUL.

An example of an AspectS advice with a CARMA pointcut is shown in
Figure 3. This is an around variant of the first example advice, with a point-
cut that has the same effect. The first condition in the pointcut specifies that
7jp must be a message reception joinpoint, where the selector of the message is
eventDoubleClick:. The arguments of the message are bound to the variable
7args. However, 7args is not used any further in the pointcut which expresses
that no conditions are put on the argument list. The second condition expresses
that the joinpoint must occur lexically in a method with name ?selector in the
class ?class. For a message reception joinpoint, this is effectively the method
that is executed to handle the message. The final condition expresses that the
class ?class should be in the hierarchy of the class WindowSensor. The block
has the same effect as in the first example, except that here it explicitly calls
the next wrapper (if any) or original method.

8 J. Brichau et al.

adviceEventDoubleClick

~ AsCARMAAroundAdvice
qualifier: (AsAdviceQualifier attributes: #())
pointcutQuery: ’reception(7jp, #eventDoubleClick:, ?args),
within(?jp, ?class, ?selector),
classInHierarchyOf (?class, [WindowSensor])’
aroundBlock: [:receiver :arguments :aspect :client :clientMethod |
self showHeader: ’>>> EventDoubleClick >>>’
receiver: receiver
event: arguments first.
clientMethod valueWithReceiver: receiver arguments: arguments]

Fig. 3. Example AspectS advice definition with a CARMA pointcut

reception(?jp, #eventDoubleClick:, <7event>),
objectTestHolds(7event, #isYellow)

Fig.4. A CARMA pointcut with a condition on a dynamic value

Figure 4 gives an example of a CARMA pointcut which does express condi-
tions on the arguments of a message reception. The first condition expresses that
7jp must be a message reception joinpoint of the message eventDoubleClick:,
where the argument list unifies with the list <?event>. Thus the argument list
has to have one argument, which is bound to the variable ?event. The value
of 7event is the actual Smalltalk event object that is sent as the argument
of eventDoubleClick. The second condition uses the objectTestHolds predi-
cate, which uses the symbiosis mechanism of SOUL to express that the object
in 7event must respond true to the message isYellow. Thus, this pointcut
captures joinpoints when a message about a double click event of the yellow
mouse button is sent to some object. Expressing the same in AspectS can only
be done by defining an appropriate qualifier, or by including the dynamic condi-
tion in the around block of the advice. The CARMA approach means that what
conceptually should go into a pointcut can be better separated from the effect
of the advice: that we only want to intercept double click events of the yellow
mouse button is part of the “when” of the advice, not of the “what effect” it
has. All of the qualifiers of AspectS can be expressed in CARMA, except for the
control-flow qualifiers because CARMA does not currently support a construct
similar to the cflow pointcut of AspectJ [19].

Two-phased weaving: The mapping done in the AspectSOUL advice sub-
classes to the original advice classes of AspectS involves the two-phase weav-
ing model of CARMA. Because CARMA allows dynamic conditions and it is
a Turing-complete language, it requires some advanced techniques to optimize
weaving [9]. The mapping uses abstract interpretation [20] of the pointcuts
to determine the methods which may lead to joinpoints matching the point-
cut. For the pointcut of Figure 4, it determines that only executions of meth-
ods named eventDoubleClick: may match the pointcut. For these methods,
AsJoinpointDescriptors are generated and passed to the advice superclass.
The effect block passed to the superclass is wrapped so that it at run-time

