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Preface | y

This book serves as a companion to Group Theory in Physics by Wu-Ki Tung; It consists
entirely of solutions to the problems at the end of each chapter. However, this does not
mean that the student of Group Theory who can work all these problems out has nothing
to benefit by browsing through this book. Many problems are worked out in such a way
a$ to present material that is not accessible in Group Theory in Physics, or point out
connzctions of this subject to other branches of Physics that are too trivial to include in
tfea“tise on the subject, but far from obvious to the begirner.

| A word of apology is due to all those who will be frustrated by the lack of numbering

f the equations in this book. This is unfortunate but necessary, since I mostly refer
I equations in the original text. The small frequency of references to equations in a
articular problem does not seem to justify the invention of some numbering scheme
5::& would allow me to differentiate between equations in this book and equations in the
book Group Theory in Physics. :

I would like to thank Wu-Ki Tung for giving me the opportunity to see in print my
hand-written notes from his course on Group Theory. Wu-Ki has been both my advisor
and a trusted friend throughout my career as a graduate student at IIT.

I would also like to thank the staff at World Scientific for their patience and encour-
“agement during the writing of this book. In particular, Ms. Ho of the Singapore office,
and Ms. Theng of the New Jersey office have been extremely helpful.

Finally, I would like to thank y family for their support throughout the writing of
this book. T

|
|

Michael A.G. Aivazis
Chirago

i September 1990
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Chapter 2 s
Basic Group Theory

Problem 2.1 Prove that the identities (i) e~ = e, (i) a~'a = e, ond (iii) ea = a for
all a € G follow from the basic azioms of Definition 2.1.

SOLUTION: (i) Since e € G, it follows from Definition 2.1-(iii) that e has an inverse,
say e~! € G, such that

Multiply both sides of this equation by e! from the left:
e lee!) =e7le.
Using associativity, rewrite this as:
(e7te)e™ =e7le.
But ae = a, for all a € G. In particular, this is true for e~!:
elel=¢1,

Furthermore, ™! has an inverse, call it (¢7*)~!, such that (e7!)(e™!)~! = e. Multiplying
both sides of the above equation on the right by this inverse yields:

(ete ) (e ™) =e.
Using associativity once more:
el(eM () ") =e,
or
¢ =,
(ii) Definition 2.1-(iii) states that for all @ € G there is an a7' € G, such that
: |

aa” ! =e.
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2 Group Theory in Physics .
Multiply both sides on the left by a~! to get
Haa )=

Usidg aapiciativty
v (a7'a)a ' =a"t.

Multiply both sides on the right by (a=)~! to get

ala=e
fot allaeG.
: (iii) Starting with the equation we just proved, multiply both sides on the left by a:
. a(a™'a) = a.
Using associativity, rewrite this as
(aa™")a = q,
and now Definition 2.1-(jii) yields
ea=a

Problem 2.2 Show that there is only one group of order three, using a step-by-step
procedure to construct the group multiplication table.

SOLUTION: Let G = {e,a,b} — with the implicit assumption ¢ # a # b — and
define an operation denoted by juxtaposition such that G equipped with this operation
is a group.

The trivial part of the multiplication table is:

e ab

Y
s, o b
& :

The Rearrangement Lemma implies that the entries in a row or column of a multipli-
catfon uue -are distinct, i.e. any element of the group appears only once in any given row
or colutnn. It follows that there is only one possibility for the completion of the second
row: a® = b which implies ab = ¢. (The other choice a® = e implies ab = b and then b
would appear twice in column three).

The table so far looks like this:

—"

o R ®
o 8
o o
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Requiring that the elements in the second and th:rd columns be dlstmct leadl umquely
to the completed table:

-8 o
® o n
R o o

Therefore, there is a unique way to construct the multiplication table of a group of
order three; this implies that, up to 1somorphlam, the group G of order three is unigue,

Problem 2.3 Construct 3: multiplication table of the permutation group S3 using the
cycle structure notation. (The geomeirical interpretation represented by Fig. 2,8 should
be of great help).

SOLUTION: Let me introduce a graphical way of representing permutations of n
objects:

Draw n evenly spacettdets, much like this:

They represent n positions each holding one of n distinguishable objects, whlch for
obvious reasons, are not shown.

A permutation consists of moving the n objects to new positions. This is denoted
by drawing a new series of dots under the first one and drawing an arrow pointing from
the old location to the new eone. For example, the permutation (12) among three objects
would look something like this: )

X [

To compute the product of two permutations, remember that permutations are oper-
ations. The product (12)(123) is a composition: it instructs you to apply (123) first and
then apply (12) to the result. Let’s compute (31)(12):

P A

5. [ (12)

To obtain the result, go to the top row, and, starting at position 1, trace the arrows
to the bottom row:

1—3—3.
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- In —incomplete— cycle structure notation: (13---). Go back to the top row; trace the

arrows starting at pesition 3, in order to figure out where the object that used to be in
position 3 ends up.

3—1—2

Since these are permutations among three objects, we are done:
(12)(31) = (132)
- The above notation has numerous adm;ages:

o It works equally well for arbitrary n, as opposed to the geometrical interpretation
" such as that of Fig. 2.2 which gets rather tedious as n gets large.

e The nature of permutations as operations is made explicit.

o Computing long strings of compositions is much easier this way — compare with
the cycle structure notation.

As practice, establish the following three results that will prove useful in the following:

@112 = (123)
(23)(12) = (321)
(123)12) = (31)

The trivial part of the multiplication table with the above three results is:
e (12) (23) (31) (123) (321)

(12) e

(23) (321) e .

(31) (123) e

(123) (31) (312) e
(321) e (123)

It immediately follows that (321)(12) = (23) — no other choices.

" At this point, it would be fairly easy to explicitly calculate all the remaining elements.
However, it is more instructive to proceed in a deductive manner — we will have an
opportunity to see how tight the group structure is. '

Using these results, we can find all operations whose result is (12). For example:

(321) = (23)(12)
which implies that

w(23)(321) = (23)(W)(12)

e(12)
= 0.
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Similarly, :
(123) = (31)(12) implies (31)(123) = (12)
(31) = (123)(12) implies (321)(31) =112)
(23) = (321)(12)  implies  (123)(23) = (12)
The partially completed table is:
e (12) (23) (31) (123) (321)
(12): e ,
(23)| (321) e (12)
(31) | (123) e
(123) (31) (12) (312) e
(321) (23) (12) e (123)
Furthermore, observe: =5

o (123)(31) can only be equal to (23) — the only element of the group that does not
already appear in row five.

o Similarly, we have: (321)(23) = (31).

o (23)(123) cannot be equal to (123); so (23)(123) = (31). This, in turn, implies that
(23)(31) = (123) and (12)(31) = (321).

o Similarly, (12)(123) = (23), which implies (31)(123) = (12).

o Again, (31)(321) cannot be (31), so it is (23), which implies the following: (31)(23) =
(321), (12)(321) = (13) and, finally, (12)(23) = (123)

The complet~ S3 multlphcahon table is:

e (1) (23) (@) (23) (2
(12) e (123) (321) (23) (13)
(23) (321) e (123) (31) (12)
(1) (123) (321) e (12) ()
(123) (31) (12) (23) (312) e
(21) (23) (B1) (12) e (1) :
] : "
Préi;lem 2.4 Show that every element of a group b;iongs to one and enly one class, and
the identity element forms a class by itself.
; éOLUTION : Let {a] stand for the equivalence class of a, i.e.
lbl={seG:g~a)

(i) A statement equivalent to the one we are supposed to prove states:
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Twa equivalence clagses are either disjoint or identical.

If {a] and [} are disjoint there is nothing $o prove. Otherwise, there exists a p € G !
such that p € [a] and p € [b]; our goal is to show [a] = [b]. Indeed: !

Far all ¢ € [a] we have p ~ g; but p ~ b-and transitivity implies that ¢ ~ b, that i is,
~ q € [b), for all ¢ €a]. This proves

fel € [3].
. Similarly, p ~ ¢’ for all ¢’ € [b]; but p ~ a. Transitivity implies that ¢’ € fa], and this
: ¥ i .
¥ € fal.

These two imply that [a] = [b], which completes the proof of the first statement.

(ii) Consider the equivalence class of e. Let p € [e]; then there exists a g € G such
that p = geg", by the very definition of the equivalence relation. But this implies
p = gg~' = e. Therefore, all the p € [e] are identity elements, and uniqueness of the
identity implies that [e] = {e}- |

Problem 3.5 Enumerate the subgroups and classes of the group Sy. Which of the sub-
groups are invariant ones? Find the factor groups of the invariant subgroups.

SoLUTION: The group Sy is:

Sy = {e,(12),(13),(14), (23); (24), (34), (12)(34), ( 13)(24); (14)(23),
(123), (124), (132), (134), (142), (143), (234), (243),
(1234), (1243), (1324), (1342),(1423),(1432)}

lt has five oonjugacy classes:

e},

{12),413), (14), (23), (24), (34)},
1(12)(34), (13)(24), (14)(23)}, :
{(123), (124), (132), 3 34), (142), (143), (234), (243)},
{(1234), (1243), (1324), (1342), (1423), (1432)}.

.

It is of order 24, so it can only have proper subgroups of orders 2,3,4,6,8 and 12. In

- addition to the two trivial ones—5S; itself and {e}-—some of the subgroups are:
@ One invariant subgroup of order twelve, isomorphig to the tetrahedral group.
R .

= {e,(12)(34), (13)(24), (14)(23), ' :
(123), (124), (132), (134), (142), (143), (234), (243)}: A

o The following subgroup of order eight is isomorphic to the dihedral grgnp of Prob-
lem 2.8.

Dy = {e» (1234)’ (13-)(2()’(1432% (13)1 (12)(34)’ (24)’ (14)(23)}
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o Four subgroups of order six, all isomorphic to Sy. Indeed they m the groups of
permutations of any three of the four objects, leaving the fourth invariant.

o Three subgroups of order four are isomorphic to Cy, the cyclic group of order four.
They are groups of the form {e, g,¢?, ¢°} with g any 4-cycle.

o However, there is only one invariant subgroup of order four:
Ve = {e, (12)(34), (13)(24), (14)(23))
known as Klein'’s 4-group.
o Four subgroups of order three, of the form {e, g, g} with g any 3-cycle.

o Six of the subgroups of order two are of the form {e,(i7)}. Three more are obtained
by considering {e, (i7)(kl)}.

This list of subgroups is not necessarily complete. However, we have found all the
invariant ones: T and Vj.
The factor groups are:

o S4/T = {T,(:j)T} with (ij) any 2-cycle. This factor group is isomorphic to C;.
o SufVa = {Vi, (12)V%, (23)Va, (13)Vi, (123)V4, (321)V4), isomorphic to Sa.

Problem 2.6 Let H be aiiy subgroup of G, which is not necessarily invariant. Is it
possible to define pmducts of left cosets directly by the equation pH © q¢H = (pq)H, hence
obtain a “fa.ior group” consisting of left cosets? Apply this definition to the spec ui case
of H = {e,(12)} for Ss, aud point out logical difficulties if there are any.

SOLUTION The deﬁmhon of a group requires the egatence of a well dcﬁued operation
that associates an ordered pair ‘of elements of the underlying set G with another one in
the same set. This “association” is a mapping between two sets:

o The set o all ordered pairs of elements of G, denoted by G x45 and called the
Cm.emn product set,

and L3 A
) ; e
e G. e 5 ' N
The shorthand notation for all this is Y

P:GExG—GC

| There lsdwambuplmdydsqiqtbemdsmpmgby shovmgthmuh
on a pair of elements:
O:(a.bjr—c
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for a,b,c € G.

For a mapping to be well-defined, each element of the domain must have a unique
image. To be more specific, suppose a = b € G. Then, given an element ¢ € G, it must
be true that a ® ¢ = b® ¢, where we have used the more familiar infix notation for the
group operation. This is exactly the requirement that our “definition” fails to meet, as
we shall presently show.

First some more notation: Let Ly denote the set of all left cosets of H, i.e.

Lp={XCG:X=gHVg€G}

Define a binary operation that comhines two elements of Ly and produces another one,
or, in symbols:
@:LyxLy-— Ly
by
pH © ¢H — (pq)H
We must investigate whether this operation is well defined.
Let’s suppose that H is not an invariant subgroup. Then, there exists a p € G such

that pHp~' # H, which implies that there exists an h € H such that php~! does not
belong to H. For these special p, h we have:

(pH) © [(hH) © (7' H)|

(pH) © (hp~")H
.= (php™")H.

‘Since php™! does not belong to H, it follows that:

» (php™)H # H.

~Furthermore, h € H, whi;:h implies that hH = eH, by the rearrangement lemma. So,
{pH) @ [(hH) @ (p~' H)) must be equal to (pH) @ [(¢H) ® (p~* H)]. However,

(pH) © [(eH) © (51 H)|

pH O (ep™)H
pHOp'H
eH

Lo

N\

We have shown that:
(pH) © [(hH) © (7 H)| # (pH) O [(eH) © (' H)]

despite the fact that eH = RH. Therefore, “@” is indeed poorly defined.
If H were invariant, (php~') H would be equal to H and this problem would not arise.
, ‘ : =]

- : t

Problem 2.7 Prove that G = H, @ H, implies G/H, ~ H; and G/H; ~ H;, where ~
means “isomorphic to”.
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SOLUTION: Since H;, H, are invariant subgroups, the sets G/H, and G/H; equipped
with the usual multiplication of cosets are groups. If it is also true that G = H; @ H,,
we have:

G/H, {gH::9 € G}

{’l|h1H| :h; € H,, hy € Hz}
{(hyHy)(hoHy) : hy € Hy; by € Hap}
{(eHy)(h2H,) : hy € H,}

{h2H1}

Il

This states that the cosets of II; generated by the elements of H; are the only elements
of the factor group G/H,.
The above equation suggests a natural correspondence

hy € Ha = hyHy € G/H,

which is trivially one-to-one and onto. This identification is a homomorphism since

T(hk') = (kk')H
= (RH)(k'H)
: = T(k)T(k)
for all h,h' € G. Therefore T is an isomorphism and ;
G/Hl =y H2
Similarly for G/H, ~ H,. |

Problem 2.8 Consider the dihedral group Dy which is the symmetry group of the square
consisting of rotations around the center and reflections about the vertical, horizontal,
and diagonal azes. Enumerate the group elements, the classes, the subgroups, and the
invariant subgroups. Identify thc factor groups. Is the full group the direct product of
some of its subgroups?

SOLUTION: Let a rotation by 7 /2 about the centre be denoted by g and let a reflection
about the (24)-diagonal be denoted by h. Then

: Dy = {¢,9,4% ¢, h, gh, g%h, g*h}

subject to e = g* = h? = (gh)a One says that Dy is gcneratcd by g and k. !
The group D4 has five oonjugacy classes:

{e}, {y’}, {9,9°}, {h, R}, {gh, g°h}.
It is of order 8 and therefore has non-trivial subgroups of orders 2 and 4 only:

'In cycle notation: g = (1234), g2 = (13)(24), ¢° = (1432), h = (13), gh = (12)(34), ¢%h = (24),
o*h = (14)(23).
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Order 2:

{e, R},
{e,gh},
{c’gl},
{e,g’h},
{e,g’h}).

Order 4:

{c,g,g’, 93}’
{e, g, gh,g°h},
{e,d*, h,g"h}.

N,
N?,
N3,

The indicated ones are the invariant subgroups.
The factor groups are:

Dy/N2 = {N3,gN;,hN;,ghN,},
D(/N'y = {N'4,hN';},
D4/N14 - {N’.,gN’,},
DyN* = {N3,hN3}.

It is now easy to see that D is not the direct product of any of its subgroups, since
the factor group Dy/N; is not isomorphic to any of the invariant subgroups of order 4.
(Another way to prove this is to observe that if a group is the direct product of any of
its invariant subgroups, then the intersection of these invariant subgroups must contun
exactly one element: the identity [Prove!].) )

For reference, here is the multiplication table for D,: 2

¢ ¢ h gh g*h g°h

e g
9. g g e gh ‘Fhigh b
i g e g gk h - K gh
gPIFEAC YNGR GOSN E VIR
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Ciiapter 3
Group Representations

-Problem 3.1 Consider the siz transformations associated with the dihedral group D;
dcﬁned in Chap.2 (cf. Fig. 2.2). Let V be the 2-dimensional Euclidean space spanned by
é, and €, as shown. Write down the matriz mpmentatwn of elements of D3 on V with
respect to this Cartesian basis.

SoLUTION: The group D3 ~ S; consists of: v
Ss = {e, (12), (23),(31), (123), (321)}.
Let T be the representation. It is obvious that the matrix which corresponds to e is:

T(é):(-(l) ‘1’)

The two 3-cycles are rotations by 2x/3 and 4x/3; it-therefore follows from Eq. (3.1-5)
that the matrix realizations for the two 3-cycles are:

-

o - 3( %)
T(321) = -%(\}5 ‘;/5)

It is cleat from Fig. 3.1-c,that T(23)[é.] = —é. and T(23)[é,] = é,, which imply:

1:(23.):(‘(')1 ‘1’)

Reealling that T is a homomorphism:
T(12) = T((123)(23)) = T(123)T(23).
Carrymg out the matrix mulhpllcahon

..;.. T(lz)-—i( \/_13_ {) W

£ 11



