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The Mathematics and Physics of Disordered Media
PREFACE

The successes of the new physics in the 17th and 18th centuries were inextri-
cably interwoven with the discovery of the calculus. Following Newton, Leibniz,
and Laplace, the scientific rationalists, in a burst of enthusiasm over the omni-
potence of deductive reasoning, made mathematics Big Bird of the Sciences. The
orderliness of that God who made this best of all possible deterministic worlds
stood revealed. In the words of Descartes, Cum Deus ealculat, fit mundus!

Then came Gauss and Riemann with non-Euclidean geometries, Cantor with infi-
nite sets and a host of logicians with the axiomatization of mathematics. A1l of
these developments challenged preconceived notions, and many researchers went
deeper and deeper into the foundations of mathematics, trying to find The Perch
for Big Bird. These hopes, along with the dreams of the rationalists, ended
suddenly when Godel showed that any sufficiently rich system of axioms cohtains
undecidable propositions.*

This loss of faith, like the dread acciditas, that dry soul-withering wind
which afflicted the good monks of Egypt so many centuries ago, resulted in a cri-
sis of confidence. Coincident with this internal attack on the foundations, one
also finds many applied scientists viewing mathematics as irrelevant to the real
world. These developments are in no small measure responsible for the present
separation between pure mathematics, applied mathematics, and the sciences
generally. Unlike their counterparts in nuclear and particle physics, astronomy
and space sciences, biology, and computer and earth sciences, who trumpeted
their triumphs real or imagined, mathematicians sat mute and musing.

Awareness of the increasing gap between science and mathematics prompted
the National Science Foundation to fund the Institute for Mathematics and its

Applications (IMA) at Minnesota along with a sister Institute at Berkeley in 1982.

*These developments have been documented in the challenging and extraordinarily
lucid writings of Morris Kline in Mathematics, the Loss of Certainty, Oxford,
(1981). iy
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The purpose of the IMA is to facilitate the flow of problems and ideas between

scientists and mathematicians.

An exciting glimpse of one bold new shape for the mathematics of the 1980's
emerged ffom a workshop held at the IMA in February 1983. The workshop was
devoted to the Mathematics and Physics of Disordered Media. Our attempt to
define a charter read as follows:

One of the fundamental questions of the 1980's facing both
mathematicians and scientists is the mathematical characterisation
of disorder. Until recently it had been impossible to conceptualize
or even to contemplate the possibility that a tractable calculus
might emerge. A classic example is that of liquids. This state
of matter is intermediate between gases, where characteristic
distribution functions are uniform to lowest order, and crystals,
where the unperturbed distribution functions are periodic. There
is no rigorous mathematical description appropriate to the inter-
mediate irreducibly disordered state. Beyond the simple statement
of Lindemann's law there is no theory of melting. The situation
is analogous in the field of irregular porous media, ubiquitous
in areas as diverse as earth sciences and the food industry.

The last decade has seen the beginnings of a unity of methods

and approaches in statistical mechanics, transport in amorphous

and disordered materials, properties of heterogeneous polymers

and composite materials, turbulent flows, phase nucleation, and

interfacial science. All have an underlying structure charac-

terized in some sense by chaos, self-avoiding random walk, per-

colation and fractals.

Some real progress has been made in understanding random walks

and percolation processes on the one hand, and through mean field

or effective medium approximations and simulation of liquids and

porous media on the other. The subject is directly connected

with the statistics of extreme events and important pragmatic

areas like fracture of solids, comminution of particulate

materials, and flow through porous media.

The key words are fractals, percolation, random walks, and chaos. The reali-
zation, so eloquently expounded by Mandelbrot, that the Hausdorff dimension of the
length of a real (linear) coast line is not one, is an astonishing one. Things
are not what they seem. They depend on how one looks at them. This should not be
kept secret, and unquestionably progress in the topics of this Volume will throw
new light on renormalization groups, particle physics, and phase transitions.

The meeting drew together mathematicians, pure and applied, chemists, che-
mical engineers, physicists, computer scientists, materials and polymer scien-
tists and statisticians from industry and academia. An honored guest was John

M. Hammersley, an Oxford Mathematician who invented the subject of percolation
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theory thirty years ago. Unlike most mathematical terms, percolation needs no

~ explanation. It means exactly what it means in good old-fashioned Enqlish.
Another pioneer, E11iott Montroll, was unable to attend because of illness, but
nonetheless has co-authored two of our papers.

This very diverse group of scientists found themselves speaking the same
language. Progress does seem to be in the air on the difficult problem of deve-
1opiﬁg a calculus to describe chaotic and random systems. Most things in nature
are chaotic and random. Mathematical constructs such as Cantor sets, and con-
tinuous non-differentiable functions, hitherto considered to be highly abstract
and far from the real world, loom large in thése recent developments, but in a

- nice comprehensible way. Perhaps after all and in the longer view, mathematicians

are on the right track. Have a good read.

Barry Hughes George Sell
Barry Ninham Hans Weinberager
June 1983
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RANDOM PROCESSES AND RANDOM SYSTEMS:
AN lNTRODUC?ION

Barry D. Hughes* and Stephen Prager+

i !
Department of Chemical Engineering and Materials Science
*Department of Chemistry
University of Minnesota
Minneapolis, Minnesota 55455

ABSTRACT

We introduce and review a number of topics drawn from the theories of random
processes and random systems. In particular we address the following subjects:
random walks in continuous spaces and on lattices; continuum limits of random
walks and stable distributions; master equations, generalized master equations
and continuous-time random walks; self-avoiding walks on lattices; percolation
theory; steady-state and transient transport in random lattices; and diffusion and

conduction in heterogeneous continua.
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Introduction

The present article has been written with several purposes in mind. The
first is that it should serve as a self-contained introduction, suitable for a
wide audience, to some of the topics discussed from a‘more specialized point of
view in other articlgs in this volume. The second is that it should be useful as
a review, and a gquide to the primary literature. However, the main thrust of the
article is the development of two distinct themes, random processes and random
systems, which are gaining increasing importance in the physical sciences. In
Part A of the article, we emphasize models in which random processes and random
systems have discrete structure. Part B is devoted to transport problems in

disordered continua.

Overview of Part A

The notion of a random process, as we see it, grows from an attempt to
describe microscopically complex processes by statistical equations of evolution.
A prototypical example is the erratic Brownian motion of dust particles or pollen
grains in solution due to collisions with solvent molecules. Although above the
quantum mechanical level, the process is entirely deterministic, the motion of
each grain is sufficiently erratic that it may be taken as random (with the
simplest model being that of a "random walk", as discussed in sections 1 to 4).
The random processes which have been most extensively and successfully studied are
those which possess no memory effect, or very simple memory effects. Much harder
and less well understood are problems with strong memory effects, exemplified by
the problem of a self-avoiding walk (section 5).

By modelling a physical phenomenon as a random process, we usually are
adopting the view of a natural phenomenon as a drama played out on a fairly simple
and uniform stage, but with a random script. The direct antithesis of this view
is what we call the random system, in which the script is written out and orderly,
but the stage setting is chaotic. The simplest physical example of a random system

is an irregular porous medium. If fluid flows steadily through the voids in the



medium, the streamlines are fixed in space, but tortuous due to the spatial
variation in local geometry and topology. Percolation theory (section 6) gives a
precisely formulated mathematical model, in the context of which random geometry
and topology can be investigated quantitatively. It can be generalized to predict
the hydraulic or electrical resistance, or other steady-state transport properties
of a random system, as outlined for lattice systems in section 7; transport in
random continua is deferred to Part B. Many fundamental oufstanding questions in
this area remain to be resolved.

While the notions of random process and random system, as we have outlined
them, are apparent opposites, it is now known that for successful modelling of
important physical phenomena the two concepts must be fused together. For
example, in the dispersion (speading) of a blob of dye convected through a porous
medium, the effects of tortuousness of the streamlines (random system) compete
with diffusion between streamlines (random process). We discuss simple models for
random processes in random systems in section 8.

The topics discussed in Part A represent a somewhat arbitrary selection from
an enormous body of work contained in the mathematical, physical, chemical, and
engineering literatures. We have avoided wherever possible the discussion of
problems which require a knowledge of the deeper concepts and technicalities of
contemporary probability theory. Extensive references are given, with a distinct
bias towards the applied literature and no attempt to place the topics discussed
in the broader contexts of Markov processes and their derivatives, Markov random
fields, and so on. Even within the applied literature, we make no claim to
bibliographic completeness. A recent random walk bibliography [L.H. Liyange, C.M.

Gulati and J.M. Hi11, "A bibliography of applications of random walks in theore-

ticé] chemistry and physics", Advances ig_Mo1ecu1ar Relaxation ggg Interaction
Processes gg_(1982), 53-727 lists almost 300 references, and yet represents but
the tip of the iceberg. It is hoped that the references supplied here will prove
sufficfent to guide the reader into those parts of the literature which arouse
his or her interest.

We draw to the reader's attention the existence of published proceedings of a
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number of recent conferences on random processes and random systems*. A clear
introduction to some of the concepts and applications of random walk theory has
been given by G.H. Weiss ["Random walks and their applications", Amer. Scientist
71 (1983) 65-71], and a delightful account of the historical antecedents of random
walk theory, entitled "A wonderful world of random walks", has been compiled by
E.W. Montroll and M.F. Shlesinger, and appears in a volume dedicated to M. Lax,
edited by H. Falk and published by the Physics Department of City College of the
City University of New York. A compendium of papers edited by N. Wax, Selected

Paper in Noise and Stochastic Processes (New York, Dover, 1954) remains valuable,

but gives no idea of the wealth of developments which were shortly to follow.
Some aspects of the theory of homogeneously disordered systems, from the perspec-
tive of solid state physics, form the subject of a major book by J.M. Ziman

entitled Models of Disorder (Cambridge University Press, 1979). Three important

collections of papers on modern theoretical and numerical approaches to ther-
modynamic critical phenomena contain survey articles which are relevant to the
problems of self-avoiding walk, percolation, and conduction in random systems:

Numerical Methods in the Study of Critical Phenomena, ed., J. Della Dora,

J. Demongeot and B. Lacolle (Berlin, Springer-Verlag, 1981); Monte Carlo Methods

in Statistical Physics, ed. K. Binder (Berlin, Springer-Verlag, 1979); and

Real-Space Renormalization, ed. T.W. Burkhardt and J.M.J. van Leeuwen (Berlin,

Springer-Verlag, 1982).

* (a) The proceedings of the Symposium on Random Walks and Their Application to
the Physical and Biological Sciences (National Bureau of Standards, Gaithersburg,
Maryland, 1982), published as a special issue of the Journal of Statistical
Physics (Volume 30, No. 2, 1983); some additional papers presented at the sym-
posium will be appearing in an American Institute of Physics Conference
Proceedings Volume edited by M.F. Shlesinger and B.J. West.

b) "Percolation Processes and Structures", Annals of the Israel Physical
Society, Vol. 5, ed. G. Deutscher, R. Zallen and J. Adler, (Bristol, Adam Hilger,
1983); this: volume contains articles by several contributors to the present volume
(Hammersley, Halley and Redner) and many others.

(c) Electrical Transport and Optical Properties of Inhomogeneous Media, ed.
J.C. Garland and D.B. Tanner, AIP Conference Proceedings, Vol. 40 (New York,
American Institute of Physics, 1978).

(d) Disordered Systems and Localization, ed. C. Castellani, C. Di Castro and L.
Peliti, Lecture Notes in Physics Vol. 149 (Berlin, Springer-Verlag, 1982).

(e) Macroscopic Properties of Disordered Media, ed. R. Burridge, S. Childress
and G. Papanicolaou, Lecture Notes in Physics, Vol. 154 (Berlin, Springer-Verlag,
1982).

(f) Ill-condensed Matter, ed. R. Balian, R. Maynard and G. Toulouse
(Amsterdam, North-Holland, 1979).




Overview of Part B

In Part B we turn to problems of transport and conduction in random continua.
Our discussion is phrased in terms of the diffusion problem, though a number of
other probTems, including thermal anﬂ electrical conduction, electric permittivity
and magnetic permeability are mathematically equivalent to the diffusion problem.
In the main we focus on the application of variational methods to obtain rigorous
bounds on overall diffusion rates. The presentation relies heavily on the
reader's’ physical intuition and common sense - we take it for granted throughout
that the passage to samples of infinite size will not lead to grief, and that the
details of the boundary conditions at the sample surfaces do not matter so long as
a given overall flux or concentration gradient in the diffusing species is main-
tained. The literature cited is a sampling rather than a 1ist of the work that
has been published; the intent is to convey some feeling for the different ways in
which information about the structure of the material may be given, and for the
methods by which such knowledge may be converted into calculable bounds.

In section 1 we define the effective diffusion coefficient and state the basic
variational inequalities. Section 2 introduces the remarkable bounds discovered
by Hashin and Shtrikman, which are known to be the best obtainable for an isotro-
pic two-phase material if only the volume fraction of the phases is given. The
use of spatial correlations to obtain better bounds is the subject of Section 3,
and Section 4 discusses bounds for systems of particles, especially the overlapping
spheres model of Weissberg. Bounds derived from information on other bulk proper-
ties of the material are described in section 5. We conclude with a brief
discussion of Brownian motion in large groups of interacting paftic1es, and obtain
an upper bound on the relative velocity of two solute species subject to uniform
external forces.

One topic!is absent from Part B: percolation. Even far from any per-
colation threshold, as portions of the material in question become impermeable
to the diffusing species, the lower bound on the effective diffusion coefficient
goes to zero; even though the upper bound remains useful, this precludes any

rigorous statement about percolation thresholds or how they are approached.
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PART A: DISCRETE MODELS
1. Random Walks and Random Flights

The problem of "random walk" was first posed, but not solved, in a letter
written to Nature in 1905 by Karl Pearson [1]:

"A man starts from a point 0 and walks & yards in a
straight line; he then turns through any angle whatever

and walks another & yards in a second straight line.

He repeats this process. n times. I require the probability
that after these n stretches he is at a distance between

r and r + &r from his starting point O .

The problem is one of considerable interest....".

A rather informal asymptotic solution of this problem in the limit of large n had
been given twenty-five years earlier by Lord Rayleigh [2] in a paper on the addi-
tion of sound waves of equal amplitude but random phase, as Rayleigh pointed out
in his own letter to Nature [3], duly acknowledged by Pearson [4]. An integral
representation of the solution valid for arbitrary values of n was provided
almost immediately by Kluyver [5], and contributions to the necessary mathematics
were also made by Markoff [6]. Lord Rayleigh returned to the problem in 1919 [7],
expanding on earlier analyses of Pearson's problem, and developing the three-
dimensional generalization, which he called "random flight".

To present-day scientists much of the analysis associated with the Pearson
and Rayleigh problems, as we present it below, is straightforward, while probabi-

lists would readily identify it as a particularly simple case of the well-studied



general problem of addition of independent random variables, and perhaps assign it
very little importance. However the random walk or random flight concept has been
most fruitful in a wide variety of different fields, as may be gauged from major

reviews of the field [8,9,10], and the terminology transcends linguistic barriers

- Problem des Irrwanderns [11] to the Teutonic, marche a]éﬁtoire to the

Francophiles. (For the lattice analogue of the Rayleigh-Pearson problem, Pﬁlya,

used herumwandernde Punkte and Irrfahrt [12], and promenade au hasard [13]5)

Let Pn(;) denote the probability density function for the position X of a
random walker (or aviator) in the E-dimensional continuum after n steps
(disp]acements) have been made. The steps are taken to be independent random
variables and we write pn(;) for the probability density function for the nth

step. Then the evolution of the random walk is governed by the equation
> > > > E>,
Pn+1(x) = [ pn+1(x = Y Pn(x') doxte (1.1)

The implicit assumption of translational invariance, embodied in the simple con-
volution in Eq. (1.1), ensures that the formal solution of the problem is easily

constructed using Fourier transforms (characteristic functions [14] to

probabilists). Let

~ o 15-; > E»>

Pn(q) =[e Pn(x) d=x (1.2)
and

LB 13; @B :

B, Q) = [ e Pn(x) d7X . (1.3)

Taking the Fourier transform of Eq. (1.1) and using the convolution theorem for

the Fourier transform, we deduce that

Per(@) = P (@ @) S (1.4)
whence
> 1 —iqeX T >y LE»
PaR) = g 1 & T PL(@) dh (1.5)
(2n)
P £ Ne. 5
- Ly g RR @ noby@) 64 (1.6)

(2n) j



For the problems of Pearson and Rayleigh, the directions of allowed steps are

isotropically distributed, and all steps have the same length & , so that

p.(;

peek e = (T {0 1 (1.7)

where AE is the surface area of the hypersphere of unit radius in E dimen-
sions. The radial symmetry enables all of the Fourier transforms to be reduced to
single integrals involving Bessel functions if E is even, and trigonometric

functions if E 1is odd and greater than unity (see, e.g., Watson [15] or Bochner

and Chandrasekharan [16]). One finds that

>

Pa(%) = 22 [5 JolelX1) (9p(e2)}" pdp (1.8)

in two dimensions, while in three dimensions

> 1 o0 > sin(p&) ,n

Pa(X) = —5— [§ sin(pl%]) ¢ 20{e2) 4" g (1.9)
277 x|

_For large values of n , Pn(;) converges to a Gaussian or normal distribu-

tion, reflecting the central limit theorem of probability theory:

E/2 En|x|?
En2 } exp( - |2|
2n 8 2%

)28 (1.10)

Pa(X) ~ ¢

an analysis of higher order terms is possible. The explicit evaluation of Pn(;)
for modest values of n 1is a somewhat harder problem. In three dimensions,
Rayleigh [7] gave explicit solutions for n < 4 , Chandrasekhar [17] for n < 6
and Vincenz and Bruckshaw [18] for n < 8 . The folklore arose; and perhaps per-
sists in some quarters, that the general problem of finding closed-form represen-
tations of Pn(;) in three dimensions for arbitrary n > 2 is unsolved.

" However, Treloar [19] was able to derive a general solution almost forty years
ago, using methods drawn from sampling theory. (A particularly elegant discussion
of the problem along these lines can be found in Feller [20], pp. 32-33.) A
direct derivation of Treloar's result from Eq. (1.9) has been given by Dvorak
[21]. In the region |;| < n% where Pn(;) >0, it may be written in a variety

of equivalent forms, with perhaps the simplest being [21]
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2 4n2%1X|2"(n-2)! v=0

(For computational purposes, a recurrence relation satisfied by Pn(;) is more
efficient when n > 10 [21].) The determination of a closed form expression for
Pn(;) in two dimensions is much harder (for reésons discussed in [20], p. 33) and
an expression for arbitrary n is apparently not available at present.

Many generalizations and extensions of the preceding analyses have been

given, and we list but a few here. Barakat has considered the case when the

lengths of the steps are randomly distributed [22], and the case when the number

of steps taken is a random variable [23]; Nossal and Weiss [24] have examined the
case when the distribution of step directions in Pearson's walk is anisotropic;
Montroll and West [9] and Hughes, Montroll and Shlesinger [25] have considered
generalizations of Pearsons's and Rayleigh's problems in which the lengths of the

individual steps are random variables with infinite variances.

2. Random Walks on Lattices

A considerable conceptual simplification in random walk problems is achieved
if the walk is confined to a lattice, or discrete space. The simplest example of
a discrete space is the E-dimensional hypercubic lattice, which consists of sites
having coordinates £ = (21,22,...,2E) [zj integral] with each site connected to
its nearest-neighbour sites by a bond. The idea of confining a random walk to a
hypercubic lattice occurred to P61ya in 1921 [12], and he asked the following spe-
cific question: Is a walker who steps at random between nearest-neighbour sites
(with all allowed steps equally likely) certain to return to his starting site?
He was able to answer this question: YES if E =1 or E = 2, “NOTI B> 580

i.e. in sufficiently low dimensions the walk is recurrent or persistent, while in

three or more dimensions eventual escape is certain and the walk can be called

/ : : ? 2
transient. Polya's question is but one of a number of questions which are easy to

pose and answer for lattice walks, but difficult to discuss for walks in con-

tinuous spaces without measure-theoretic analysis. A thorough treatment of many
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aspects of the theory of random walks on lattices, directed to a mathematical
audience, is contained in a book by Spitzer [26]. More applications-oriented
discussions may be found in the book by Barber and Ninham [8] and a recent review
by Weiss and Rubin [10]. A number of particularly elegant and influential contri-
butions to the field have been made by Montroll and co-workers (e.g. [9] and
[27-30]).

Let Pn(i) denote the probability that the walker is at site % after n
steps, and assume without loss of generality that the walker starts at the origin
of coordinates, i.e. PO(E) =635 - Also let p(E) be the probability that any

step consists of a vector displacement Z . Then

NS % pll - L)Y B (%) . (2.1)
Introducing discrete Fourier transforms
P (3) - %e”.e P (1), (2.2)
@) =1 p(d) (2.3)
1
we find that
Pa) = a@P,3)  dee.,  P) =2, (2.4)
and so
P (% 1 AL e 2.5
plia) P Jge P(6) d (2.5)
3 ?"l;E [g e A@)" d5% . (2.6)
2w

The integral is taken over the first Brillouin zone B = [-n,ﬂ]E . Equation (2.6)
gives the formal solution of the random walk problem.

The function A(g) is usually called the structure function by physicists,

. . 4
the terminology being borrowed from the theory of lattice dynamics. For a Polya
walker (which we define to be a walker who steps between nearest-neighbour sites,

with all allowed steps equally Tikely) A(8) reflects the connectivity structure



