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SINGULARITIES IN LINEAR WAVE PROPAGATION

Lars Garding

Historical introduction The theory of wave propagation started with
Huyghens’s theory of wave front sets as envelopes of elementary waves.
Its first success was the proper explanation of the propagation of
light in refracting media. Its modern successor is the theory of
boundary problems for hyperbolic systems of partial differential
equations. The development which lead to this thecry is a story of a
search for proper mathematical tools.

The first chapter is the discovery in the eighteenth centur& of a
paradox. The wave ‘equation Uee-Ux=x=0 in one time and one space
dimension expresses the mavement of the deviation u from rest position
for an idealized string. Its general solution f(x-t)+g(x+t) wit" ¥ and
g arbitrary is the sum of two travelling waves with opposite
directions. But it was also possible to express the movemeﬁts of a
string fixed at its end points as an infinite sum of sine functions.
This raised the question about the nature of functions and how a
- series with smooth terms could express arbitrary functions. The first
efficient solution of this problem came two hundred years later with
'the theory of distributicns.

The nineteenth century made important discoveries about wave
propagation. Gemetrical op(ics was developed to great perfection by
Hamilton. It is a theory of normels of wave frontsF in other words of
rays rather than waves of light. It gave a very good idea of wave
fronts or caustiés but not a very clear idea about their intgnsity or
the intensity of light outside the fronts. Other efforts centered

around the wave equation, in our notation and with the propagation

velocity normalized to 1,



Uee-du = 0,

where 4 is Laplace’s operator in n space variables x=(Xi;...y%Xn). The
physically interesting case is of course n=3. In the beginning of the
nineteenth century it was observed that the spherical waves
u=f(t-Ix|)/Ix| are solutions for arbitrary +unctioﬁs ¥ and Poisson
discovered the remarkable formula, in modern notation,

ult,x) =(4m) -1 J f(y)s(t-|x-yl|)dy/|x-yl,
which solves Cauchy’s problem uee-du=0, u=0, u.=f(x) for t=0. Its fit
with geometrical optics was perfect, the support of the solution at
time t is brecisely the envelope of spheres wigh radius t and'centers
in the support of f. For almost a century, this cemented the idea that
geometrical optics contains almost the whole story of wave
propagation.

In modern language we can interpret Poisson’s formula by saying that
the distribution
(1) E(tyx) = H(t) $(t-|x|)/4n|x|, H(t)=1 when t>0 and 0 otherwise,

which solves the wave equation Eee-dE=8(t)b(x) and vanishes when t<0
describes the forward emission of light from a point source. It can
also be described as the forward fundamental solution of the wave
equation in three space variables.

The most interesting problem of geometrical optics was the problem
of double refraction observed and analyzed already by Huygens. A ray
of light entering certain kinds of crystals is refracted into two rays
whose directions vary with the direction of the incident ray relative
to the crystal, Acco~ding to Huygens's theory of refraction, this
means that light in the crystal has two velocities, both direction
dependent, which can be measured by the strength of the refraction.

Directions where the two velorities are the same are called optical
axes. They appear as double points of the velocity surface which is
obtained by taking velocity. as distance to an origin along a variable

ray. For crystals with one optical axis, Huygens found the velocity



surface to be a sphere and an ellipsoid tangent to it.

Crystals with two optical axes remained a mystery until the the
French physicist Fresnel found explicit velocity surfaces for them.
They turned out to be algebraic of degree 4 depending on three
constants varying with the nature of the crystal. The surfaces are
symmetric around the origin with two sheets whizr ~ome together at
four double points on the optical axes.

Associated with the Qelocity surface there i3 the wave surface
consisting of wave fronts at time t=!{ emanating from an instantaneous
point source of light in the crystal. According to Huygens, the wave
surface is the envelope of the velocity surface. Fresnel éuessed its
analytical form. By a freak of nature, it is identical to the velocity
surface with the three constants inverted and ..ence it has the scme
general form as the velocity surface. The computations were carried
ocut by, among others, Hamiltun. He added an important complement,
pbserving that the tangent planes to the velocity sdrfacg through a
double point form a circle on the nuter sheet of the wave surtface
which bounds a circular disc covering the inlet to a double point. He
predicted from this that an outside ray of light whose direction
coincides with an optical axis ought to be broken into a cone of rays.
This phenomenon, the conical refraction, was verified by experiment a
short time later.

Hamilton made his discovery in the late 1820's. The following
decades saw extensive activity with the aim of understanding the
naturé o4 light. The first attempts were based on analogy with
elasticity theory and resulted among other things in the eguations of
Lame, a 3X3 hyperbolic system of second order differential equations
in four variables, time and three space variables. These equations are
identicai with what one gets from Maxwell’s equations for the-electric
field in a dielectricum when the magnetic field is elimininated.

To solve the initial value problem for Lame’s system was a great



challenge taken up by Sonya Kovalevskaya. She had a model to go by,
Weierstrass’s solution of the Cauchy problem for an analogous system
associated with the product of two wave operators with different
speeds of light. Led by geometrical optics, she assumed that light
from a point source ought to propagate between the two sheets of the
wave surface leaving no trace behind. The latter assumption is correct
but she did not realize that there is light also between the outer
sheet and its convex hull. Her formal calculations where she used the
fact that the wave front surface can be parametrized by elliptic
functions led her astray. The solution that she deduced is identically
zero, a clear contradiction with the Cauchy-Kovalevskya theorem. Her
mistake was pointed out a few years later by Volterra. He corrected
the formulas but did not arrive at a solution of Cauchy’s problem.
Earlier, his faith in geometrical optics as a complete clue to wave
propa->ticn was shaken when he found that the analogue of the
cistritation (1) for two space variables is

H(t) H(t2 - |x|=®)-172/2R,
wh{ch describes propagation of light from an instantaneous point
source in a medium with two space variables. Since this distribution
does not vanish when |[x|<{t, there is an afterglow behind the wave
front on the éircle Ix|=t. In lectures that he gave in Stockholm in
1906, Volterra pointed out that the analytical tools tried so far were
not sufficient to treat Lame’s equations for the double refraction.
One of his listeners, a young mathematics student Nils Zeilon, took
notice. His admired teacher Ivar Fredholm had constructed fundamental
solutions of elliptic differential operators in three variables using’
abelian integrals. Zeilon continued his work for other types of
equations but using another point of departure, namely the remark that
i¥f P($) is a polynomial in n variables, the integral
(2) E(x)=(2M) -~ J exp ix.$§ d§/P($%)

is, at least formally, a fundamental solution for the operator P(D)



where D=3d/idx. In fact,

P(DIE(x)=(2M)~" J exp ix.§ d§ = b(x).
The problem is to make sense of the integral (2) which may diverge at
0, at infinity and at the zeros of P. Apart from this, the formal
machinery works also when P($) is a square mateix whose elements are
polynomials, in particular for the Lame system. Zeilon’s mathod of
avoiding singularities was to move the chain R™ of integration into
Cnr., This can be done in various ways. Zeilon’s intuition led him
right, but his arguments are shady, read by a critical eye. This also
applies to his magnum opus, two long articles around 1920 on the
problem of conical refraction. But his results are right. The support
of the fundamental solution includes the space the outer sheet of the
wave surface and its convex hull. This fact has to do with conical
refraction, but the precise connection was not clarified until 1961
with a paper by Ludwig.

Zeilon’s work did not get much attention. Some years later Herglotz
constructed forward fundamental solutions of hyperbolic differential
operators wih constant coefficients in any number of variables. For
them, the velocity surface has m sheets corresponding to m different
pfopagation velocities. He applied the Fourier transform to the space
variables and arrived at very simpl; formulas covering also the Lame
system. He showed that the wave surface in the general case is a
system of criss-crossing surfaces of varying dimensions near which the
fundamental solution may have a very complicated behavior. Outside the
wave surface, i.e. outside its fastest front, the fundamental solution
is zero, but it may also vanish in regions inside the fastest front as
is does for propagation of light in free space. These regions, the
lacunas, attracted the the interest of ﬁetrnvsky who published a
fundamental paper about them in the forties where he tied the
existence if lacunas to topological properties of_plane sections of

the complex velocity surface. His work was extended to the general



case of degenerate velocity surfaces by Atiyah, Bott and Ggrding in
the early seventies.

Fundamental solutions E, of the wave eguation with an arbitrary
number of space variables were constructed by Tedone already in 1889
in the form of solutions of thekcorresponding Cauchy problems. In
terms of the function

dit,x)=t2-|x|=,

their main properties can be described as follows, They vanish outside
the forward light cone where t»J, d«(t,x)20. Inside the light cone E,
behaves like »

const d(t,x) ¢n-3>/2
when n is even. It vanishes there when n is odd >1 and behaves like

const $¢¢n=327/2> (4(t,x))
on the light cone outside the origin. Tedone’s results were extended
to variable coefficients by Hadamard in a famous book, The Cauchy
Problem and Hyperbolic Linear Partial Differential Equations,
published "in 1923 with a French edition in 1932. He replaced the wave
operatcr by an operator

P=3 giwn(x)usw + lower terms
where g=(g,.) is a symmetric nXn matrix with Lorentz signature, one
plus and the rest minus, and the indices of u indicate second order
derivatives with respect to the variables (Xiy...,%Xn). The light rays
of the wave equation are replaced by the extremals of the indefinite
metric corresponding to g. If d(x,y) denotes the square of the
corresponding distance from x to a given point y, d(x,y)=0 is the
equation of a two-sheeted conoid with its vertex ak y. For a given
hal¥ H of the corresponding cone, Hadamard constructed a fundamental
solution E(x,y) with pcle at y, PE(x,y)=b(x-y), with the following
properties. It vanishes outside H and behaves inside H as in the
constant coefficient case except that the vanishing inside the conoid

when n is even (i.e. aodd in the previous notation) is replaced by a



smooth-behavior up to the boundary. Hadamard guessed the shape of the
fundamental solution in the form of an asymptotic series. To verify
that the construction yielded a fundamental solution, Green’s formula
had to be used. This led to difficulties with the singularities on the
cone were avoided by a limiting procedure called the method of the
finite part. A few years later, Marcel Riesz (1937 and 194%9) managed
to replace it-by a more palatable analytic continuation with respect
to a parameter.

It seemed hopeless to extend Hadamard’s method to higher order
hyperbolic equations. Even an existence proof for Cauchy’s problem and
with it the existence of fundamental solutions presented problems.
Petrovsky managed a very complicated existence proof in the thirties,
but an easier one using tunctional analysis was found in the fifties
by Girding. Still, an analysis of the singularities of the fundamental
solutions remained.

The break-through came in 1957 with a paper by Lax. He found out how
to make the Fourier method work for variable coefficients by using
general oscillatory integrals, ignoring low frequencies and keeping
the high ones which are responsible for the singularities. The method
was not new in itsel4. It had been used by physicists under the name
of the geometrical optics approximation and, in quantum physics, the
semi-classical approximation. But its use for hyperbolic systems and
operators of high order was a novélty. The constructions of Hadamard
and Lax shared one defect not present in the existence proofs: both
were restricted to a neighborhood of the pole of the fundamental
solution.

Lax’s paper was one of the first that aroused the interest o+
mathematicians in the analysis of singularities of oscillatory
integrals. The outcome has been a vast theory of prime importance
whose inqredients are pseudodifferential operators, the notion of wave

¢ront set or singularity spectrum for an arbitrary distribution or



hyperfunction and a theory of propagation of singularities. Its name
is microlocal analysis and it has a host of applications. In one of
~them, Hormander and Duistermaat succeded in making the construction of
Hadamard and Lax global. The theory of microlocal analysis including
many recent results are to be found in Hormander’s books The Analyis
of Linear Partial Differential Operators I-1V (Springer 1983-85).

The aim of this series of lectures is to present the use of
microlocal theory in the analysis i+ singularitiés in linear wave
propagation, in the majority of cases represented by the fundamental
solutions of linear hyperbolic partial differential and
pseudodifferential opcrators. Chapter 1 deals with forward fundamental
solutions of hyperbolic differential operators wit constant
coefficients. It presents the theory of lacunas in a general form and
has one application to a general form of conical refraction. Chapter 2
about oscillating integrals and wave front sets, Chapter 2 about
pseudodifferential operators and Chapter 4 about symplectic geometry
present known material necessary for the sequel dealing with the
singularities of fundamental solutions of strongly hyperbolic
operators and oscillating integrals in general. In Chapter S there is
a new simple construction of a global parametrix of the fundamental
solution of a first order pseudodifferential operator. This
construction is basic since parametrices of strongly hyperbolic
differential operators are sums of such parametrices paired in a
certain way. The final chapters 6 and 7? give a detailed analysis of
the singularities of such paired oscillatory integrals.

These lectures were delivered in April and May of 1986 at the
Mahematics Institute of Nankai University, Tianjin. The author wants
to take this opportunity to thank the Institute for its hospitality

and his audience for its patience.
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CHAPTER 1

HYPERBOLIC OPERATORS WITH CONSTANT COEFFICIENTS

Introduction The main object of this chapter is to express the
fundamental solutions of homogeneous hyperbolic differential operators
as integrals of rational forms over certain cycles. This yields the
Petrovsky condition for lacunas. The first step is a sectiocn on
algebraic hyperbulitity. In a second section inverses of hyperbolic
polynomials are studied. The third section deals with intrinsic
hyperbolicity, the fourth with fundamental solutions and in the fifth

a formula by Geltand is used to derive the desired results.

1.1 Algebraic hyperbolicity

Let f(x)=f(xXi,...4%Xn) be analytic for small x and let a#0 be fixed
in R~.
Definition. The function f is said to be microhyperbolic with respect
to a if
Im t >0=> +(x+ta) %0

for all sufficiently small t and all sufficiently small real x.

Let us develub f at x=0 in series of terms of increasing
homogeneity,
fFix) = folxX)+f (x4, . +fmix)+... .
The first non-vanishing term, say fm, is called the principal part of

§ and will be denoted by Pr f. ’ .

Examples. When m=0, (0)#0 and <+ is trivially microhyperbolic with

respect to any a. When m=1 and f is real, f is locally hyperbolic with



respect to any a with Pr f(a) #0.

Lemma Put h(t,s)= f(ta+sx) with small complex t and s. Then, if 4
is microhyperbolic with respect'to a, ‘

(1.1.1) h(t,s) =H(t,s) T (t+ di(sx,a))

where H(t,s) is analytic at the origin, H(0,0)#% 0 and the d. are
analytic for small s and vanish when s=0. If

(1.1.2) di(sxy,a) = ck(s) + higher terms,

the numbers cu. are real and the principal part of h(t,s) is

(1.1.3) H(0O,0) T (t+cus) = Pr f(ta+sx). v
Note. When f is microhyperbolic with respect both a and -a, it is said
to be locally hyperbolic with respect to a. It follows 4noﬁ (3) that
Pr f has this property when f is microhyperbolic with respect to a.

When 4 is locally hyperbolic with respect to a, the numbers d. are

real for real x and s and hence f(x)/Pr f(a) is real.

Proof. Choose an x such that Pr f{(x) #0. Then the principal parts of ¢
and h(t,s) are the same. Disregarding the definition of m, let m be
the least k for which g.(0)#0 in the expansion

(1.1.4) h(t,s) = gol(s) + tg;(s) +... t"g;(s)+...

for small s and t. Without loss of generality, we may alsc assume that
m>0. Then, by the properties of power series, (1) holds, the d« being
Puiseux series in s. But since h(t,s)# when s is real and t is small
with Im t >0, these series are actually power series. In fact, the
existence of a first term of the Puiseux.series with a fractional
exponent is easily seen to contradict this assumption. Hence the
degree of Pr h(s,t) is m and equal‘to that of Pr ¢. In particular,
H(0,0) = Pr h(1,0) = Pr f(a) does not vanish, a statement independent
of the assumption that Pr f(x) does not vanish. We can then go to (4)
again without requiring that Pr f(x)#0 and are then sure that gw.(0)

does not vanish so that (1) and (2) follow, the formula (3) being a
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consequence of these two. This finishes the proof.

Let us note that
(1:1.3) Pr $(x) = H(0,0)0 Cw.

for all x. In the sequel we shall assume that Pr f(a)=1.

Definition Let C(f,a), called the hyperbolicity cone of ¥, be the
cohponent of the complement of the real hypersurface Pr f(x)=0 which

contains a.

According to (35) this means that x is in C(f,a) precisely when all c.=

Cl(ayx)>0 on C(a,f¥). In fact, when x=a, all the numbers c. are 1.

Theorem C(f,a) is an open convex cone. I+ K is a compact part of it,
¥ is uniformly locally hyperbolic with respect any b in K. More
precisely, there is a positive number A such that
(1.1.6) b in K, Isl,Ix| <A, Im s>0 => f(x+sb) #0.

Proof. Let us write the formula (2) with x replaced by x+sb and with
ta and sb interchanged,

f(ta+sb+x)= H(t,s,x) T (s + di(b,x+ta)).
Here H(t,s,x) does not vanish for sufficiently small arguments.
Further, since the left side does not vanish when s is real and Im
t>0, none of the numbers d. crosses the real axis. Hence, since

de(a,sb) = <, s + smaller

where the c. are positive, we have

Im >0 => Im dw(b,x+ta) > O.
when x and s are small enough. Hence the second part of the theorem
follows. To prove the first part, note t;at

Pr f(ta+sb) = Pr f(a)‘n ( t +scw(a,b)).

It follows that C=Cl(a,f) contains ta+sb when b is in C and t,s >0.

This completes the proo+.



Translates
For small real y, let
fylx) = f(x+y)
be the translate of f by y. Our last theorem has the following

corollary

Theorem . If f is microhyperbolic with respect to a, 56 is f,. The
function

y=> C(f,,a)
is inner continuous in the sense that if y tends to z, then the right
side above contains any compact subset of C(f,a) when z is

sufficiently close toc y.

Proof. It suffices to prove the theorem when z=0 in which case it

follows from the previous one.

Homogeneous hyperbolic polynomials.

When f(x) has a principal part Pr f of order m, then

r=> 0 => r~™f(rx) -> Pr f(x).

It follows. from this that, if { is microhyperbolic with respect to a,
then P(x) = Pr f(x) is a polynomial, homogeneous of order m with the
property that
(1.1.7) Im s>0, x real =) P(sa+x) #0.
éuch polynomials are said to be hyperbolic with respect to a. The set
of those will be denoted by Hyp(a,m). Note that since P is
homogeneous, (7)>holds with Im s>0 replaced by Im s#40 so that P is
also hyperbolic with respect to -a. It is_obvious that if two
homogeneous polynomials P,@ are hyperbolic with respect to a, then P@

has: the same property and C(PQ,a)=C(P,a 'n C(Q,a).



