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Preface

This monograph is based on the marathon lecture series given at the NSF-CBMS
. Regional Conference on Extremal Graph Theory held in June 1984 at Emory

University, Atlanta. The author is grateful to Dwight Duffus, Ron Gould, and
Peter Winkler for their superb organization of the meeting; the additional lectures
by Dick Duke, Ralph Faudree, Ron Graham, and Tom Trotter greatly enriched
the conference.

Since the publication of the author’s book, Extremal Graph Theory (Academic
Press, London, New York, and San Francisco. 1978, to be referred to as EGT), a
number of important results have been proved, and one of the aims of the lectures
was to update EGT by presenting some of these developments.

* Over the past few years a noticeable shift has been taking place in extremal
graph theory towards probabilistic methods. The most obvious sign is that
random graphs are used more and more, but that is not all. Even more signifi-
cantly, a probabilistic frame of mind was needed to find many of the proofs,
which on the surface have nothing to do with probabilistic ideas. In several
beautiful and difficult proofs the underlying philosophy is that we do not have to
care about single vertices, say, for it suffices to make use of the fact that there are
many subsets of vertices of a given cardinality with the right properties. To give a
simple example, one often makes use of the fact that if X, X,...., Xy are.
nonnegative integers bounded by 4, ., X, = Na and 0 < b < a, then at least
(a — b)N/(A — b) of the X,’s are greater than b. Equivalently, if X, is a random
variable,0 < X < 4 and E(X) = a, then
(1) P(X>b)z(a—b)/(A—b) forall0 <b <a.

Inequality (1) has the following reformulation in graph-theoretic terms. If B is
a' bipartite graph with bipartition (X,Y), X = {x X3,....X,}, Y =
{yiey2eeeosy, ) d(y) < Aforall j,1<j<n, thenford’ <d= s d(x,)/n
there are at least (d — d")n/(A — d”) vertices y; of degree at least d'.

Needless to emphasize, in the great majority of the cases the merit is in finding
the need for probabilistic inequalities and applying them cleverly, and not in
proving the inequalities. The main aim of the lecture was to show how fruitful a
probabilistic frame of mind is in tackling main line extremal problems.
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The notation in these notes is taken from EGT. In particular, |G| is the order of
a graph G, i.e. the number of vertices, and e(G) is the size of G, i.e. the number of
edges. The cardinality of a set U is denoted by |U|, and the collection of r-subsets
of U is U'". Though these notes are practically self-contained, familiarity with at
least some parts of EGT will certainly help the reader. A conscious effort has
been made to prevent the lectures from turning into a long catalogue of results;
without this effort, the monograph could have ended up with several hundred
results. However, there seems little doubt that it is much more useful to present
just a few of the deeper results and thereby leave time to dwell on the proofs.

The first two sections are closely related. They deal with subdivisions of graphs
and subcontractions. Both areas owe a considerable amount to Mader, who
proved that for every p € N there are constants s( p), ¢( p) such that every graph
of order n and size greater than s( p)» contains a topological complete graph of
order p, and every graph of order n and size greater than c¢(p)n has a
subcontraction to K”. (Needless to say, s(p) and ¢(p) are taken to be the
smallest values that will do in the statements above.) Consequently for every fixed
graph H there is a constant s(H) such that every graph of order » and size
greater than s(H)n contains a subdivision of H and there is an analogous
constant ¢(H). Bollobas started the study of subdivisions of graphs with some
constraints on the subdivisions one allows. For example, we may wish to restrict
the number of times we subdivide an edge, at least modulo some integer k. The
main aim of §1 is to present recent result of Thomassen in this area, with a
considerably better bound than the original one given by Thomassen.

The second section, on subcontractions, is devoted to a new result of Thomason
and Kostochka, improving the upper bound on ¢( p) proved by Mader. Together
with a rather easy result of Bollobas, Catlin, and Erdés, this result implies that the
order of ¢( p)is p(log p)/?. a fact not many of us would have expected.

The third and fourth sections concern different aspects of essentially the same
problem. At least how many vertices must we have if the minimal degree is 8 and
the girth is at least g? At most how many vertices can we have if the maximal
degree is at most A and the diameter is at most D? An “ideal” graph would
answer both questions, but the trouble is that there are very few such ideal
graphs. One is left with approximating the appropriate functions either by
constructing suitable functions or by showing, usually by probabilistic methods,
that suitable graphs do exist. As far as the bounds are concerned, the noncon-
structive methods due to Erdds, Sachs, Bollobas, de la Vega, and others give
better results, but the constructions have obvious advantages. In these sections the
emphasis is on new constructive methods due to Bermond, Delorme, Farhi,
Leland, Solomon, Jerrum, Skyum, and Margulis.

In §5 we concentrate on a substantial recent result of Gyarfas, Komlos, and
Szemerédi concerning the distribution of cycle lengths in graphs with fairly many
edges. Though the theorem is interesting, it is the proof, rich in ideas and
techniques, that really justified spending two lectures on the result.
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The sixth section contains a telegraphic review of the theory of random graphs.
The highlights are the classical theorem of Erdds and Rényi on the evolution of
random graphs and its recent extensions due to Bollobas.

In §7 we present a surprising and beautiful result of Beck on size Ramsey
numbers. As a simple application of random graphs, Beck proved that there are
graphs G,,G,, ... such that G, has at most ¢/ edges, where c¢ is a constant, and in
any coloring of the edges of G; with two colors we can find a monochromatic
path of length s.

Saturated graphs were introduced over twenty years ago by Erdés, Hajnal, and
Moon. Their result was extended considerably by Bollobas, who also introduced
weakly saturated graphs. The main conjecture concerning weakly saturated graphs
was proved recently by Alon, Frankl, and Kalai; the simple and elegant proof,
based on exterior products (1), is presented in §8.

The last section, §9, concerns restricted colorings of graphs. We know from
Vizing's theorem that a graph of maximal degree A is (A + 1)-colorable. What
happens if we prescribe a list for each edge from which the color of the edge has
to be chosen? What is the maximal length of the lists that always let us color our
graph? It has been conjectured that lists of length A + 1 will do. This conjecture,
if true, would clearly be best possible.

At the moment, the conjecture is far from being proved and many graph
theorists suspect it to be false. The main aim of the section is to present a recent
result of Bollobas and Harris, implying that for some constant ¢ < 2 lists of size
at most c¢A will do for every graph of maximal degree A > 3. As a trivial
consequence of this result, Bollobas and Harris made the first substantial progress
towards a proof of a long-standing conjecture of Behzad concerning the total
chromatic number.

It is a pleasure to thank Fan Chung, Dwight Duffus, Ron Graham, Hal
Kierstead, and Andrew Thomason for their ideas and suggestions, many of which
have been incorporated into the text. Finally, I would like to express my gratitude
to all participants of the conference for their enthusiasm for the subject and the
warm reception of the lectures.

Research was partially supported by National Science Foundation Grant
DMS-8400643.

TrINITY COLLEGE, CAMBRIDGE, ENGLAND

LouisiANA STATE UNIVERSITY
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ll. Subdivisions

A subdivision of a graph H is a graph obtained from H by subdividing the
edges of H by some vertices (possibly none), i.e. by replacing each edge ab by an
a-b path, such that any two of these paths have at most their endvertices in
common. A subdivision of H is also said to be a ropological H-graph; we write
TH for such a graph. The m-subdivision of H, denoted by T, H, is obtained from
H be replacing each edge by a path with m internal vertices. Note that 7, H is
unique up to isomorphism, 7, H = H, and if H has at least two edges then some
TH is not an m-subdivision of H for any m.

Subdivisions were first studied because of Kuratowski’s theorem. Almost
twenty years ago Mader [74] proved the deep result that for p € N every graph of
order n and size at least p2'"2"'n contains a TK?, a topological complete graph
of order p. Consequently, for every graph H there is a constant ¢ = ¢(H) such
that if the minimal degree 8(G)of a graph G is at least ¢ then G contains a TH.

The bound p"('l In was first 1mproved by Halin [61] and then, substantially,
by Mader [75], who proved the following result.

THEOREM 1. For p € N ser I(p)=3 27-3 — p. Then ex(n; TK?) < t(p)n —
(t(p) + Le(p)/2. O

In Theorem 1 above the function ex has its customary meaning: given a family
F of graphs, ex(n; %) denotes the maximal number of edges in a graph of order
n which contains no member of F as a subgraph. An immediate consequence of
Theorem 1 is that if 8(G) > 21( p) then G D TK?,

If H is not a forest and m > 0 then we cannot hope to find 7, H in every
graph of order » and size at least ¢n for some constant ¢, for there are graphs of
arbitrarily large girth and minimal degree (see §3, Theorem 2 and Corollary 3).
However, every forest can be found as a subgraph of a subdivision of a given
graph in every graph of sufficiently large minimal degree. This was proved by
Bollobas [17], and to state it precisely, we need the concept of a semitopological
graph. Let F; be a subgraph of F. A semitopological graph F with kernel F,
denoted by ST(F, Fy), is a subdivision of F in which no edge of F, has been
subdivided.
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THEOREM 2. Given a graph F containing a forest F,. there is a constant ¢(F. F,)
such that every graph of minimal degree at least ¢( F. F,) contains an ST(F, F,). O

As an easy consequence of Theorem 2. one obtains the following result,
conjectured by Burr and Erdos and first proved by Bollobas [16].

COROLLARY 3. There is a function f: N X N = N such that if §(G) > f(k.s)
then the graph G contains a cycle of length 2s modulo k.

ProoF. Given k € Nand 1 < 5 < &, let F be the graph obtained from a path

P = xyx, -+ x, by adding to it a vertex x and independent x — x, paths of
lengths s, i = 0,1,..., k. Let F; C F be the tree formed by the A + 1 indepen-
dent paths and set f(k,s) = ¢(F, Fp). %

By Theorem 2 all we have to check is that every ST( F, F,) contains a cycle of
length 25 (mod k). Let P be the subdivision of P and pick two vertices x,, X;
whose distance on P is divi:sible by k. Then the paths x — x,, x — x; and the
x; — x,; segment of the path P form a cycle of length 25 (mod k). O

Bipartite graphs show that in Corollary 3 we cannot replace 2s by s.

Recently Thomassen [84] proved an extension of Theorem 1 which also implies
Corollary 3.

THEOREM 4. There is a function f: N X N X N = N such that if §(G) >
f(p.k,s) then G contains a subdivision of K” in which each edge has been
subdivided into 2s edges modulo k. O

In [17] another assertion was conjectured which also implies Corollary 3. This
conjecture was also proved by Thomassen [85].

THEOREM S. There is a function g: N X N = N such that if §(G) > g(k,m)
then G D T, H for some graph H of minimal degree k. O

Note once again that if H is any fixed graph with§(H) =k > 2, m > 0, and ¢
is an arbitrarily large constant then there is a graph G of minimal degree at least ¢
which does not contain an m-subdivision of H.

The function g(k, m) which Thomassen showed has the property described in
Theorem 5 grows rather fast; in fact, g(k,2' — 1) > (8k)*. The main purpose of
this section is to prove a slight improvement of Thomassen’s theorem: we shall
show that it suffices if our function grows considerably slower (Theorem 8). We
shall need some simple results about domination in bipartite graphs.

THEOREM 6. Let G be a bipartite graph with vertex classes U and W such that
d(x)=r for all x€ W. Let a<u=|U|, b <w=|W| and s < r be natural

numbers such that
=1
e e i

=0

Then there are sets A C U and B C W such that |A| = a, |B| = b, and each vertex
of W\ B is adjacent to at least s vertices of A.
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Proor. Let H be the bipartite graph with classes U’ and W in which a vertex
A € U (ie., an a-subset 4 of U) is joined to a vertex x € W if [I'(x) N 4| <
s — 1. Then for x € W we have

dy(x) < >: Lt -

Hence there is a vertex 4 € U'“ such thal

a0 <|E (N5Z7) /()] <o ©

COROLLARY 7. If a<u, b<w, 3<s<vr, ar > 2us, and (a — s)r —s)
> ar (say a = 20s and r > 20s) then one can find appropriate sets A and B
provided w < (b + 1)e*/**%2as .

ProOF. Note that with A = ar/us > 2 we have
y=1 " &
b8 ] i P R HA VA

<

Al M gl ) (=)

1 (era\* (a—s)(r—ys) 1 (5.
i V2ms ( su) exp{— 1= }< ,/_(GA) exp{— 10}‘3}
1 b+
< g A o O LIl
V27s W

Hence the conditions in Theorem 6 are satisfied. O

In the proof of the main theorem we shall need some simple definitions. Given
a rooted tree 7 with root x,, the height of T is h(T) = max . rd(x, x;;) and the
Jth level is L(T)= {x €T: d(x,x,)=j}. An a-tree of height b is a rooted
tree of height b in which every vertex at level /1 < b is joined to a vertex at level
h + 1. An (a, b)-join is a (b — 1)- subdivision of a star K(1, @), i.e. it is a union of
a paths of lengths b, any two of them having precisely the same vertex in
common. The common vertex is the center of the join.

THeOREM 8. Let k and m be natural numbers and let G be a graph satisfying
8(G) > 8 = 50(24k + 1)"*', Then G contains an m-subdivision of a bipartite
graph of minimal degree k.

PROOF. As the result is trivial for kK = 1, we may assume that k£ > 2. Set
k, = 24k and r = 12(k, + 1)"*%. Denote by p the maximal number of vertex
disjoint (k, + 1)-trees of height m in G; let T,,T,,...,T, be vertex disjoint
(k, + 1)-trees of height m in G. Then each 7, contains a k,-set of vertices, say 4,,
such that 4, C L, (T,); the vertices of 4, belong to distinct branches of 7, and
cach vertex of 4, is joined to at most 2(k, + 1)™ — 1 vertices outside the trees.
Indeed, otherwise 7, would have two branches all of whose endvertices are joined
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to at least 2(k, + 1)™ vertices not belonging to the trees. However, then we could
join each of these endvertices to k, + 1 vertices not belonging to the trees,
without joining two endvertices to the same vertex. Hence we could obtain p + 1
vertex disjoint trees by replacing 7, by the two trees obtained from these two
branches.

For x € A, write d(x) for the number of neighbors of x which belong to
U7Z.1.,«; V(T}). What we have just shown implies that

d(x)>8 = {20k, +1)" =1} =(t(k;) = 1)
>8 - 3(k, +1)"
> 48(k, + 1) = 4r.

Here t(k)) = [V(T)| =1+ (k; + 1} (k" — 1)/(k; — 1). From this we see that
4r < (p — Dit(k,),and so p > 40k, = 960k.

Every tree 7, contains a (k,, m)-fan whose center is the root of T, and whose
endvertices are the vertices in A,. Our aim is to show that parts of some 7 of these
fans can be continued to (2k, m + 1)-fans such that the endvertices of these fans
form a set of cardinality at most 7. Then the union of these fans is an
m-subdivision of a graph which has a subgraph of minimum degree .

Consider partitions P ={L2,...,p})=P,UP, |P|=[p/2], and |P,
= | p/2]. Set W(P))=U,cp A; and U(Py) = U, p, V(T}). Note that there are
m=( L pfzj) such partmons Furthermore for any fixed vertex x € U, ., 4,

precisely I1, = 1 p/2 | )of these partitions satisfy x € W(P,). Write 7, for the
number of partitions among these =, partitions such that x is joined to at least r
vertices in U(P,). We wish to show that 7 is fairly large. To this end consider at
random one of the 7, partitions with x € W(P,). Since | p/2| = (p — 1)/2. the
expected number of neighbors of x in U( P, ) is at least d(x),/2. Hence

(7= m)(r = 1) + 7, d(x) > mpd(x) /2
from which it follows that

d(x)/2-(r—1) Pl 1 T
1) e JJ(cx) S e T P B R AR

The alert reader must have noticed that our inequality is, in fact, just inequality
(1) of the Preface, with N = my, 4 = d(x), a > d(x)/2,and b=r — 1.

Inequality (1) implies that we can find a partition P, U P, and aset W C W(P))
such that |W| = pk,/6 = 4pk and each x € W is joined to at least r vertices in
U = U(P,). Indeed, let H be the bipartite graph whose classes are U{ 4, and the
set of all = partitions. A vertex x of the first class is adjacent with a partition
P, U P, if x € W(P,) and, in our original graph G, x is joined to at least r
vertices in U(P,). Then (1) implies that in H every vertex in the first class is
" joined to more than one sixth of the vertices of the second class. Hence some
vertex in the second class of H is joined to more than one sixth of the vertices in
the first class. 3
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Consider the bipartite graph formed by the U-W edges of G. The parameters
w=|W|=4pk, u=|U|=|p/2)t(k,), a=q=[p/12], b= pk, and s =2k
satisfy the conditions of Corollary 7, so there are sets W, = W — B, |W;,| = 3pk,
and Uy = A C U, |Uy| = ¢, such that each vertex of W, is joined to at least 2k
vertices in U,.

The 4;'s partition Wy: Wy = U, ¢ p (4,0 Wy) =U,cp, A, Atleast g =[ p/12]
of the 4,’s have at least 2k elements, for otherwise we would have

([ p/12] = 1)ky +([ p/2] = [ p/12])(2k - 1) > 3pk
and this is false.

Now if |4,| > 2k then a (2k, m)-fan in 7T, ending in vertices of A4, can be
extended to a (2k, m + 1)-fan all of whose endvertices are in U,. Hence our graph
G contains ¢ internally disjoint (2k, m + 1)-fans whose endvertices belong to a
set with ¢ elements and this set contains no internal vertex of any fan. The union
of these fans is an m-subdivision of a g by g bipartite graph with 2kq edges. A
graph of order 2¢ and size 2kg contains a subgraph of minimum degree k, so the

theorem is proved. O
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2. Contractions .

An elementary contraction of a graph G is obtained from G by identifying two
adjacent vertices; the result of a sequence of elementary contractions is a
contraction of G. A graph H is a subcontraction or minor of G if H is a
contraction of a subgraph of G; in notation G > H. Subcontractions to complete
graphs are of special interest because of one of the decpest conjectures in graph
theory, Hadwiger’s conjecture [S9]: x(G) = p implies G > K. Define thecontrac-
tion clique number of a graph G as ccl(G) = max{ p: G > K? }

Let us recall some of the basic results concerning subcontractions (see EGT,
Chapter VII, §1). Hadwiger's conjecture has been proved for x(G) < 5. The
conjecture is trivial for x(G) = 3. It was proved by Dirac [34] for x(G) = 4, and
for x(G) = 5 it follows from the four color theorem due to Appel and Haken [4].
For x(G) > 6 the conjecture is still open.

Mader [74] was the first to prove that a graph with small contraction clique
number must have small minimal degree.

THEOREM 1. Let G be a graph of order n and size 2P 3n where p > 3. Then
ccl(G) = p.

PROOF. Let us apply induction on p. The assertion is clear for p = 3 so assume
that p > 4 and the result holds for smaller values of p. Consider the set of finite
graphs

F={G: e(G) > 2773G|},

partially ordered by “ < ™. Let G, be a minimal element of this partially ordered
set. For an cdge xy € E(G,) the elementary contraction G,/y does not belong to
F 50

e(Go/xy) = ¢(Gg) =1 =|T(x) N T(y)| < 2773(|Go| - 1),
implying
(1) IT(x)NT(y)]|>27"2
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Let now x € G and set G, = Gy[I'(x)]. Then (1) implies that §(G,) > 273
and so

i i
9(61)252" 3|Gl|=2P 4G, |.

Hence G, > K7 ' andso G, > K?. O
Because of Theorem 1 it makes sense to study edge densities implying large
contraction clique numbers. To be precise, for p € N, p > 2, set

c(p) = inf{c: e(G) > c|G|implies G > K" }.

Theorem 1 shows that ¢(p) < 2?3 for all p > 2. This bound was improved
considerably by Mader [75].

THEOREM 2. If p >4 then c(p) < 8(p — 2) |log,(p — 2)]. O

For small values of p the function ¢( p) looks very pleasant. It is trivial that
¢(2)=0 and ¢(3)=1. A little work enables us to show that c¢(4) =2 and
¢(5) = 3, and Mader [74] proved that ¢(6) = 4 and ¢(7) = 5. In view of this it is
not surprising that I wrote (EGT, Chapter VIII, p. 378): “It is rather hard not to
conjecture that ¢( p) is always p — 2.” However, I did stop short of conjecturing
c(p)=p — 2forall p > 2. This was just as well, since a little later Catlin, Erdos,
and I [25] proved the following result, which implies that ¢( p) is considerably
larger than p — 2, provided p is large.

THEOREM 3. Almost every random graph G of order n with probability 1/2 of an

edge is such that
n((logzn)l/2 + 4)_‘ < ccl(G) < n((logzn)l/2 - 1)-1. O

Since the probability that a random graph G € %(n,1/2) has at least n?/4
edges tends to 1 /2, we find that if ¢ > 0 and p is sufficiently large then there is a
graph of order n =[(1 — &) p(log, p)m] and size [n?/4] whose contraction
clique number is at most p — 1. Hence ¢(p) = (1 — ¢)p(log, p)*/* if p is large
enough. :

A version of Theorem 3 for a different edge probability gives an even better
lower bound for ¢( p). As stated in [25], if 0 < P < 1 is fixed then almost every
random graph G of order n with probability P of an edge is such that ccl(G) ~
n(log, ,on)"'/?, where Q =1 — P. As remarked by Thomason [83], on taking
P = 0.716 the last relation has the following consequence.

COROLLARY 4. If p is sufficiently large then c¢( p) > 0.265p(log, p)'/%. O

Having thus disproved the possibility of ¢(p)= p — 2, what is the correct
order of magnitude of ¢(p)? This question was answered independently by
Kostochka [71] and Thomason [83]. Since the proof given by Thomason is simpler
and gives a better constant (2.68 as opposed to 324), that is the one we shall
present.

THEOREM 5. If p is sufficiently large then c¢( p) < 2.68p(log, p)'/>.
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The proof of this theorem is based on four lemmas. The first of these is in the
vein of the proof of Theorem 1. The peculiar choice of the constant a is not
essential but does result in the best upper bound for lim, , _e(p)p~'(log, p)~'/
which can be obtained by the latter part of the proof.

Define a = 2.678 - - - by the relation a« = 1 + log2a. For r € R and ar € N,
ar > 3, set

Z ={G: |G| < ar,28(G) = |G| = |r] - 3}.

=
LEMMA 6. If G € Z. implies G > K ? thenc(p) < ar. O

This lemma shows that Theorem 5 follows if we prove that for ¢ > 0
and sufficiently large values of p, G €% implies G > K?~ 2 where r =
(1 + e)p(log, p)'/%. The set % consists of rather dense graphs, i.e., graphs
whose minimal degree is not much smaller than (1 + a™')/2 times their order.
How can we show that a large complete graph K?~2 is a minor of such a graph
G? We have to find p — 2 vertex disjoint connected subgraphs of G such that any
two of these subgraphs is joined by an edge.

There are two requirements: the subgraphs have to be connected and they have
to be joined to each other. Lemma 8 will take care of the first condition. It implies
that by the addition of rather few vertices we can make our subgraphs connected.
The real difficulty is finding many small disjoint subsets of vertices such that any
two of them are joined by an edge. If we choose our subsets one by one (as we
shall), 1t is advantageous to pick subsets which dominate as many vertices as
possible. Furthermore, what we need is that many small sets of vertices dominate
many (all but rather few) vertices of our graph, for then we can select one which
not only dominates many vertices but is also joined to all previously selected sets.
This will follow from Lemma 9.

Lemmas 8 and 9 depend on a simple lemma on domination in graphs.

LEMMA 7. Let G be a graph of order n and let @ #+ U cC V = V(G). Suppose
d(u) > dforallu € U.

(1) G has a vertex which dominates at least (d + 1)/n of the vertices of U.

(1) If d = (n+ m)/2 and m < n — 3 then there are at least m + 3 vertices
dominating at least half of the vertices of U.

PrOOF. For v € V define E(v) = {(v u): u€ Uand u=v or uv € E(G)}
and set

(2) E*= |J E(v)c VX U.

vEV

By our assumption,
(3) |E*| > (d+ 1)|U|.
(i) Relations (2) and (3) imply that there is a vertex v € V satisfying
|E(v)| = (d + D) |Ul/n.
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(11) Suppose d > (n+ m)/2, k <m+ 3 < n, and W is a set of k vertices
each of which dominates at least half of the vertices of U. All we have to show is
that there is a vertex v € V' \ W which also dominates at lcast half of the vertices
of U. To see this, note that by (3).

E*- U E(w)|=(d+1)|U| - klU

s

we W
so there is a vertex v € V'\ W satisfying
(d+1)—k (n+m)/2=m—1" -1
|E(v)] > =k vl> H—om—2 > 2|U|' e

LemMMA 8. Ler G be a graph of order n and minimal degree at least (n — 1)/2.
Let @ # U C V(G) and |\U| < 2* for some k € N. Then there is a set W of at
most k vertices such that G[U U W] is connected.

Proor. We apply induction on k. For k = 0 there is nothing to prove so
suppose that & > 0 and the assertion holds for smaller values of k.

By Lemma 7(i) there is a vertex x, which dominates all but a set U, of at most
2% -1 — 1 vertices of U. Set U, = {x,} U Uj. Since |U,| < 2*~%, by the induction
hypothesis there is a set W, of at most k — 1 vertices such that G[U, U W] is
connected. Set W = W, U {x;}. Then |W|< k and the graph G[U U W]=
GIUN Uy U {x4} U U, U W] is connected since G[(U\ Uy) U {x,} and
Gl{xq} U Uy U W] are connected. O

LEMMA 9. Let G be a graph of order n and minimum degree at least (n + m)/2,
where 1 < m < n — 3. Then there are at least (™}*) k-subsets of V(G) each of
which dominates at least n — |2~*n| vertices of G.

PROOF. As in the proof of Lemma 8, even the greedy algorithm produces
sufficiently many suitable k-sets. To get a k-set, choose its vertices one by one,
always dominating as many vertices as possible. To fill in the details, suppose
there are at least (J'}) (k — 1)-subsets of V(G) that dominate at lcast
n — [27%*'a| vertices of G. By Lemma 7(ii) each such (k — 1)-set is contained
in at least (m + 3) — (k — 1) = m + 4 — k k-sets dominating at least

n— 2| + [|2*%*1a| /2] = n = |27%n]
vertices. As each such k-set is obtained from at most k subsets, we obtain at least
(m+3)m+4—k =(m+3)
k-1 k k
appropriate k-sets. O
Thomason [83] deduced Theorem 5 from the following rather technical result.

THEOREM 10, Let p € N and r € R be such that p > 4, ar € N and there is a
k € N satisfying S <k <r—(p — 3)land
2-*ar]) ([r] —(p- 3)1)
= 3 [ < ]
(p )( g ’ |
where | = k + |log, k| + 1. Then ¢(p) < ar.



