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Preface

The principal purpose of this book is to present a comprehensive treatment
of a relatively new mathematical subject referred to as fuzzy measure theory.
The emergence of fuzzy measure theory (in the late 1970s) exemplifies a
significant current trend in mathematics, a trend toward generalizations of
existing mathematical concepts and theories. Each generalization enriches
not only our insights but also our capabilities to properly model the
intricacies of the real world.

Fuzzy measure theory is a generalization of classical measure theory.
This generalization is obtained by replacing the additivity axiom of
classical measures with weaker axioms of monotonicity and continuity. The
development of fuzzy measure theory has been motivated by the
increasing apprehensiveness that the additivity property of classical
measures is in some application contexts too restrictive and, consequently,
unrealistic.

Mathematical results presented in this book are almost exclusively
those of Zhenyuan Wang. They are the results of more than a decade of
concentrated research. Although most of the results were published in
various journal articles and conference proceedings, some results are
published here for the first time.

The book was written primarily as a text for a one-semester graduate
or upper-division course. Such a course is suitable not only for programs
in mathematics, where it might be offered at the junior or senior level, but
also for programs in a host of other disciplines. Most notable among these
disciplines, in which the utility of fuzzy measure theory is increasingly
recognized, are systems, computer, information, and cognitive sciences, as
well as artificial intelligence, quantitative management, mathematical social
sciences, and some areas of engineering.

Although a solid background in calculus is required for understanding
the material presented, the book is otherwise self-contained. Knowledge of
classical measure theory, whose basic concepts and results are overviewed
in App. A, is helpful but not essential. Relevant aspects of set theory, which
play an important role in developing fuzzy measure theory, are introduced
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vi Preface

in Chap. 2. Basic concepts and results of fuzzy set theory are overviewed
in App. B.

After a brief conceptual and historical discussion of fuzzy measure
theory in Chap. 1, and relevant prerequisites from set theory in Chap. 2,
the essence of fuzzy measure theory is covered in Chaps. 3-8. The applicabil-
ity of the theory is then illustrated by simple examples in Chap. 9. Individual
chapters are accompanied by notes, whose purpose is to provide the reader
with relevant bibliographical and historical information, and exercises, by
which the reader can test his or her comprehension of the material covered
in each chapter.

The nine chapters of the book are supplemented with six appendices.
As already mentioned, two of the appendices (A and B) provide the reader
with relevant background in classical measure theory and fuzzy set theory;
two appendices (C and D) are glossaries of key concepts and symbols; and
two of them contain six reprinted articles that are significantly connected
with the text: Three of the articles open new directions in fuzzy measure
theory (App. E), and three of them describe significant applications of fuzzy
measure theory (App. F). The following are copyright owners of the articles,
whose permission to reproduce them is gratefully acknowledged: The
Institute of Electrical and Electronic Engineers (IEEE), Elsevier, and
Springer-Verlag.

The manuscript of the book was used three times (in Fall 1989, Spring
1990, and Fall 1991) as a text in a graduate course *“Fuzzy Measure Theory,”
which was taught by Zhenyuan Wang at the Department of Systems Science,
Thomas J. Watson School, of the State University of New York at Bingham-
ton. We are grateful to all members of the faculty of systems science and
the Dean of the Watson School, Lyle Feisel, for their support of this
innovative course. The three offerings of the course, which were highly
successful, demonstrated that the text is amenable to students who do not
major in mathematics, in spite of its rigorous, mathematical treatment of
the material. We are grateful to several graduate students, who took the
course, for their suggestions and help with proofreading of the manuscript:
Kevin Hufford, Cliff Joslyn, Yunxia Qi, Mark Scarton, Ute St. Clair, William
Tastle, and Bo Yuan.

ZHENYUAN WANG
GEeoRrGE J. KLIR
Binghamton, New York
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CHAPTER 1

Introduction

Fuzzy measure theory, the subject of this text, is an offspring of classical
measure theory. The latter has its roots in metric geometry, which is character-
ized by assigning numbers to lengths, areas, or volumes. In antiquity, this
assignment process, or measurement, was first conceived simply as a com-
parison with a standard unit. Soon, however, the problem of incommensur-
ables (exemplified by the problem of measuring the length of the diagonal
of a square whose sides each measure one unit) revealed that measurement
is more complicated than this simple, intuitively suggestive process. It
became clear that measurement must inevitably involve infinite sets and
infinite processes.

Prior to the emergence and sufficient development of the calculus, the
problem of incommensurables had caused a lot of anxiety since there were
no satisfactory tools to deal with it. Integral calculus, based upon the
Riemann integral, which became well developed in the second half of the
19th Century, was the first tool to deal with the problem. Certain measure-
ments that are contingent upon the existence of associated limits could
finally be determined by using appropriate techniques of integration.

In the late 19th Century, there was a growing need for more precise
mathematical analysis, induced primarily by the rapidly advancing science
and technology. As a result, new questions regarding measurement emerged.
Considering, for example, the set of all real numbers between 0 and 1,
which may be viewed as points on a real line, mathematicians asked: When
we remove the end points, 0 and 1, from this set, what is the measure of
the remaining set (or the length of the remaining open interval on the real
line)? What is the measure of the set obtained from the given set by removing
some rational numbers, say number 1, 1/2, 1/3, 1/4,... 7?7 What is the
measure of the set obtained by removing all rational numbers?

Questions like these and many more difficult questions were carefully
examined by Emile Borel (1871-1956), a French mathematician. He
developed a theory [Borel, 1898] to deal with these questions, which was
an important step toward a more general theory that we now refer to as
the classical measure theory.



2 Chapter 1

Borel’s theory deals with families of subsets of the set of real numbers
that are closed under the set union of countably many sets and the set
complement. He defines a measure that associates a positive real number
with each bounded subset in the family, which, in the case of an interval,
is exactly equal to the length of the interval. The measure is additive in the
sense that its value for a bounded union of a sequence of pairwise disjoints
sets is equal to the sum of the values associated with the individual sets.

Borel did not connect his theory with the theory of integration. This
was done a few years later by Henri Lebesgue (1875-1941), another French
mathematician. In a paper published in 1900, he defined an integral, more
general than the Riemann integral, which is based on a generalized measure
that subsumes the Borel measure as a special case. These generalized
concepts of a measure and an integral (further developed in Lebesgue’s
doctoral dissertation published in 1902), which are now referred to as the
Lebesgue measure and the Lebesgue integral, are the cornerstones of classical
measure theory.

Perhaps the best nontechnical exposition of the motivation behind the
Lebesgue measure and the Lebesgue integral, and a discussion of their
physical meaning, was prepared by Lebesgue himself; it is available in a
book edited by K. O. May, which also contains a biographical sketch of
I.ebesgue and a list of his key publications [Lebesgue, 1966].

Classical measure theory is closely connected with probability theory.
A probability measure, as any other classical measure, is a set function that
assigns 0 to the empty set and a nonnegative number to any other set, and
that is additive. However, a probability measure requires, in addition, that
1 be assigned to the universal set in question. Hence, probability theory
may be viewed as a part of classical measure theory.

The concept of a probability measure (or, simply, a probability) was
formulated axiomatically in 1933 by Andrei N. Kolmogorov (1903-1987),
a Russian mathematician [Kolmogorov, 1950]. This concept of probability
is sometimes called a quantitative or numerical probability to distinguish it
from other types of probability, such as classificatory or comparative prob-
abilities [Fine, 1973; Walley and Fine, 1979; Walley, 1991]. Nevertheless,
the term ‘“‘probability theory,” with no additional qualifications, refers
normally to the theory based upon Kolmogorov’s axioms.

After more than 50 years of the existence and steady development of
the classical measure theory, the additivity property of classical measures
became a subject of controversy. Some mathematicians felt that additivity
is too restrictive in some application contexts. It is too restrictive to capture
adequately the full scope of measurement. While additivity characterizes
well many types of measurements under idealized, error-free conditions, it
is not fully adequate to characterize most measurements under real, physical
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conditions, when measurement errors are unavoidable. Moreover, some
measurements, involving, for example, subjective judgements or nonrepeat-
able experiments, are intrinsically nonadditive.

Numerous arguments have been or can be raised against the necessity
and adequacy of the additivity axiom of probability theory. One such
argument was presented by Viertl [1987]. It is based on the fact that all
measurements are inherently fuzzy due to unavoidable measurement errors.
Consider, for example, two disjoint events, A and B, defined in terms of
adjoining intervals of real numbers, as shown in Fig. 1.1a. Observations in
close neighborhoods (within a measurement error) of the endpoint of each
event are unreliable and should be properly discounted, for example,
according to the discount rate functions shown in Fig. 1.1a. That is, observa-
tions in the neighborhood of the end-points should carry less evidence than
those outside them. When measurements are taken for the union of the two
events, as shown in Fig. 1.1b, one of the discount rate functions is not
applicable. Hence, the same observations produce more evidence for the
single event A U B than for the two disjoint events A and B. This implies
that the degree of belief in A U B (probability of A U B) should be greater
than the sum of the degrees of belief in A and B (probabilities of A and
B). The additivity axiom is thus violated.

The earliest challenge to classical measure theory came from a theory
proposed by a French mathematician G. Choquet [1954], for which he
coined the name theory of capacities. A Choquet capacity is a set function
that associates a real number (not necessarily nonnegative) with each subset
of the universal set employed and is continuous and monotonic with respect
to set inclusion.

Although the Choquet theory of capacities is a broad framework,
encompassing various types of nonadditive measures, it is too general for

Discount rate functions Discount rate functions

N

o [ ¥ | [ ¥ 1
[ X 1 T X ]
| N— l J
EVENT A EVENT B EVENT AuB
@ ()

Figure 1.1. An example illustrating the violation of the additivity axiom of probability theory.
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most practical applications. Other, more useful types of nonadditive
measures emerged later in more specific contexts.

In the context of probability theory, a generalized theory based upon
two types of nonadditive measures was originated by Dempster [1967] and,
later, fully developed by Shafer [1976]. These types of measures are obtained
by replacing the additivity requirement of probability measures with either
a superadditivity requirement or a subadditivity requirement. The super-
additive measures, which are also upper semicontinuous, are usually called
belief measures. The subadditive measures, which are also lower semicon-
tinuous, are usually referred to as plausibility measures.

Given a measure of either of the two types, it induces a unique measure
of the other type. Taken together, belief and plausibility measures form a
theory that is usually called the Dempster-Shafer theory or evidence theory.
It stems from the initial work by Dempster [1967] that belief and plausibility
measures have a natural interpretation as lower and upper probabilities,
respectively. Since belief measures are always smaller than or equal to the
corresponding plausibility measures, the intervals between belief and plausi-
bility values may be viewed as ranges of admissible probabilities. The
Dempster-Shafer theory may thus be viewed as a theory that is capable of
dealing with interval-valued probabilities.

Properties of belief and plausibility measures are studied in Sec. 3.4.
While current literature dealing with these measures (including the classical
book by Shafer [1976]) is predominantly based on the assumption that the
universal set on which the measures are defined is finite, our treatment of
the subject is not restricted in this way.

Another theory based upon nonadditive measures, referred to as possi-
bility theory, emerged from the concept of a fuzzy set, which was proposed
by Zadeh [1965]. A fuzzy set is a set whose boundary is not sharp. That is,
the change from nonmembership to membership is gradual rather than
abrupt. This gradual change is expressed by a membership grade function
of the fuzzy set, which assigns to each individual of the universal set a value
‘in the unit interval [0, 1]. This value represents the grade of membership
of the individual in the fuzzy set. A fuzzy set is called regular if the maximum
of its membership grade function is 1. To distinguish between fuzzy and
nonfuzzy sets, the latter are usually referred to as crisp sets.

Given a normal fuzzy set, Zadeh [1978] defines a possibility distribution
function associated with the set as numerically equal to its membership
grade function. Then, he defines a possibility measure by taking the
supremum of the possibility distribution function in each crisp set of
concern.

It turns out that possibility measures emerge not only from the context
of fuzzy sets, but also from the context of evidence theory, as special
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plausibility measures [ Dubois and Prade, 1988; Klir and Folger, 1988]. It
is this latter context that is employed in our study of possibility measures
and the associated necessity measures (special belief measures) in Sec. 3.5.

The two principal themes of this text, fuzzy measures and fuzzy integrals,
also emerged in the context of fuzzy sets, as suggested by their names. These
concepts were envisioned by Sugeno [1974, 1977] in his efforts to compare
membership grade functions of fuzzy sets with probabilities. Since no direct
comparison is possible, Sugeno conceived of the generalization of classical
measures into fuzzy measures as an analogy of the generalization of classical
(crisp) sets into fuzzy sets.

Fuzzy measures, according to Sugeno, are obtained by replacing the
additivity requirement of classical measures with weaker requirements of
monotonicity (with respect to set inclusion) and continuity. The requirement
of continuity was later found to be still too restrictive and was replaced
with a weaker requirement of semicontinuity. In fact, belief and plausibility
measures, as well as necessity and possibility measures, are only semicon-
tinuous. In this text, we cover both continuous and semicontinuous fuzzy
measures.

Similarly as Choquet’s capacities, fuzzy measures are too loose to allow
us to develop a theory that would capture their full generality and, yet,
were of pragmatic utility. On the other hand, some special types of fuzzy
measures, such as superadditive and subadditive measures, appear to be
unnecessarily restrictive in some application contexts. These considerations
led to a more systematic investigation of useful structural characteristics of
set functions, primarily by Wang [1984a, 1985a], as presented in Chap. 5.
These characteristics are essential for capturing mathematical properties of
measurable functions on fuzzy measure spaces (Chap. 6), and that, in turn,
is requisite for developing a theory of fuzzy integrals (Chap. 7), as well as
a more general theory of pan-integrals (Chap. 8).

There have been many additional developments pertaining to various
aspects of fuzzy measure theory (Chaps. 3-8) that we do not deem necessary
to cover in this Introduction. Since most of these developments are rather
technical and involve special terminology, we leave their historical and
bibliographical coverage to Notes accompanying the individual chapters.

Notes

1.1. An overview of relevant concepts and results of classical measure theory is given in
Appendix A. For further study, we recommend the classic text by Halmos [1967]. An
excellent text on classical measure theory by Billingsley [1986] is recommended to readers
that are interested particularly in probability measures.



1.2

1.3.

1.4.

1.5.
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Among many other books on classical measure theory, let us mention a few that are
significant in various respects. The book by Caratheodory [1963], whose original German
version was published in 1956, is one of the earliest and most highly influential books on
classical measure theory. Books by Temple [1971] and Weir [1973] provide pedagogically
excellent introductions to classical measure theory; they require only some basic knowledge
of calculus and algebra as prerequisites. The book by Constantinescu and Weber [1985],
suitabie for a mathematically mature reader, attempts to unify abstract and topological
approaches. Other valuable books are by Berberian [1965], Kingman and Taylor [1966],
and Wheeden and Zygmund [1977]. The book by Faden [1977] is an extensive treatise
on the use of measure theory, particularly in the area of economics, which also contains
a good introduction to measure theory itself.

An excellent discussion of the various shortcomings of additive (i.e., precise) probabilities
and the reasons why nonadditive (i.e., imprecise) probabilities are needed to overcome
these shortcomings is presented by Walley [1991]. It is shown by Klir [1989] that classical
(additive) probability measure can capture only one of several types of uncertainty that
can clearly be recognized when the additivity property is abandoned. A paper by Billot
[1992] contains an interesting historical overview of the use of nonadditive probabilities
in economics.

The history of classical measure theory and Lebesgue’s integral is carefully traced in a
fascinating book by Hawkins [1975]. He describes how modern mathematical concepts
regarding these theories (involving concepts such as a function, continuity, convergence,
measure, integration, and the like) developed (primarily in the 19th Century and the early
20th Century) through the work of many mathematicians, including Cauchy, Fourier,
Borel, Riemann, Cantor, Dirichlet, Hankel, Jordan, Weierstrass, Volterra, Peano,
Lebesgue, Radon, and many others.

For the history of probability theory, we recommend a book by Hacking [1975] and a
paper by Shafer [1978]. From the standpoint of fuzzy measure theory, it is most interesting
that Bernoulli (1654-1705) and later Lambert (1728-1777) were already concerned with
a calculus of probabilities that are not additive and, consequently, are imprecise. Their
work, unfortunately, was forgotten for more than two centuries.



CHAPTER 2

Required Background in Set Theory

2.1. Set Inclusion and Characteristic Function

Let X be a nonempty set. Unless otherwise stated, all sets that we consider
are subsets of X. X is called the universe of discourse. The elements of X
are called points. X may contain finite, countably infinite, or uncountably
infinite number of points. A set that consists of a finite number of points
Xy, X2,...., X, (or, a countably infinite number of points x,, x,,...) may

be denoted by {x;, x,, ..., X,} ({x{, x2, ...}, respectively). A set containing
no point is called the empty set, and is denoted by .
If x is a point of X and E is a subset of X, the notation

xe E

means that x belongs to E, i.e., x is an element of E; and the statement
that x does not belong to E is denoted by

x¢ E.
Thus, for every point x of X, we have
xeX
and
x gD
A set of sets is called a class. If E is a set and € is a class, then
Ec%

means that the set E belongs to the class €.
If, for each x, m(x) is a proposition concerning x, then the symbol

{x|m(x)}
denotes the set of all those points x for which 7 (x) is true, that is,

xo € {x|m(x)} & m(xo) is true.
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By replacing point x with set E, such a symbol may be used to indicate a
class. For example,

{E|x € E}
denotes the class of those sets that contain the point x.

Example 2.1. Let X ={1,2,...}. The set {x|x is odd and less then 10} is
{1,3,5,7, 9}

Example 2.2. Let X be the set of all real numbers, which is often referred to
as the real line or one-dimensional Euclidean space. The class {(a, b)| —0 < a <
b < 0} is the class consisting of all open intervals on the real line.

If E and F are sets, the notation
EcF or FoE

means that E is a subset of F, i.e., every point of E belongs to F. In this
case, we say that F includes E, or that E is included by F. For every set E,
we have

Jc Ec X
Two sets E and F are called equal iff
EcF and FcE;
that is, they contain exactly the same points. This is denoted by
E=F

The symbols = or = also may be used for classes. If € and & are
classes, then

EcF

means that every set of & belongs to %, that is, & is a subclass of .
If E,, E,,..., E, are nonempty sets, then

E={(x,%,....,x,)|x; € E;, i=1,2,...,n}
is called an n-dimensional product set and is denoted by
E=E xE;x---%xE,.

Similarly, if {E, |t € T} is a family of nonempty sets, where T is an infinite
index set, then

E ={x, te T|x, € E, for each t € T}

is called an infinite-dimensional product set.
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Example 2.3. Let X, and X, be one-dimensional Euclidean spaces. Then
X = X; X X, = {(x;, x3)| x, € (—00, ©), x,€(—00,0)} is the two-dimensional
Euclidean space. The set {(x;, x;)|x, > x,} is a half (open) plane under the line
X, = x,, while the set {(x,, x;)|x] + x3 < r’} is the open circle centering at the origin
with a radius r, where r > 0.

Example 2.4. Let X, = {0,1}, t € {1,2,...}. The space
X=X XXX X X, X e={(Xy, X3, ..., Xp,-..)|%,€{0, 1} foreach te{1,2,.. .}}

is an infinite-dimensional product space. Each point (x,, x,,..., x,,...) in this
space corresponds to the binary number 0.x,x,...x,...in [0, 1]. Such a corre-
spondence is not one to one, but it is onto.

If E is a set, the function xg, defined for all x € X by

1 if xe E

X (x) = {0 if x ¢ E,

is called the characteristic function of the set E. The correspondence between
sets and their characteristic functions is one to one, that is,
E=F & ye(x)=yxr(x), VxeX
It is easy to see that
EcF & ye(x)<syp(x), VxeX
and that

2.2. Operations on Sets

Let € be any class of subsets of X. The set of all those points of X
that belong to at least one set of the class € is called the union of the sets
of €. This is denoted by

U €

If to every ¢ of a certain index set T there corresponds a set E,, then
the union of the sets of class

{E/|te T}
may be also denoted by

\JE or UE.
t

teT



