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Introduction

Let G be a connected, affine algebraic group over an algebraic-
ally closed field and B a Borel subgroup of G . For each one dimen-
sional rational B-module L we have the induced G-module IndgL .
These modules are of fundamental importance in the representation theory
of G ; in characteristic O one obtains every simple rational G-module
in this way and in arbitrary characteristic IndgL , when non-zero, has
a simple socle and each simple G-module occurs as the socle of some
such induced module. The formal character of IndgL is independent of
the characteristic, being given by Weyl's Character Formula, but the
submodule structure depends very heavily upon characteristic and very
little is known about this structure in characteristic p . For G
semisimple, the induced modules also have an interpretation as the
global sections of line bundles on the quotient variety G/B and so
provide a bridge between the representation theory of G and the geom-
etry of G/B

We make the following key definition. A good filtration of a rat-
ional G-module V 1is an ascending chain of submodules

0o = VO,V v of V such that V 1is the union of the Vi and,

177270

for each {4 > 0O , VL/Vi is either O or isomorphic to IndSL for

=1
some rational one dimensional B-module L . It was shown in [25] that

for G semisimple and simply connected each rationally injective inde-

composable G-module has a good filtration. In this monograph we study,
for a connected, affine algebraic group G over an algebraically closed
field k , the following hypotheses.

Hypothesis 1 For all rational G-modules V,V' which have a

good filtration the tensor product V ® V' ‘has a good filtration.

Hypothesis 2 For every rational G-module V which has a good filtrat-
ton and every parabolic subgroup P of G the restriciion of V to

P has a good filtration.

The hypotheses are mainly of interest when G 1is semisimple (we
reduce to the semisimple, simply connected case in Chapter 3) and hyvpo-
thesis 1 has been considered in this case by Wang Jian-pan, [52]. 1In
that paper hypothesis 1 is shown to be true when G 1is of type A ,
for the other classical groups when k has characteristic p = h-1

(h is the Coxeter number of G ), for p = 5 in type G, v p = 31



in type F4 , P 2 29 1in type E6 , P 259 in type E7 and p = 151

in type E8 . We show that both hypotheses are satisfied provided that
either the characteristic of k is not 2 or G involves no component
of type E7 or E8 . There are many technical advantages - which will
emerge in due course - in allowing G to be an arbitrary (rather than
semisimple) connected algebraic group and also in considering both
hypotheses together.

Apart from the intrinsic appeal, there are several good reasons

for trying to establish the hypotheses. It is enough to do this with
vV = IndSL A IndgL' for L and L' one dimensional B-modules.

Thus we are attempting to say something about the tensor product of
induced modules and the restriction of an induced module. Viewed from
this standpoint what we are trying to do is to find substitutes, in the
context of algebraic groups, for the Mackey Tensor Product Theorem and
the Mackey Subgroup Theorem for finite groups ((44.2) and (44.3) of
[21]). The search for Mackey type theorems is particularly tantalizing
since one has, by the Bruhat decomposition (28.3 Theorem of [35]) an
especially good indexing set for the double cosets of B in G ,

namely the elements of the Weyl group. As noted by Wang Jian-pan, [52],
it follows from hypothesis 1 that the natural map

r(e/B,L) @ r(g/B,L'y - r(g/B,L ® L') , between global sections of dom-
inant induced line bundles on G/B , is surjective. When G 1is class-
ical, that is G has type A, B, C or D, this is a result of
Lakshmibai, Musili and Seshadri, [44] - we also obtain the result for

F4 , G2 , E6 in arbitrary characteristic and for E7 and EB if the

characteristic is not 2 . It seems likely that hypothesis 2 will be
useful in the representation theory of reductive groups. We give a
small application, in section 11.3 to homomorphisms between Weyl modules.
Hypothesis 2 does seem to provide real insight into these modules and,
together with hypothesis 1, makes possible many cohomological calculat-
ions. One can see this throughout the text but Chapter 7, treating

F, , is particularly rich in examples of this kind. We also hope that,

4
when &k has prime characteristic, hypothesis 1 will be useful in con-

nexion with the structure of the modules SIH ® Y (X)) (SIH denotes the
nth Steinberg module and Y()A) 1is the G-module induced from a one
dimensional B-module X ). Components of these modules and their duals
are frequently used ([10]1, (191, (241, [261, [36], 1371, (411, [42])

to compare the representation theory of G with that of its infinites-

imal subgroups.



When G 1is semisimple, the dual of a module induced from a one
dimensional B-module is a Weyl module (see section 1 of [40]). The
first time that I became aware of the hypotheses was in conversation
with Humphreys and Jantzen at the Durham Symposium on Finite Simple
Groups in 1978, where we discussed, for semisimple groups, hypothesis 1
in its dual formulation in terms of Weyl modules.

Before giving a synopsis of each chapter we briefly describe the
overall strategy of the proof. We show that the hypotheses hold for a
connected group G if and only if they hold for the quotient of G by
its soluble radical. Moreover the hypotheses hold for a semisimple
group G provided that they hold for the semisimple, simply connected
group of the same type. Also, the hypotheses hold for a direct product
of groups if and only if they hold for each factor. Thus we may assume
G to be semisimple, simply connected with an indecomposable root system
and by induction we may assume that the hypotheses hold for every proper
parabolic subgroup. It suffices to prove that, for each fundamental
dominant weight Ai (L =1,2,...,42 where £ is the rank of G ) and
each parabolic subgroup P , Y(A:)|

4" 'P
each rational G-module V with a good filtration, Y(Ai) ® V has a

has a good filtration and, for

good filtration. The first property is proved initially for P of
largest possible dimension, so that the number of successive quotients
in a good filtration of Y(X()!p will be as small as possible (and
assuming the result for 4§ < {4 in the classical case). Then it is
proved for an arbitrary maximal parabolic subgroup Q , such that P
and Q contain a common Borel subgroup, by examining the effect of
restriction from G to P n Q followed by induction from P n Q to
Q .

In Chapters 1, 2 and 5 we deal with general results on group co-
homology and the derived functors of induction which are needed for the
specific calculations in Chapters 4, 6, 7, 8, 9 and 10. The main pur-
pose of Chapter 1 is to establish the notation and explain the relation-
ship between various left exact functors. Chapter 2 contains results
relating the cohomology of some modules for parabolic subgroups to the
cohomology of other modules for other parabolic subgroups. This Chapter
also contains a deduction from Kempf's Vanishing Theorem of Weyl's
Character Formula for the character of IHdSL for a reduction group
G and one dimensional B-module L . The formula is used extensively
in the later calculations and we were unable to find a suitable reference
(for reductive groups). The proof of Weyl's Character Formula given
is quite short, it is not obtained by reduction from characteristic

zero (c.f. section 1 of [40|) and, as in the paper (48] treating



essentially the semisimple characteristic zero case, deals directly

with the group rather than the Lie algebra (not even the Casimir opera-
tor is used). In deriving the results in Chapter 2 (and elsewhere) we
use three different cases of the Grothendieck spectral sequence (section
2.4 of [30]) relating the derived functors of the composite of two left
exact functors to the composites of the derived functors. The first
application arises from the expression of Tnds (the induction functor

from a closed subgroup H to G) as the composite Indgolndg (transit-

ivity of induction) for a closed subgroup K containing H . The second
application is the Lyndon-Hochschild-Serre spectral sequence expressing

G cohomology in terms of the cohomology of a closed normal subgroup N
and the quotient G/N . The final application arises from the express-
ion of the fixed point functor FH , from rational H-modules to
k-spaces, as FGOIHdS (reciprocity of induction).

In Chapter 3 we make various reductions to the hypotheses so that
they become susceptible to the case by case analysis which follows.

In Chapter 4 we prove the hypotheses for the classical groups.

The argument here is independent of the characteristic and it has been
possible to treat the groups of type B , C and D in a unified
manner. Fortunately the restriction of Y(A() to a proper parabolic
subgroup of maximal dimension has only 4 successive quotients in a good
filtration (for « in "general position") and the module structure is
much the same in all three types B , C and D .

Some additional homological algebra is needed to deal with the
exceptional groups and this is given in Chapter 5. The hypotheses are
proved for G2 in Chapter 6 however it would not be difficult to treat
this case without the benefit of Chapter 5. 1In Chapter 7, treating
F4 , we found it necessary to consider separately the cases of odd and
even characteristic. It takes just 11 pages to deal with F4 for
characteristic p # 2 but needs another 33 pages to give the additional
arguments necessary to cover the case p = 2 (this may be omitted at
a first reading). Briefly, the reason why p = 2 1is a special case is
that the exterior square of a module is not usually a summand of the
tensor square. And the reason why we manage to prove the hypotheses in
characteristic 2 is that we are able to use Andersen's strong linkage
principle, [4], to analyse components of the tensor product of induced
modules, the point being that, by Chapter 3, a summand of a module with
a good filtration has a good filtration.

The subject, E6 , of Chapter 8 is altogether easier but again

there is a division in the proof into odd and even characteristics.



Chapters 9 and 10 are devoted to the remaining exceptional groups

E7 and E8 . The procedure here is to analyse first the modules

Y(AL) , corresponding to the terminal vertices o, of the Dynkin-Dia-

gram, and then exterior powers of these modules are used to deal with

Y(Aa) for an arbitrary fundamental dominant weight An . In fact one

only ever needs to go as far as the fourth exterior power and the second
stage of the procedure works very smoothly provided that the character-
istic p 1is at least 5 (because the exterior power is a summand of

the tensor power in this case). In characteristic 3 a consideration

of exterior powers is insufficient and some block theory is needed. We
have unfortunately not been able to prove the hypotheses in character-
istic 2. In the case of E and p = 2 we have at least, in Chapter 9,

7
a satisfactory analysis of Y(XL) for o, a terminal vertex but for

E8 (in characteristic 2) we have not given an analysis of Y (X,) (see

8
section 8.1 for the labelling of the Dynkin-Diagrams of type E) . More-

over we have no way of going from the terminal Y(AL) to an arbitrary

Y(An) . At several points in the text (notably in sections 9.3 and
10.2) it is necessary to know that various dominant weights belong to
different linkage classes (so the corresponding modules belong to dif-
ferent blocks) and this involves many routine but lengthy calculations
which we have omitted. These calculations were done by hand and later
checked, on a Sinclair ZX 81 Microcomputer, by J.F. Blackburn to whom
I am extremely grateful.

Chapter 11 opens with an example of a reductive subgroup H of a
reductive group G and a G-module V such that V has a good filt-
ration but the restriction of V to H does not. The remainder of
the chapter is devoted to applications of the hypotheses to rational
cohomology, homomorphisms between Weyl modules, canonical products on
induced modules and filtrations over Z of Weyl modules for Kostant's
Z-form %E of the enveloping algebra U(g) of a complex semisimple
Lie algebra g .

The final chapter is given over to a number of observations on
issues not directly concerned with the hypotheses but which nevertheless
have mainly arisen in the course of our work on the hypotheses. The
issues discussed are the injective indecomposable modules for a parabolic
subgroup of a reductive group, Kempf's Vanishing Theorem for rank 1
groups, Kempf's Vanishing Theorem in characteristic zero and the exact-
ness of induction.

These notes are a substantially rewritten version of a winning

Adams Prize Essay in Algebra for 1981/2. 1In content the notes differ



from the essay only in that a proof of the hypotheses in the cases

has been added and that the final chapter is

E with p =3 and 7

8
new.
I wish to thank Tracy Kelly for the excellent job she has done in

typing my manuscript.



1. Homological Algebra

1.1 Induction

We recall the induction functor for algebraic groups discussed
more fully in [ 18].

Let G Dbe an affine algebraic group over an algebraically closed
field fk . By a rational G-module we mean a left kG-module which is
the union of its finite dimensional submodules and such that for each
finite dimensional submodule W the induced map G -~ GL(W) 1is a mor-

phism of algebraic groups. A morphism of rational G-modules is simply

a [G-module homomorphism. We denote by MG the category of ratiocnal
G-modules.

Let H be a closed subgroup of G . For V « MH we denote by
Map (G,V) the set of maps 4:G » V such that the image 4(G) 1lies in

a finite dimensional subspace W of V and the induced map §:G > W

is a morphism of varieties. For x ¢ G , 4 ¢ Map(G,V) the map x4:G~>V ,

defined by (x4§)(y) = §(yx) for y ¢ G , also belongs to Map(G,V) .
Thus Map(G,V) 1is naturally a G module which is, as one may easily
verify, rational. We set

Map, (G,V) = {§ « Map(G,V) |§(hx) = h§(x) for all h « H , x ¢ G}

The space MapH(G,V) is in fact a G submodule of Map(G,V) called

the induced module and more often written as Indg v. If ¢:v > V!
is a morphism of rational H modules then the map ang p:lnd: vV > Indg A
defined by ang $(4) = ¢o4 1is a G homomorphism and ang:MH > MG

is a left exact functor.

We now note for future reference the main properties of induction
and of the derived functors of induction. Proofs of these properties
of induction may be found in [18] (see also [23] for a more Hopf theor-
etic treatment). For a left exact functor F:A > B between abelian

categories with A having enough injectives we denote by

n
R F (n =2 0) the derived functors (defined by means of injective res-

olutions in A ). For V « MH let evzlndg(v) + V be the H-module

map defined by ev(ﬁ) = 4(1)



n G . . .
(1.1.1) For each n = 0 , R anH commutes with direct sums and direct

limits.

For n = 0 this follows fairly directly from the definition of
induction. The argument involved in extending the result to arbitrary
n =2 O 1is that used in Proposition 2.9, Ch.III of [32] to prove that

sheaf cohomology on a Noetherian space commutes with direct limits.

(1.1.2) (Reciprocity of induction) For any V' e« MG the map
G . . i
HomG(V', IndH(V)) > HOmH(V'IH,V) taking © to eV08 i8 a k-isomorph-
iem.
(1.1.3) (Transitivity of induction) For a closed subgroup K contain-

ing H , Indg is naturally isomorphic to Innganﬁ

(1.1.4) Indg takes injective objects to injective objects; Indg(h[H])

is <somorphic to R[G] .

The coordinate ring k[G] is equal to Map(G,k) and so has the
structure of a rational left G-module as above. Taking H = 1 , the

identity subgroup, we see from (1.1.2) that anf(h) = R[G] 1is an

injective object in MG , moreover a rational G-module is injective if

and only if it is a direct summand of a direct sum of copies of k[G]
(see section 1.5 of [29]) so that the first part of (1.1.4) is a con-

sequence of the second part. The second part is a consequence of (1.1.3).

(1.1.5) For a closed subgroup K containing H there is a Grothendieck

,m

"
spectral sequence Ei converging to (R anS)V with

L,m _ L Gy (M K
E; = (R IndK) (R IndH)V .

The existence of the Grothendieck spectral sequence (see section 2.4
of [301) 1is guaranteed by the left exactness of induction, (1.1.3) and
(1.1.4).

In particular we have the following.

(1.1.6) Let V € MH and n € N  be such that (lendg)v =0 for

m G . . \ ’
m=zn . Then (R IndH)V 78 zero for m < n and s isomorphic to



(Rm_nlndﬁ)o(RnlndE)V for m 2 n

(1.1.7) (Tensor identity) For V' ¢ M., , V e M and n 2 O ,
>4 G H

(R”Indg)(v' eV) =V e (R”Indg)v .

For n =0 see [18]. It may be proved for arbitrary n =z O by
dimension shifting or a Grothendieck spectral sequence argument.

,m

(1.1.8) There is a Grothendieck spectral sequence Ef converging to

n £ ; P
denotes Hochschild

o' (H,v) with Eg’m - gt

(G,lendg)v) , where H

cohomology (see [ 33]).

Let U = Indg , let E:MG » k-sp (the category of hk-vector spaces)
be the fixed point functor and let F:MH + k-sp be the H fixed point

functor. Taking V to be the trivial one dimensional G-module in
(1.1.2) gives a natural isomorphism EoD - F. Moreover E , D are left
exact and D takes injective objects to acyclic objects (by (1.1.4))

so there is a Grothendieck spectral sequence (section 2.4 of [301]) as
required.

In particular we have the following.

(1.1.9) Let V e M, and n ¢ N be such that (lendg)v =0 for
m =z n . Then Hm(H,V) Zs O 2f m < n and is isomorphic to

Hm_n(G,(Rnlndg)V) for m =z n

Combining (1.1.9) and (1.1.7) one obtains:

S ; 3 e b 10 suc h
(1.1.10) Suppose that Vl € MG r Y, AH and n e N uch that
(lendg)v2 =0 for m =z n . Then Hm(H,Vl Q V2) Z¢ 0 Zf m < n and
is isomorphic to Hm.n(G,Vl ® (Rnlndg)vz) if m = n
We call (G,H) a vanishing induction pair (VIP for the sake of

brevity) if the trivial one dimensional module i satisfies
n
(R Indg)h =0 for n >0 and is k for n =0 . From (1.1.7) we

obtain:



