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Logistic Map

Preface

A few years agoI purchased James Gleick’s Chaos (Viking, New York), and quickly became
absorbed in his book, which must be one of the best popularizations of science ever written.
In particular, [ knew that I had to construct and see for myself a solution to the Loreng
equations, apd I wanted to write a program to make one of Michael Barnsley’s ferns'. The
solution to the Lorenz equations came relatively quickly. The illustration on the opening page
of the Supplement is one example. The fern was more difficult, and there was something
~deeply mysterious about using random numbexs and a few simple transformations to create
the fern.-Ihave since made the fern, but it is not clear whether a new secret of nature has been
discovered, or if-we simply have a mathematical procedure that has no relationship to real
ferns. It was aquite exciting time in my life, as I discovered dynamical chaos for myself, along
with fractals, Julia sets, and the Mandelbrot set. I must admit to being captivated. It is not by
chance that the chapter on chaotic dynamic systems is the longest one in thisbook. .- -
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Atapproximately this same time, interestin computau‘on'al physics started to mushroom.
There were conferences of national significance on computers in physics instruction and
computational physics; a national committee began a study of the calculus-based introduc-
tory physics course, and soon called for more twentieth century physics and a ncw role for
the computer; the MUPPET MANIFESTO: The Implications of the Microcomputer for the
Physics Major's Curriculum outlined the cass for computers in the curriculum; new and
powerful tools including spreadsheet; and systems capable of doing symbolic mathematics
appeared on the market; a new journal, Computers in Physics, was begun; and computational
power continued to decline in price. Now the beginning calculus sequence is also being
reformed by our colleagues in mathematics. Among other things, the reformed version of
beginning calculus will be more numerical and it will make use of the new computational
tools that are now available.

The time seemed ripe {o make a significant effort to introduce computational techniques
and skills to calculus-based introductory physics students. This book is my contribution to
the movement to chan both how physics is taught and the content of the introductory
course. In this book ter is used to solve problems, build intuition, and understand
physics. The goal of this book is to put computational tools for doing physics in the hands of
students early in their college experience. I believe that “tool” is the appropriate metaphor for
the computer. I also believe these skills are just as important to students in biology, chemistry,
medicine, and engineering as they are to physics majors.

To In_structors

Orce the decision was made to write this book, the question of the appropriate environment
arose. In what hardware and software setting should the computational work be done? There
are many choices of environments: programming languages such as Pascal, FORTRAN, or
BASIC; spreadsheets such as Excel™ , Jazz™, or Lotus 1-2-3™; packages to do numerical
mathematics suchas MathCad™ ,MATLAB™  and TK Solver™ , and symbolic mathematical
systems such as Mathematica™ , Derive™ , and Maple™. It seemed less than wise to pick one
of these to the exclusion of all of the others, and I decided to express the work of this book
inEn: "ish-language algorithms. And, in fact, any of the preceding environmental options are
suitable for solving the problems in this book. It is as simple to implement Euler’s method
in Maple as it is in Pascal.

It will be up to the instructor to choose the environment appropriate to each setting. It
will be up to the student to translate the algorithms of this book into the language of his or
her setting. The last statement is, I think, quite important. If the computer is to be a tool rather
than a teacher or a tutor, then the student must acquire skills in using the tool. Providing slick

“animations, simulgtion®; or demonstrations is not the goal of this book. In a Pascal

environment the student should write programs that implement the algorithms in this book;
if the environ.nent is Excel, then the student should construct spreadsheet solutions 1o the

"problems, at least up to the point where students have acquired some fluency in the

environment.
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« I think it is appropriate to make a few comments on the choice of environment. It is
possible that my bias as a programmer is showing, but I feel that the best environment is a
programming language, Pascal, FORTRAN, BASIC, etc. The choice between a program-
ming language or one of the other environments is a choice between static or dynamic
graphics. A program gives the student a dynamic perspective of the solution to a problem that
neither the numerical nor the symbolic mathematics environments provide. Their output is
static. For example, when projectile motion is modelled with a program, students can watch
the “flight” as time marches onward. Other environments will only produce a graph of the
solution. It is difficult to see, for another example, how intuition about chaotic dynamics can
be built as easily in 4 static context as in a dynamic one. However, I have used spreadsheets
to do many of the problems, and spreadsheets have the pedogical advantage of greater
simplicity.

Another consideration about the choice of environment is cost. The least expensive
choice is probably a programming language, both in terms of the package and in terms of
memory requirements. Turbo Pascal™, forexample, ismuch cheaper than Excel. Mathematica
not only is expensive in dollars, it requires approximately four megabytes of memory. Most
programming languages will require less than onextenth of that amount of memory. BASIC
of one sort or another is frequently bundled with the machine.

Students and instructors will bring a large vafiety of environmental skills to this book,
from almost total illiteracy to proficiency in severakenvironments. To meet the needs of those
students and instructors with little experience, I ha?e provided at the end of each chapter bare
bones BASIC programs that implement most of the algorithms. These programs may also
serve as models or pseudocode for other environments. I have chosen BASIC because it is
the closest thing to a.universal language in the world of computers, and it is simple to
understand because it was written for beginners. The dialect of BASIC that I have chosen is
True BASIC, a version of BASKC that is more portable than other versions, because of its
graphics capability, and because it is structured. (Be aware that simply loading and running
the programs in this book will not achieve the goals previously outlined.) With the exception
of some drawings, all of the figures in this book were made with True BASIC and a “paint”™
program, which did the inversions and attached the legends. If your language has the
equivalent of a

PLOT X, Y

instruction, then all of the graphics in this book are possible.

If an instructor incorporates computational physics into a course, what must be left out?
The current curriculum in calculus-based introductory physics is packed. I have near me a
new first edition of a physics textbook with more than 1000 pages, an accompanying study
guide 755 pages thick with 1530 practice exercises, 208 example problems, and 901 practicc
test questions. Students have math anxiety, professors have textbook anxiety. Itisnow clearly
im ible to cover all of the material, and decisions must be made about course content.
Conscientious people that we are. we do not want to “cheat™ or handicap our students.
Furthermore, innovation feels risky for those of us who have the same relationship to
Hall:day-and-Resnick as an evangalist has to the Bible. But our students are less fragile than
we think, ard the company is impressive in the “'less-is-more™ camp. So let's use the bite-the-
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bullet metaphor, and take the responsibility and freedom, as professionals, to decide for
ourselves which topics to include and which to omit. At this point there appears to be no such
thing as conventional wisdom. New models for teaching calculus-based introductory physics
are a much-sought-after commodity. In my own reflections I wonder if content is less
important than the ability to think conceptually and bring mathematical skills—analytical
and numerical—to bear on physics problems.

If youchoose to teach aumerical probiem-solving skills to your students, how should you
use this book? Above all, this book is intended to be a self-paced and hands-on experience
with the book and the computer side-by-side. The book is supplemental, not comprehensive.
There is, furthermore, not even a hint that you should cover all of it. Realistically, you should
also expect some cost in time while the students leam or adapt to the environment you have
chosen. Chapters 1 and 2 are probably essential, especially if you plan to do Chapter 12 on
chaotic dynamics, which I urge you to try. (In fact, Chapter 12 can be profitably placed after
Chapter 2.) To help relate the book to the current curricuium, you might call ihe first five
chapters “mechanics,” the next five “E & M,” and the last three “modern physics.”

You might try a laboratory approach, sometimes doing experiments, other times
working with the computer. Assign one or more sections, and have students hand in their
programs, the output of those programs and a written response to the questions. The questions
skould be answered in sentences or paragraphs as opposed to one-word answers. Look for

* students who really like working with computers and let them use this book in independent

study. Or, try replacing one lecture or recitation a week with time spent by students working
on the computer doing computational physics. We all acquire guilt feelings when we do not
lecture, but I think that deep down we know that students learn when they are engaged, and
some of our lectures are less than engaging. I hope that with the new course content that will
come from current studies of the introductory physics curriculum, and with results of current
research in physics education, a new paradigm in learning physics will emerge. My bet is that
the computer-as-tool metaphor will be an important component.

I want to close this section with a few comments about the content of this book. An
importanftheme, implicit in the calculus-based introductory course and implicit in this book,
is the solution of differential equations. There are good reasons for this. Newton’s Second
Law is a differential equation, which, in our introductory physics courses, we cleverly
disguise in the form F = ma. Kirchhoff’s Loop Rule is frequently a differential equation. So
are wave equations, and so is Schrodinger’s equation. Heat flow problems also yield
differential equations. The differential equation is ubiquitous. However, we do not make a
major point of this in the text. Because the problems are solved numerically, theie is no need
to overwhelm students with the fact that we are solving second-order differential equations.
For example, to solve motion problems, the following three simple relationships are required:

Vs =V, +ha,,
where

Fy

ay =—
m

’
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and

X SEx,+hy,.

On the other hand, I feel that it is exwemely important for students to understand,
mathematically and/or intuitively, where these equations originate. Newton’s Second Law
should be obvious. The other two are obtained from the definition of the derivative, which
they find in their calculus textbook. I use acceleration, in a one-dimensional context, to
illustrate just what I mean, Let the =symbol mean “is defined as.” Then, in one dimension,

an = dv(t) = Tifii v(t+h) - v(().
dt h=0 h

For a sufficiently-small time interval 4, this turns into the approximation (=),

v(t+h) - (1)

a(t) = P

y

which may be rearranged to read
v(t+h) = "(’)*Ah“(’)'
[f this approximation is xpressed in subscript notation, we obtain
Vps =V, +ha,.
A similar derivative argument relates position and velocity. Thus
v Xpp1 EX, +hv,.

1t is difficult to overemphasize how important the concepts just described are. They are key
concepts for most of the book, and they empower us to solve quite complex différential
equutions. For many students the approximations will also be intuitive; the velocity.at time
t + h is the velocity at time ¢ plus the acceleration times the time.

I have chosen to use the “v(z + h)” notation and the difference quotient,

v(t+h)—v()
h

precisely because that is how students will see the derivative defined ia their calculus
textbook. Specifically they will see the derivative defined this way:

-1,

’

lim
h—=0

()=

or

4 ) _ o FE+ D= f()

dx h—0 h
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The notation I have used is a modern one; the A notation,

_dl 3 lim ﬂ‘

dx Ax-0 Ax
used so frequently in physics textbooks, is seldom found in calculus. Furthermore, I think it
is easy to understand that, for example, v(¢ + h) is the velocity at time ¢ + h, while v(¢) is the
velocity at time ¢, hence [v(t + h) — v(#}] is the change in the velocity in time A. This makes
[v(t + k) — v(1)1/h the average acceleration. _

In concluding this section, I wish you good luck. We are breaking new ground—
teachers, publishers, authors, and students, all searching and groping for the best ways to use
the computer in physics. This bock makes available to the student an option that is
economically feasible, within reach intellectuawy, and, I sincerely hope, useful, joyful,
creative, and engaging.

To the Student

Your section is shorter than that for Instructors. If you have read the preceding paragraphs
you will already know that the goal of this book is to help you learn how to use the computer
to do physics. I have no hints or tricks that'will make this easy. Learning is not easy; it is
frequently frustrating. '

A year or so ago, a student in my calculus-based introductory physics class came to me
at the end of the semester and said, “I learned how to do physics problems, but I don’t feel
that I understand physics.” He was a bright student, and he did know how to do physics
problems. In fact, he was very good at it. Like so many of his predecessors, including myself,
have done, he had committed to memory a repertoire of physics problems and the techniques
to solve them. He could proceed by analogy on his homework and tests. Indeed, the
homework helped him create his repertoire.

I take some responsibility for his problem, perhaps most of it. I should have asked many
more conceptual questions, probing the class members for their understanding of physics. On
exams, [ should not have provided such large rewards for doing the same kind of problems

" that the students had done for their homework. In the classroom and on exams, the students
- should have been required to think.

He also bears some responsibility for what happened (or didn’thappen). He had a chance
to think about the problems, to reflect on their answers, and to conceptualize the physics that
was involved. Instead he chose to get finished with his homework and do something else. For
the most part, no one can make you think physics. It’s a choice you make.

Their are also choices to be made with respect to the work in this book. You can write/
run many of the progréms more or less automatically, and that, like problem solving, is a skill
worth acquiring. But if you want to understand physics, you must make a conscious attempt
to give written conceptual explanations and to understand for yourself the output of the
programs. For example, give a conceptual explanation of why air resistance makes the time
required for a baseball to fall from a height A longer than the time required to get there in the
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first place? I have tried to ask many questions like that, but only you can give thoughtful
answers. ‘

Understanding physics is a shared responsibility and a shared joy. What a professor or
a textbook may do is engage you. I hope that I have assumed my share of the responsibility
by engaging you and giving you an opportunity to think physics. The rest of the respohsibility
1S yours.

' M. Barnsley, Fractals Everywkere (Boston: Academic Press, 1988), 103.
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Numerical Solution

1/ The Motion of Falling Objects =

1.1 Introduction
A review of the following topics may be helpful in this chapter:

-  Displacement, velocity, and acceleration
¢ Motion with constant velocity

»  Uniformly accelerated motion

»  Motion of an object in free fall (a = g)

We will also briefly refer to Newton’s Second Law of Motion. It would be most useful to
review in your calculus text difference quotients and the definition of the derivative. The
purpose of this chapter is to illustrate, as simply and quickly as possible, how the computer
may be used to provide realistic solutions to real problems. In the next chapter we will analyze
kinematics problems in more detail and with more rigor. For now, we wish to keep the

- 1



