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PREFACE

This textbook is designed for an enrichment course in mathematics and
contains material not regularly given in a secondary-school course or in
any traditional first-year course in college.

It is hoped that a course based on this textbook would give a student a
broader foundation in mathematics and better prepare him for the
calculus; a course in trigonometry would be a necessary prerequisite.

A unique feature is the option of integrating Fortran programming
for an electronic computer into the complete course for all the types of
problems considered. The book is self-contained and requires no prior
knowledge of programming or computers.

However, all of the work on Fortran may be omitted without affecting
the continuity of the material in any way.

The material in this textbook has been given by the author in an
enrichment program for high-school students since 1961. It also was the
basis of a course given in National Science Foundation Summer Institutes
for High Ability Secondary-School Students in 1962 and 1963. It may be
taught in one or two semesters, depending upon the depth of coverage
undertaken, especially in the use of the computer.

I would like to acknowledge the support given me by the National
Science Foundation under whose grant NSF-G21180, in the Cooperative
College-School Science Program, the original lecture notes were prepared
which formed the basis of my book.

I express my deep appreciation to Professor John M. Perry, Clarkson
College of Technology, Professor Seymour Schuster, Carleton College,
and Professor Roy Dubisch, University of Washington, for their many
helpful comments and suggestions.

This book was written while I was professor of mathematics at Clarkson
College of Technology.

Utica, New York ROBERT D. LARSSON
July, 1963
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1 GROUPS

1. Sets and Equations

The concept of a set is of great usefulness in mathematics.

Definition. A set is a collection of numbers, symbols, points, objects,
etc., called elements, which have some distinguishing characteristics in
common.

We speak of the set of even integers, the set of positive integers, the set
of books on a shelf, the set of rational numbers, the set of people in a
room, just to cite a few examples.

Now given two elements b and c belonging to a set S, one can ask
whether there is an element z, belonging to the set S, such that

bx = c.
But immediately we have introduced another concept. What do we mean
by the expression bz? Is it multiplication in the ordinary sense of the
word ? If so, then the elements in the set S under consideration must be
such that they can be combined by ordinary multiplication.

For example, if our set S was composed of the men in a room, we could
not combine one man with another man and obtain a third man. But if
our set S was the set of committees made up from men in a room, and b
and c each represented a committee, then it might be possible to combine
committee b with some other committee x and obtain a committee identical
to committee c. However, it also might be impossible.

Thus we see that in any equation one must define not only the set S
whose elements appear in the various expressions in the equation, but
the operation or operations by which the elements may be combined as
well.



We can illustrate this in the following examples:
Given the set S of odd integers and the operation of multiplication,
does the equation

3z =15

have a solution? In other words, is there an element called = belonging
to the set of odd integers, such that the left-hand side of the equation
could replace the right-hand side? The answer is obviously yes, since the
element x can be selected as the element 5, and 5 is an odd integer.

But suppose that we are given the set of odd integers and the operation
of addition, does the equation

34 2=15

have a solution? The answer is no. There is no odd integer, «, which
can be added to 3 to give 15. We all know that « would have to be 12,
which is not an odd integer.

The linear equation in two variables is written as

ar + by = c.

If our set S is the set of integers and our operations are multiplication
and addition, the linear equation

20 + 4y =3

has no solution—where by a solution we mean values of  and y which
belong to the set S. While, for example, it is true that x = 1 and y = }
satisfies the equation, } is not a member of the set S. Can you see why
no solution is possible in S? (Hint: 2z + 4y = 2(z + 2y).)

On the other hand, the equation

3z 4+ Sy =1
has an infinite number of solutions. It can be verified by direct substi-

tution that
=24+ 5¢

and y=—1—3t

are solutions for all integral values of ¢.

There are many practical problems of this nature, since in production
of various articles there can be no consideration given to part of an
article, such as half of a book or a third of a car.

Consider the general quadratic equation

ar> + bxr + c=0,
where a, b, ¢ are defined as coefficients and must all be members of the
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same set S. Our question is whether or not there is an element z belonging
to S which satisfies the equation under the operations as defined.

If we select S as the set of integers and the operations as ordinary
addition and multiplication, we can consider the following examples.

22 4+ 2z + (—3)=0.

This has two solutions, x = —3 and « = 1, which are both members of
the set S.-

But the equation

2224+ 524+ 2=0

has only one solution, * = —2, belonging to the set of integers. The
other,x = —1, does not. However, if we had taken S as the set of rational
numbers, namely all those which can be expressed as the quotient of two
integers, our quadratic would have two solutions belonging to the set S.

If we take S as the set of integers, the quadratic

224+ 2x4+5=0

has no solutions. If we take S as the set of all real numbers, it still has no
solutions belonging to the set S. But if we extend S to include all complex
numbers, those of the form a + bi, where a and b are real numbers, then
the quadratic has two solutions. They are —1 — 2i and —1 + 2i, where
2= —1.

It becomes evident that just because the coefficients in a given equation
belong to some set S, the solutions need not belong to the same set S.
The operations involved are part of the key as well.

Exercises

1. (a) Given the equation
2 4+x =12,
find at least three sets of numbers to which the elements 2 and 12 belong
and to which z belongs also.
(b) Change the operation to multiplication and do the problem.
2. (a) Given the equation
3z =5,
find at least two sets of numbers to which the elements 3 and 5 belong
and to which z does not belong.
(b) Change the operation to addition and do the problem.
3. Give a set of numbers which contains three other sets of numbers. Define
each subset carefully.
4. Given a set of ten men, form them into three committees 4, B and C such
that
A+ B=C,

where + means ‘“‘combined with”’.
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5. Given the linear equation
2z + 3y =5,
find two solutions in the set of integers. Find two solutions in another set, to
which 2, 3 and 5 also belong.
6. Why does the linear equation
2z +4y =3
have no solutions in the set of integers ?

7. Form a quadratic equation whose coefficients belong to the set of integers,
which has two distinct solutions in that set; no solutions in that set; only one
solution in that set.

8. In problem 7, to what other sets do your solutions belong in each case?
Do the coefficients belong to the same sets?

2. Properties of a Group

In order to develop a better foundation for the study of equations, we

shall begin with the simplest example.

()] b+z=c

We shall ask what the sufficient conditions must be on a set S, containing
b and c, in order that there shall exist a unique element x belonging to S
and satisfying equation (1).

Now consider the set of even integers and some further properties of
this set. If we add two even integers, such as 4 and 12, we obtain the
even integer 16 as the sum. And the sum of 10 and 14 is 24, still another
even integer. Although many examples may appear to verify some
mathematical observation, such as the sum of two even integers is an even
integer, one has no proof unless he has been able to exhaust all cases.

Since any even integer, by definition, is divisible by 2, we may write it
in the form 2n, where n is some integer. Then we have

2n + 2m = 2(n + m)
for the sum of two such even integers. But the sum of two integers is an
integer, say p, and we obtain
2n + 2m = 2p.
This proves the assumption that the sum of any two even integers is an
even integer. This leads us to an important definition.

Definition. A set of elements, with some prescribed operation by which
any two of these elements may be combined, is said to be closed under
that operation if the resulting combination is a member of the set.

Note that both the set and the operation must be prescribed. For
example, the set of even integers is closed under multiplication also but
not under division, since 2 divided by 2 is 1.
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Note also that one counter example is enough to prove a statement
false, while a thousand examples will not prove it true unless all the
possibilities have been exhausted.

Other examples of closure which come to mind are the set of odd
integers under multiplication, the set of all integers under addition, the
set of positive rational numbers under division.

The even integer 0 has a special property under addition. For example,
0 plus 4 is 4, and 0 plus 30 is 30. In fact we see that

04+ 2n=2n

for all n. Because of this property, the integer O is called the identity
element under addition for the set of even integers.
We define the identity element as follows.

Definition. An element i belonging to the set is called the identity element
if, under the operation, the combination of i with any other element b
belonging to the set is the element b.

For the set of odd integers under multiplication, the number 1 is the
identity element. Furthermore, it is evident that not all sets have an
identity element under an operation. For example, consider the set of even
integers under multiplication; 1 is not a member of the set.

To continue with the properties of the even integers, we note that with
each even integer there is associated another even integer such that the
sum under addition is the identity element. For example, 6 and —6 have
a sum of 0. In general we show that

(=2n) + (2n) =0

for all n. The element —2n is called the inverse of the element 2n. We
make the following definition.

Definition. An element b~ is called the inverse of an element 4 in the
set if, under the operation, the combination of these two elements is the
identity element.

Careful attention is directed here to the symbol 5~1. One should not
think of the —* as being an exponent. The student is already familiar with
other examples of this kind. In trigonometry we have

y =sinx
and then, solving for z, we write
z = arcsiny
or z =sin"ly,
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where the —! is not an exponent, but denotes the inverse trigonometric
function.

Unfortunately, we run out of convenient symbols many times and have
to use duplicate ones. For example, the symbol (a, b) sometimes represents
the coordinates of a point, sometimes the greatest common divisor of a
and b and sometimes simply an ordered pair. One needs to be sure of the
definition an author has made for such a symbol when he first used it.

Now we recall the associative law. If one is given three even integers,
such as 2, 6 and 14 to add, it is evident that one can combine only two at
a time. Then the sum of that pair is added to the remaining number. We
have two ways of doing this:

Q+6)+14=8+4+14=22
or 24 (6+ 14) =2+ 20 = 22.

We know that for all triples of integers this law, called the associative
law, holds under both addition and multiplication. It does not hold
under division, however, as observed in the following.

Q4 +14=}=+14=5
2+-@4+-14)=2+2=7

Note once again, and this point cannot be overemphasized, that most

laws and properties hold under certain operations and not under others

for a given set of elements. Not only must the set be defined but also the

operation by which the elements are to be combined must be defined.
We define the associative law as follows.

Definition. Under addition, the associative law states that
a@+b+c=a+®b+c)
and under multiplication, the associative law states that

(ab)c = a(bc).
We now define a group.

Definition. A set S of elements a, b, ¢, ... forms a group, under an
operation, say @, if:

1. The set S is closed under @.

2. There is a member of the set S called i such that i ® a = a for all a
in the set S.

3. The associative law holds.

4. Corresponding to each element b in the set S there is an element
b~1in S such that

bleob=1i
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It is evident that the set of even integers under addition forms a group,
as does the set of all integers under addition. We assume that the associ-
ative law holds for all integers under addition and multiplioation and
that the set is closed as well.

Exercises

In the following assume that the associative law holds for all real numbers
under addition and multiplication.

1. Prove that the set of all integers under addition forms a group. Does it
under multiplication?

2. Prove that the set of rational numbers, except 0, forms a group under
multiplication.

3. Does the set of numbers of the form a + V'3, with a and b integers, form
a group under addition ?

4. Is the set of numbers of the form a + 5V'3, a and b integers, closed under
multiplication ?

5. Is the set of numbers of the form a + bV3 + ¢V9, a and b integers,
closed under multiplication ?

6. What is the inverse of the complex number a + bi, a and b real numbers,
under addition? Under multiplication ?

7. Given the three elements a, b and ¢ with the following multiplication
table (Table 1), prove that they form a group under multiplication:

Table 1

a b c

c a b

a b c

QQ'QIX

b ¢ a

8. Construct a group of four elements a, b, c, d.

3. Some Basic Theorems

Now we shall prove some fundamental theorems concerning groups.
We shall answer such questions as whether i®@a=a ®i. In other
words is a left identity also a right identity? Also, is the identity unique?
But, and most important of all, we shall determine under what conditions
an equation involving only one operation can be assured of having a
unique solution.

For convenience we introduce the use of the “member of” sign € as
follows. If a belongs to the set S, we write a € S.

If elements a, b and c belong to a set .S, we write a, b, ¢ € S.

We shall use the capital letter G to refer to a group.
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Theorem 1. Ifa, b, c € G and
c®a=cob
then a=>b.
PROOF. By (4) of our definition of a group, there exists an element ¢ € G
such that c! ® ¢ = i.
cr®(c@®a)=c1®d(cob) Equalsadded to equals and closure.
(cleoc)®a=(c1®c)®b Associative law holds.
i®a=i®b Property of inverse.
RS a=15b Property of identity.
Theorem 1 is called the left-hand cancellation law.
Theorem 2. If b € G, then
iob=boi=h.
PROOF. By (4) of our definition of a group, there exists an element
b1ed.

bloGai)=01®b)®i Associative law and closure.

Grleb)ei=idi Property of an inverse.
i®i=i=b10b Property of an identity and inverse.
bloGoi)=0b1ab Equals substituted for equals.
boi=»b Theorem 1.

This proves that the left identity is a right identity.

Theorem 3. If b € G, then
bleb=bobl=i
PROOF.

brlobaob)=0"1@®b) @b Associative law and closure.

=i®b? Property of an inverse.
bloboeob)=>b1ai Theorem 2.
bob1=i Theorem 1.

This proves that the left inverse is a right inverse.
Theorem 4. If b, c € G, then the equations
2 bex=c
and 3) ye®b=c
have unique solutions in G.
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PROOF. Equation (2) has a solution in G,
zr=b1®ec,
since beabldc)=c
Suppose equation (2) has two solutions z and z’. Then
bdz=bodsr =c
%=z
by Theorem 1, and the solution is unique.

In the same way equation (3) may be proved to have a unique solution
in G.

From Theorem 4, we may prove that the identity i is unique for a
group and that each element has a unique inverse.

We can conclude from Theorem 4 that every equation in which the
elements are members of a group G, and in which there is a single operation,
namely the operation under which the group is defined, always has a
unique solution.

Note that this says nothing about solutions of an equation of the form
ax = b + c which involves two operations. We shall investigate this later.

It should be remarked that all of the preceding theorems could have
been proven just as easily using any symbol for the operation, rather than
@. This symbol was selected only as a convenience and was not meant
to imply that it even meant addition under the ordinary sense of the word.
Many texts use the symbol for multiplication, whatever that may be.
We might have called it little o.

Exercises

. Prove the right-hand cancellation law for a group.

. Complete the proof of Theorem 4.

. Prove that the identity element of a group is unique.

. Prove that each element of a group has a unique inverse.

. Prove Theorems 1-4 using multiplication as the operation.
. Why is there no distributive law for a group?

AL bHhWN =

4. Finite Groups

To correct the possible impression that groups always have an infinite
number of elements, we offer the following examples.

Suppose that we divide the set of integers into classes, or subsets, such
that each class consists of members whose smallest nonnegative remainders,
after division by some positive integer, are the same. For example,
consider division by the integer 4. The class of integers whose remainder
after division by 4 is 0 would be

[...,—8,—4,0,4,8,12,...] = C,.
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