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PREFACE

It is not necessary to start with a definition of Software Engineering:
"the present book, a consolidated effort of a group of experts, care-
fully prepared in a two-week seminar in Garmisch, Dec. 71/Jan. 72, and
presented at a EEC sponsored course in Febr.-March 72, illustrates the
use of the term.

In 1967 and 1968, the word 'Software Engineering' has been used in a
provocative way, in order to demonstrate that something was wrong in
the existing design, production and servicing of software. The situa-
tion has considerably-changed since then; many people show concern
about the problems of software engineering and some of the manufactur-
ers, to which the provocation was mainly addressed, claim that they
already obey the principles of software engineering, whatever this may
mean. Soon 'software engineering' will turn up in the advertisements.
But although the problems are indeed much better understood, the mate-
rial is still not concentrated and systematized. The reports of the
NATO Science Committee sponsored cbnferences of Garmisch ‘and Rome are
a useful collection of material, but not much more. In order to have
teaching material available, more has to be done. This book brings a
first step in this direction.

Our intention in the planning of this course was to cover as much as we
can at the moment of all the aspects of the theme, and to contribute
further to the systematization of the field. We do not actually debate
whether there is a need for software engineering. Instead, we think it
is essential to point out where the ideas of software engineering should
influence Computer Science and should penetrate in its curricu]a:

Thus we will try to find out as much as possible whether a topic of
software engineering is somethfng you can mention as a kind of a theme
to your students in an academic environment.

In this respect, my major concern was that today one still finds it
extremely difficult, as many people told to me, to digest the material
at hand so that it could be used in a course. Therefore, we envisaged
publication of the lecture notes despite their somewhat tentative na-
ture.



In selecting the participants we took some effort to assure that what-
ever they may learn here is spread out, in particular is propagated in
the universities and the major manufacturers.

It is not quite accidental that efforts on 'Software Engineering' have
been carried on to a large extent outside the United States. The pover-
ty of the computer situation in Europe, at least on the continent, which
is in sharp contrast to the affluent US computer community, leads to
thé demand for the most economical solution. But the roots of the soft-
ware misery go deeper. It comes from the fact that people are forced
to' Tive' with machines that they do not want. They have not constructed
them, they simply receive them and have to make the best out of it
Sometimes, with the chance of buying a new machine, there is some hope
that the situation will” improve, but for simple market consideration,.
the manufacturer does everything he’ can do to make the customer stay
with' the product, and this usually ends all hopes for'improvements:
This, software engineering, for the time being, is partly a defense
stratagem. But I" hope that some day this situation will turn around,

I hopé one day software engineering considerations will dictate how
machines are’ to be built and thén to be' used. Thus, what,we have to
work for is also preparing the ground for our future life. On ‘the other
hand, failure in mastering the software crisis may lead to strangula-
tion of scientific users that depend on' the computer today, in parti-
cular in 'Big Science', and may thus do harm also to science and eco-
nomy in a rich nation.

In the preparation of the Advanced Course, I enjoyed the advice and
help of colleagues and friends. I owe thanks to the co-director,.
Prof.L.Bolliet, and to the lecturers for their encouraging. support. In
particular, I am obliged to the German representative in the subgroup
for education in informatics of group PREST of the.EEC, Dr.R.Gnatz, for
his help; in this connection the moral support from Mr.J.Desfosses (EEC)
and the financial support from the Ministry of Education and Science of
the Federal Republic of Germany should be gratefully acknowledged.The
Conference Staff will forgive me fpr not mentioning all of them, my
thanks to them go by the name of Mr.Hans Kuss. of the Mathematics Insti-
tute of the Technical University Munich, who also was the responsible
redactor of this publication.

Munich, June 1972 Friedrich L.Bauer



CHAPTER 1.A

WHAT THE SOFTWARE ENGINEER CAN DO FOR THE COYMPUTER. USER

Prof. Dr. K. W. Morton
Culham Laboratory, Abingdon, Berkshire
Great Britain

1. INTRODUCTION

.

There can be little doubt that there is at present an air of disillu-
sion in the computer community. Computers are not livina up to their
potential and, in particular, the promises of the’so-called thjrd
generation systems have been largely unfulfilled. As a result users
have become more conservative and critical and are less ready to
invest in new equipment. The reason does not lie with the computer
hardware which continues to show a remarkable capacity to advance by
orders of magnitude. But how often do we find software becoming ten
times more reliable, ten times cheaper, ten times more efficient? It
is more likely that it is ten times more complex both to maintain and
to use and these more desirable qualities have been sacrificed as the
sophistication of concept has outstfipped the capac{ty for practical ‘
implementation. In short, software in general shows all the signs of
poor and inadequate engineering.

While computer science has flourished in the 1960's with the estab-
lishment of journals, deqree courses in universities, etc., the soft-
ware engineering aspects of the subject have struggled for support,
what techniques exist have been poorly disseminated and there is very
Tittle software in the hands of users which has been built on the best
available engineering principles. In fact, many people are still
arguing about what is software engineering and how is it related to
computer science. As a mathematician, I am struck by the similarity of
both the controversy and the actual relationship with that existing
between mathematics in general and applied mathematics: in my view, it
is not the subject matter itself that forms the important distinction
but rather the use made of it and the attitude adopted toward it.
Computer science gave us Algol 60: it also gave us the prospect of
time sharing. But when we sit down at a console to write an Algol
program, it is software engineering which determines how easy it is to



