F.L. Bauer J.B.Dennis G.Goos C.C.Gotlieb
R. M. Graham M. Griffiths H. J. Helms B. Morton
P. C. Poole D.Tsichritzis W. M. Waite

Software
Engineering

An Advanced Course

Edited by F.L.Bauer

1966465

F.L. Bauer J.B.Dennis G.Goos C.C.Gotlieb
R. M. Graham M. Griffiths H. J. Helms B. Morton
P. C. Poole D.Tsichritzis W. M. Waite

Software
Engineering

An Advanced Course

Edited by F.L.Bauer

MARNA

E7966465

i

% L
N L
F R s
PG o e
Y

Y
Y

-
-
&
' 4

o

Springer-Verlag
New York Heidelberg Berlin

Editor

Prof. Dr. F. L. Bauer
Mathematisches Institut
TU Minchen
ArcisstraBe 21

8000 Miinchen 2/BRD

Originally published in the series

Lecture Notes in Computer Science Vol. 30
Springer-Verlag Berlin Heidelberg New York
First Edition 1973

Reprint of the First Edition 1975

AMS Subject Classifications (1970): 68A05
CR Subject Classifications (1974): 4.

’ -

ISBN 0-387-08364-2 Springer-Verlag New York - Heidelberg -‘"’Rerjin
ISBN 0-540-08364 -2 Springer-Verlag Berlin - Heidelberg - New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically those of translation, reprinting, re-use of illustrations,
broadcasting, reproduction by photocopying machine or similar means, and storage in
data banks.

Under § 54 of the German Copyright Law where copies are made for other than prim :
use, a fee is payable to the publisher, the amount of the fee to be determined by agree-
ment with the publisher.

© by Springer-Verlag Berlin - Heidelberg 1977

Printed in Germany)

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145/3140-543210

PREFACE V 2R N
7 3 Qﬁ [
F.L. Bauer dg PR
g .';'-".) X
CHAPTER 1: INTRODUCTION , CHEET
K.W. Morton WHAT THE SOFTWARE ENGINEER BA&WQQ
FOR THE COMPUTER USER
1. Introduction.
- 2. Program Duplication
3. User Imagee
4. Application Program Suites
5. Conclusion
6. References
- J.B. Dennis THE DESIGN AND CONSTRUCTION

D D dd
e e e e

LN N Y

N S o At R
o e et g NN g

1666455

Contents

OF SOFTWARE SYSTEMS

1. Introduction

. Términology

. Computer Systems

Software Systems

Hierarchy

System and Application Software
Description ‘of Software Systems

LN I R S T - Y

. Funetion, Correctness, Performance
and Reliability ’

Function
Correctness
Performance
Reliability
Software Projects
Acknowledgement
References

o

)

IS N

11
11

12
12
13
13
15
15
17
19
19

20
22
23
24
25
27
27

CHAPTER 2:
G. Goos
G. Goos

DESCRIPTIONAL TOOLS

% 0-

[\CIENV B NI VA

D MW W N
e s e e s e

N W
. .

HIERARCHIES
Introduction
Hierarchical Ordering as a

. .
N NN
. . . .

[AV)

"Design Strategy

Levels of Abstraction
The Order of Design Decisions
Hierarchical Ordering .and Languages

Abstract Machines and
the Production Process

Hierarchies of Languages
Protection by Hierarchical Ordering

Re ferences

LANGUAGE CHARACTERISTICS
Programming. Languages .as a Tool .in
Writing System Software

0.
1.

(3,

Introduction

The Influence of Language Properties
on Software Creation

Language Constructs as Models for
Program Behavionr

Influence ‘on Programming Style and
Program Documentation

Machine Independence and Portability
Portability Versus Efficiency

Limitations of Programming Languages

Requirements for Structured Programming

and Program Modularity

Modularity

Hierarchies, Nesting and Scope Rules
Concurrent Processes

Data Structures in System Programming
Simple Values

Records

Storage-Allocation for Records

System-Dependent Language Features
and Portability

Some open Problems

References

29

29
36
38
41

41
42
44
46

47

47
47

48

49
51
52
53

54
56
58
59
61
62
64
66

67
69

M. Griffiths LOW LEVEL LANGUAGES

SUMMARY OF A DISCUSSION SESSION 70

1. Introduction 70

2. Justification 70

3. Features 71

4. Machine Dependence 72

5. Efficiency 73

6. Style and Education 73

7. Conclusion 74

8. Acknowledgement 4

9. References 74

M. Griffiths RELATIONSHIP BETWEEN DEFINITION

AND IMPLEMENTATION OF A LANGUAGE 76

1. Introduction 77
1.1. Requirements of Different People 77
1.2. Design of Language for good Prégramming 80
1.3. Design for Testing 82
2. Language Definition 83
2.1. Syntax ; 83
2.2. Static Semantics 85
2.3. Dynamic Semantics 85
2.4. Example taken from ALGOL 6o 85
2.4.1. Syntax . 86
2.4.2. Static Semantiecs 88
2.4.3. Dynamic Semantics. 92
2.4.4. Comments on the Example 95
8. From Definition to Implementation 96
8.1, Semantic Functions 96
8.2. Implementation Languages 98
3.3. Execution Model 98
3.4. Final Comments on Implementation 99
4. A Look at some Definitions loo
4.1. ALGOL 68 loo
4.2. Vienna Definitions lo2
4.3. Extensible Languages lo5
5. Coneclusion : lo6

6. Acknowledgements lo7

7. References lo8

J.B. Dennis
CHAPTER 3: TECHNIQUES
J.B. Dennis

D D M N
« e e e

o

. . . .
[T T 7 N S T A e S N W V|
.

NN N ~N
.

M W W W X
e e e s e

[F N N N N
. e e s .

VI

CONCURRENCY IN SOFTWARE SYSTEMS 111
1. Introduetion ' * 111
2. Petri Nets 112
3. Systems, . 115
4. Determinacy 119
5. Interconnected Systems 121
6. Interprocess Communication 125
7. References 127
128
MODULARITY 128
1. Introduction Concepts 128
1. Definition of Modularity 129
2. Modularify in Fortran 131
3. Modularity in ALGOL 6o 134
4. Substitution 136
S, Referenbes 137
2. Data Structures in Modular Programming 139
.1. Address Space and Modularity 139
é. Repreaéntatidn of Progfam Modules 140
3. Lingutistic Levels for Modular
Programming 144
1. PL/I 145
2. ALGOL 68 146
3. LISP 147
4. Discussion 149
4. References 149
3. Modularity in Multics 151
1. The Model 151
1. The File System 151
2. Processes and Address Spaces 152
3. Making a Segment known to a Process 154
4. Dynamic Linking 157
5. Searech Rules and the Working Directory 160
2. Accomplishments 161
3. Unresolved Issues 162
1. Treatment of Reference Names 162
4. Referernces 165
4. A Base Lingutstic Level for Modular
Programming 166
1. Objects 166
2. Structure of a Base Language Interpreterl6?
3. State Transitions of the Interpreter 170
4. Representation of Modular Programs 177
5. Use of the Model 180
5. References 182

P.C. Poole
W.M. Waite
"P.C. Poole

VII

"PORTABILITY AND ADAPTABILITY

1.
1a1s
1.2.

2.

2.1.
2.2.
3.

8:3.
B B
3.3.
. 4.
2,1,
s e

&

5.1.
5.2.
5.3.

6.
6.1.
6.2.
6.3.

7.
7.1.
7.2.
7.3.

8.

Introduction
The Basic Principles
What we can. expect to achieve

Portability Through High Level
Language Coding

The Need for Extensions
Extension by Embedding

Portability through Abstract Machine
Modelling

Background

183

“184

185
185

187
187
188

192
193

Relating the Model to Existing Computersl96

Relating the Model to the Problem
Realization of Abstract Machine Models
Translator Characteristics

Obtaining the Translator

A Case Study of some early Abstract
Machines

Machine and Language Design
Porting and Adapting
Review and Evaluation

203
205
205
209

211
211
222
233

Low Level Langudges for Abstract Machines

The Basic Hardware Model

A Framework for Low Level Languages
An Example of a Low Level Language
A Hierarchy of Abstract Machines
Need for the Hierarchy

A Standard Base for the Hierarchy

A Case Study

References

DEBUGGING AND TESTING

1.
2.

Byl
2.3
2.3.
2.4.
2.8,

3.
3.1.

Introduction

Planning, for the Testing and
Debugging Phases

Documentation

Debugging Code

Generation of Debugging Code
Modularity

Parameterigation

Testing and Debugging Techniques
Classical Debugging Techniques

234

239
250
262
262
267
272

275

278
278

281
282
284
287
289
292
294
295

D.

Tsichritzis

v O N N D
« e & @ e e e - s

1
1

[- T

3.

~

T © ® ® ® W ® © M b

N Do
oo

D D D D D Do
ei. 8, epF el e ®

2.

3.3. Teeting.Strategied and Techniques
4. '

VIII

Online Debugging

References

RELIABILITY:
i.

[SCIN XY

@ N M N Y RN

> e N Wt o ©

N MDD kN D e Rt N N

.

.

.

Design and Construction of Reliable

Software

Introduction

Influence of the Language
Semantic Checking
Programming Style
Infituence of Protection
Program Correctness
Informal Proof

‘Formal Proof

Design for 'Reliability

Reliability during the Life Cycle
of the Software

Summary and Conclusions
Protection

Introduction

Domatns and Objects

Protection WalZs.and Monitors
Identity Cards and Capabilities
Poliecing

.'Describing the Protection Status

of a System

Implementation

A Capability Based File System
Introduction

Capability Format

Packing Capabilities

Kernel System Facilities
Pagsing Capabilities

Outline of the File System
Facilities of the File System
Organization of the File System
Security

Introduction

Information System Appr¥ach
Integrity of Personnel
Authentication of Users Identity

301
310
317

319
319

319
320
322
323
325
325
326
327
328

329
330
332
332
333
335
336
338
340

342
344
344
345
346
348
349
351
351
354
357
357
359
359
360

IX

3.2.3. Protection of Data Off Line and 360
in Transmission
3.2.4. Threat Monitoring 361
3.3, Data-Depend -nee and Data Transformations362
3.3.1. Data Transformations: 362
3.3.2. Data Dependent Accese 363
3.3.3. Program Certification 363
3.4. Summary of Current Practices 364
4. References 371
CHAPTER 4: PRACTICAL ASPECTS 374
D. Tsichritzis PROJECT MANAGEMENT 374
1. Introduction 374
2. Project Communication, Organization 376
and Control
3. Project Phase 378
3.1. Proposal 378
3.2. Survey Phase 379
3.3. Design‘and Implementation Phase 381
4. Managing "Large" Projects . 382
5. References ' 383
G. Goos DOCUMENTATION 385
LB Introduction » 385
1. The Needs for Documentation 386
1.1. The User's Gutide 387
1.2. The Conceptual-Description 389
1.3. Design and Product Documentation 390
2. Special Problems 391
2.1, Descfiptioﬁ of Data and Algorithms 391
2.2. Crossreferencing between Documentation
and Program 18 392
2.3. Maintaining the Documentation 393
R.M. Graham PERFORMANCE PREDICTION 395
1. "Performance: Definition, Measurement
and Limitatione 396
1.1, What Zs Performance? 396
1.2. Measurement of Performance 397
1.2.1. Performance as a Function of Input 397
1.2.2. Metrics 398
1.2.3. Steady State, Transient, and overload

Behavior

400

o

.C.

Gotlieb

1.3. Limitations of Performance 401
.3.1. Inherent Limitations 401
.3.2. Economic Limitatione 402

1.4. Summary 403

2. System Modeling 403

2.1. Types of Models 404
.1.1. Analytical Models 405

1.2. Directed Graph Models 407
.1.3. Simulation Models ‘ 412

2.2. Problems in Modeling 416

3. Use of models in Performance Prediction 418

3.1. Problems in using Models 418

3.2. Prediction using an Analytical Model 422

3.3. Prediction using a Directed Graph Model 427

4. Simulation 437

4.1. Major Methods 437

4.2. Specification of Job Properties 439

4.3. Data Collection 443

4.4. Simulation Languages 444

4.5. An Example Simulation Model 452

5. Integrated Perfoimance Prediction,
Design, and Implementation 455

5.1.' The Problems with Non-Integrated

Prediction 456

5.2. Single Language Approach 457

5.3. Interaction with the Designer-

Implementer 460

5.4. Aids to Project Management 461

6. References 462
PERFORMANCE MEASUREMENT 464
1. Introduction 464
2. Figures of Merit 464
3. Kernels, Benchmarks and Synthetic

Programs 467
4. Data Collection and Analysis 470

5. Hardware Monitors 471

5.1. One Computer Monitoring Another 472

5.2. Monitor Logic 472

5.3. Examples of Currently Available Hardware

Monitors 474

5.4.

Analysis of Output of Hardware Monitors 475

c.C.

H.J.

APPENDIX
F oL .

Got]ieb

Helms

Bauer

*\I\)\)\)\)\I\l\)\).

6.
6.1.
6.2.
6.3.
6.4.

7.

XI

Software Monitors

Monitoring form Job-Accounting Data
Packaged Software Monitors

Special Monitor and Trace Programs

Estimating Monitor Statzsttca from the
Observations :

References

PRICING MECHANISMS

1s
2.
3.
4.
5.
6.
7.
7.1.

. 2.
. 3.
.4.
.5,
.6,
7.
. 8.
. 9.

8.

. 1o,

The Rationale of Pricing
Determining Factors

Costs

The Factory Model

Pricing a Service

Software Requirements

Examples for Pricing Mechanisms

Rate Schedule for the University of
Toronto, 1 Jan 1972

Disk Pack Rental (Off-Line)
Disk Pack Storage

Diek to Tape Backup

Tape Rental

Tape Storage

Tape Cleaning and Testing .
Negotiated Contract Services
Calcomp Plotting

Card Processing

References

478
478 -
480
481

486
488

492
492
493
493
495
495
497
498

498
500
500
500
500
500
500
500
501
501
502

EVALUATION IN THE COMPUTING CENTER ENVIRONMENT

1.
2.
3.
4.

5.
6.

Introduction
The User and his Needs _
Software and the Computing Center

Installation and Maintenance of a
Piece of Software

Conclusion

References

SOFTWARE ENGINEERING

1.
1.1.

What i1s 71t?

The Common Complaint

503
505
5lo

517
520
521

522
523
523

0Ny

o N o

[\ N VA)

~

LS A N T T T N

<N

XII

The Aim
The Paradox of Non-Hardware Engineering
The Role of Education .-

Software - Design ‘and Production is an
Industrial Engineering Field

Large Projects
Division into:Managable Parts

Divisgon into, Distinet Stages of
Development

Computerized Surveillance

Management

The Role of Structured Programming
A Hierarchy of Conceptual Layers
Communication between Layers
Software Engineering Aspects

ks
Flexibility: Portability and
Adaptability.

. Some existing Exampleé

The Trade-0ffs
Coneluding Remarks
Acknowledgements

References

524
524
525

528
528
529

530
531
532
532
532
534
537
538

539
541
541
543
543

SOFTWARE ENGINEERING

An Advanced -Course

by 5 J.B.Dennis (Cambridge, Mass.)

G.Goos (Karisruhe),
C.C.Gotlieb (Toronto)
R.M.Graham (Berkeley, Cal.)
M.Griffiths ' (Grenoble)
H.J.Helms -~ (Copenhagen)
B.Morton (Reading, England)
P.C.Poole (Abingdon, ‘England)
D.Tsichritzis®(Toronto)

W.M.Waite (Boulder, Colo.)

edited by F.L.Bauer (Munich)

The Advanced Course took place February 21 - March”3, 1972,
organized by the Mathematical Institute of 'the Technical
University of Munich and the Leibniz Computing Center -of
the Bavarian Academy of Sciences,

in‘cooperation with the European Communities,

sponsored by the Ministry of Education and Science of ;he
Fedéra] Republic of Germany.

PREFACE

It is not necessary to start with a definition of Software Engineering:
"the present book, a consolidated effort of a group of experts, care-
fully prepared in a two-week seminar in Garmisch, Dec. 71/Jan. 72, and
presented at a EEC sponsored course in Febr.-March 72, illustrates the
use of the term.

In 1967 and 1968, the word 'Software Engineering' has been used in a
provocative way, in order to demonstrate that something was wrong in
the existing design, production and servicing of software. The situa-
tion has considerably-changed since then; many people show concern
about the problems of software engineering and some of the manufactur-
ers, to which the provocation was mainly addressed, claim that they
already obey the principles of software engineering, whatever this may
mean. Soon 'software engineering' will turn up in the advertisements.
But although the problems are indeed much better understood, the mate-
rial is still not concentrated and systematized. The reports of the
NATO Science Committee sponsored cbnferences of Garmisch ‘and Rome are
a useful collection of material, but not much more. In order to have
teaching material available, more has to be done. This book brings a
first step in this direction.

Our intention in the planning of this course was to cover as much as we
can at the moment of all the aspects of the theme, and to contribute
further to the systematization of the field. We do not actually debate
whether there is a need for software engineering. Instead, we think it
is essential to point out where the ideas of software engineering should
influence Computer Science and should penetrate in its curricu]a:

Thus we will try to find out as much as possible whether a topic of
software engineering is somethfng you can mention as a kind of a theme
to your students in an academic environment.

In this respect, my major concern was that today one still finds it
extremely difficult, as many people told to me, to digest the material
at hand so that it could be used in a course. Therefore, we envisaged
publication of the lecture notes despite their somewhat tentative na-
ture.

In selecting the participants we took some effort to assure that what-
ever they may learn here is spread out, in particular is propagated in
the universities and the major manufacturers.

It is not quite accidental that efforts on 'Software Engineering' have
been carried on to a large extent outside the United States. The pover-
ty of the computer situation in Europe, at least on the continent, which
is in sharp contrast to the affluent US computer community, leads to
thé demand for the most economical solution. But the roots of the soft-
ware misery go deeper. It comes from the fact that people are forced
to' Tive' with machines that they do not want. They have not constructed
them, they simply receive them and have to make the best out of it
Sometimes, with the chance of buying a new machine, there is some hope
that the situation will” improve, but for simple market consideration,.
the manufacturer does everything he’ can do to make the customer stay
with' the product, and this usually ends all hopes for'improvements:
This, software engineering, for the time being, is partly a defense
stratagem. But I" hope that some day this situation will turn around,

I hopé one day software engineering considerations will dictate how
machines are’ to be built and thén to be' used. Thus, what,we have to
work for is also preparing the ground for our future life. On ‘the other
hand, failure in mastering the software crisis may lead to strangula-
tion of scientific users that depend on' the computer today, in parti-
cular in 'Big Science', and may thus do harm also to science and eco-
nomy in a rich nation.

In the preparation of the Advanced Course, I enjoyed the advice and
help of colleagues and friends. I owe thanks to the co-director,.
Prof.L.Bolliet, and to the lecturers for their encouraging. support. In
particular, I am obliged to the German representative in the subgroup
for education in informatics of group PREST of the.EEC, Dr.R.Gnatz, for
his help; in this connection the moral support from Mr.J.Desfosses (EEC)
and the financial support from the Ministry of Education and Science of
the Federal Republic of Germany should be gratefully acknowledged.The
Conference Staff will forgive me fpr not mentioning all of them, my
thanks to them go by the name of Mr.Hans Kuss. of the Mathematics Insti-
tute of the Technical University Munich, who also was the responsible
redactor of this publication.

Munich, June 1972 Friedrich L.Bauer

CHAPTER 1.A

WHAT THE SOFTWARE ENGINEER CAN DO FOR THE COYMPUTER. USER

Prof. Dr. K. W. Morton
Culham Laboratory, Abingdon, Berkshire
Great Britain

1. INTRODUCTION

.

There can be little doubt that there is at present an air of disillu-
sion in the computer community. Computers are not livina up to their
potential and, in particular, the promises of the’so-called thjrd
generation systems have been largely unfulfilled. As a result users
have become more conservative and critical and are less ready to
invest in new equipment. The reason does not lie with the computer
hardware which continues to show a remarkable capacity to advance by
orders of magnitude. But how often do we find software becoming ten
times more reliable, ten times cheaper, ten times more efficient? It
is more likely that it is ten times more complex both to maintain and
to use and these more desirable qualities have been sacrificed as the
sophistication of concept has outstfipped the capac{ty for practical ‘
implementation. In short, software in general shows all the signs of
poor and inadequate engineering.

While computer science has flourished in the 1960's with the estab-
lishment of journals, deqree courses in universities, etc., the soft-
ware engineering aspects of the subject have struggled for support,
what techniques exist have been poorly disseminated and there is very
Tittle software in the hands of users which has been built on the best
available engineering principles. In fact, many people are still
arguing about what is software engineering and how is it related to
computer science. As a mathematician, I am struck by the similarity of
both the controversy and the actual relationship with that existing
between mathematics in general and applied mathematics: in my view, it
is not the subject matter itself that forms the important distinction
but rather the use made of it and the attitude adopted toward it.
Computer science gave us Algol 60: it also gave us the prospect of
time sharing. But when we sit down at a console to write an Algol
program, it is software engineering which determines how easy it is to

