Creating Utilities
\Mth Assembly Language
10 Best for the IBM Pc & XT

5 Undelete
J; Font

' Dbug Scan
+ Pcalc

' Clock

Cleanup

¢ Diskwatch
+ Notepad

Creating Utilities with
Assembly Language
10 Best for the IBM PC & XT

Steven Holzner

Brady Communications Company, Inc.
New York, New York 10020
A Simon&Schuster Publishing Company

Copyright © 1986 by Brady Communications Company, Inc. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or
by any means, electronic or mechanical, including photocopying and record-
ing, or by any information storage and retrieval system, without permission
in writing from the publisher. For information, address Brady Communica-
tions Company,Inc., Simon&Schuster Building, 1230 Avenue of the Americas,
New York, NY 10020.

Library of Congress Cataloging-in-Publication Data

Holzner, Steven.
Creating utilities with assembly language.

Includes index.

1. IBM Personal Computer—Programming.
2. IBM Personal Computer XT—Programming.
3. Utilities (Computer programs) 1. Title.
QA6.8.12594H65 1985 005.4'3 85-13266

ISBN 0-89303-584-X

Printed in the United States of America
86 87 88 89 90 91 92 93 94 95 96 12345678910

Acknowledgments

The Author would especially like to thank Terry Anderson, Barbara Werner,
and Patty Mahaffey for their tireless energies and unflagging devotion to
producing work of the highest quality.

About the Author

Steven Holzner is currently a contributing editor at PC magazine, where
his articles appear monthly. He got his first real taste for computing at MIT,
where about half the student body is similarly inclined. He is inordinately
fond of traveling, and has made it his business to do so in over thirty countries.
He has spent a year each in Hong Kong and Hawaii, and spends most of his
summers either in the Austrian Alps or on the western coast of Ireland. Besides
keeping his sleeves rolled up, Mr. Holzner always keeps his collar unbuttoned.

Limits of Liability and Disclaimer of Warranty

The author and publisher of this book have used their best efforts in pre-
paring this book and the programs contained in it. These efforts include the
development, research, and testing of the theories and programs to determine
their effectiveness. The author and publisher make no warranty of any kind,
expressed or implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any
event for incidental or consequential damages in connection with, or arising
out of, the furnishing, performance, or use of these programs.

Note to Authors

Have your written a book related to personal computers? Do you have an
idea for developing such a project? If so, we would like to hear from you.
Brady produces a complete range of books for the personal computer market.
We invite you to write to Terrell Anderson, Senior Editor, Simon & Schuster,
General Reference Group, 1230 Avenue of the Americas, New York, NY 10020.

Introduction

All you need to use this book is the program MASM.EXE and a word processor.
Your DOS disk includes the other two needed programs, LINK.EXE and
EXE2BIN.EXE, already. The idea behind this book is to give you a number
of already working assembly language programs that will do as much as your
IBM PC can do for you. These programs can be typed in with your word
processor and run through MASM, LINK, and EXE2BIN to give you a COM
file that can be run immediately. Everything we will do will be on the inter-
mediate to advanced assembly language level, although we will review the
basics.

Although this book was written with the Macro Assembler Version 1.00,
the differences between it and version 2.00 are minor. Any necessary changes
are given for each program listing, ready to be typed in.

Very often, computer books discuss all the individual commands of lan-
guages such as assembly language without using them in any solid applica-
tions. This approach is like learning to drive by studying an auto parts catalog.
What we will do here is to develop complete programs of real merit on the
intermediate assembly language level. We'll restore files , let two programs
run at once, make our own keyboard “macros,” redesign the PC’s character
set, and develop a notepad that will pop on the screen any time.

Many of the programs that we’ll write are similar to ones available in
the market for a good deal of money. The tools needed to build these same
programs, however, are available to everyone. Owning a PC without using
any of these tools at all is like buying a yacht for its air conditioning. The PC
is a machine of solid potential and by adding some skills we’ll see what it is
really like and what it is capable of. As often as we can, we'll work to penetrate
the mysteries of the PC to a core of gold. The PC is compact enough to permit
us a real understanding of what is going on behind the scenes.

The examples in this book are built up progressively. While we add more
and more to the program, we'll keep track of what came first to see how it all
connects. Throughout the book, new program lines will be marked with
arrows, and the text will discuss what has been marked. The entire listing is
also available at the end of each section, ready to be typed in. The programs
we will cover have been picked since they all provide short, bite-size examples.
An entire book on a single program would be tough to work through. With
smaller examples, the actual coding will get less in the way of the principles
and techniques.

There is no better place to list the programs than right in the beginning,
so here they are:

1. CLEANUP “CLEANUP *.*”" will skim through your entire diskette
and ask you file by file which ones to delete.

viii

2.

10.

Introduction

UNDEL

. CLOCK

. ONEKEY

. NPAD

. PROTECT#

. DBUGSCAN

. PCALC

. DSKWATCH

FONT

UNDEL will restore files on double-sided floppy dis-
kettes (not hard disks). If the file can be recovered,
UNDEL will get it.

This program will be our first contact with memory-
resident programs. It will continually display a digital
clock display in the upper right corner of the screen,
even if other programs are running.

Using this package we can set up keyboard ‘“macros,”
allowing us to replace a single key with an entire com-
mand. The F1 key, for instance, can become ‘“DIR B:.”

NPAD is areverse video notepad that pops on the screen
whenever you need it (even if other programs are run-
ning). You can keep notes, error messages or memos
here for future reference.

Here we will modify the DOS DEL or ERASE command
so that files can be securely protected from deletion
but still be modified.

This and the next program, PCALC, are on the optional
diskette accompanying the book, and only the parts of
interest are discussed in the book. DBUGSCAN is a
much-needed utility that runs with DEBUG, displaying
the value of your program'’s variables while you step
through the code.

PCALC is a calculator that pops on the screen for use
anytime. It includes Hex, Logical operators, a memory,
a help screen, and a reverse video display.

This watchdog program will monitor the diskette drives
for errors while other programs are running. Diskette
drives are susceptible to failure because of their com-
plexity, and DSKWATCH will tell you beforehand if
errors are starting to mount up.

FONT will allow you to redesign the PC’s character set
(graphics screens only). It includes an editor for your
characters and the program that will install them in
the PC.

Although two of these programs, PCALC and DBUGSCAN, are only on
the disk, we will cover all their important parts in this book.

These programs are arranged to build up knowledge progressively. What
we learn in one is designed to be applied in the next. If you are just learning
the techniques of intermediate or advanced assembly language, moving from
one to the next along this list will flesh out your expertise. If, on the other
hand, you already have experience with this level of programming, you might
want to read each section independently.

Introduction iX

For many people, the operation of the PC is a complete mystery. Their
expertise consists mostly of pushing a set of keys and hoping for the best. The
power that lives under that placid grey cover is out of their reach. Our object
here is to dissolve the mystery and to allow you to accomplish things as
powerfully as DOS, on as advanced a level as DOS can reach. None of this
has to be difficult. It cannot be done, however, by presenting a disorganized
set of assembly language commands. We will have to see everything con-
structed from beginning to end. There's no better way to learn than by exam-
ple, and we’'ll spend our time dissecting some high-power ones.

The Possibility of Bugs

All of these programs have been extensively tested, both by the author
and by reviewers. Every effort has been made to make sure that the code is
bug-free. It is possible, though, that errors have slipped through. If you find
something that you're sure can’t be right, please write in immediately to me,
Steven Holzner, c/o Brady Communications. Some of these programs have
appeared in PC magazine already (without any programming). Two hundred
fifty thousand of the best proofreaders anyone could ask for can’t all be wrong.
I'd also like to thank the hundreds of readers who have written in about the
articles and my column.

All of these programs were developed on a standard IBM PC with two
diskette drives, 256K of memory, a monochrome screen, and DOS 2.10 (the
programs will work under any DOS version). Of course, if I could afford it,
I'd be using an AT. The word processor used was PC-Write, still the best
bargain in word processors.

Contents

Introduction
Section 1 Cleanup

Chapter 1 Assembly Language Remembered

Chapter 2 COM Files (And CLEANUP.COM in Particular)
Chapter 3 CLEANUP.COM Explores the PSP

Chapter 4 CLEANUP Cleans Up

Section 2 Undelete

Chapter 5 The Disk in Your PC
Chapter 6 Deleting and the FAT
Chapter 7 Finding the Deleted File
Chapter 8 Now That We've Got It
Chapter 9 Into the FAT

Section 3 Clock

Chapter 10 Clock
Chapter 11 Putting It on the Screen
Chapter 12 CLOCK and CALC

Section 4 Onekey

Chapter 13 ONEKEY
Chapter 14 Intercepting Characters
Chapter 15 Loading the Keyboard Buffer

Section 5 Npad

Chapter 16 NPAD
Chapter 17 NPAD’s Screen I/O
Chapter 18 NPAD: Identifying Keys

Section 6 Protect#

Chapter 19 A Brief DEBUG Primer
Chapter 20 Protect#; File Protection on the PC
Chapter 21 To Search and Delete

Section 7 Debug

Chapter 22 DEBUG
Chapter 23 Debugging in Action

vii

03
12
19
26

41
48
58
69
79

99
109
121

143
152
163

185
195
208

233
236
249

271
281

Vi

Section 8 Mathematics

Chapter 24 Two's Complementing

Chapter 25 Precision Division

Section 8 DskWatch
Chapter 26 A Disk Watchdog

Section 10 Font
Chapter 27 Designer Characters

Appendix—The Optional Diskette

Index

Contents

295
301

313

331

337

339

CLEANUP

NWOF—0Z =

Chapter

Assembly Language Remembered

If all the pieces fit together as we might hope, this book will be like few others
for the IBM PC. Our intention is to develop the most exciting capabilites of
the PC and get them working for us. Our goal is to use all of the sophisticated
inner resources of our computer to push us from the mundane to the excep-
tional with occasional flings into sheer extravagance.

Perhaps you've read a book about what'’s inside the PC and now want to
put the pieces together. Perhaps you'd like to explore the cloudy region where
the real power lies in the PC, flexing some hidden muscles. Maybe you've
wondered what the PC can really do or what you can make it do. If you've
wondered how two programs can run at the same time, or how to put a
notepad on the screen, or how to restore deleted files, then we're on the same
track.

We're going to build our programs on the same backbone that profes-
sional software developers use, which means using assembly language. To
read this book you ought really to have some knowledge of assembly lan-
guage—if not an intimate knowledge at least a passing acquaintance.

This first chapter is going to give us an accelerated review of the subject,
but it would make a skinny textbook. We've concentrated a great deal into
these few pages and so if you're lost by the time you've finished this chapter,
then you should spend some time getting to know assembly language. On the
other hand, if you know what JGE means, then you already know enough to
skip this chapter entirely.

The choice of assembly language is not made whimsically. For most of
what we're going to do—running two programs at once, putting a calculator
on the screen while another program is running, restoring deleted files—there
is no alternative to exploiting the sheer but simple power of assembly lan-
guage. We will discuss virtually everything new in some detail before using
it. After all, there is no better way to learn than by example and we'll try to
" fill the book with some strong ones.

Keep in mind, though, that this book is not intended to teach assembly
language. Assembler is the tool that we'll use to probe for what we want.
What we're after is a solid knowledge of what’s interesting to use inside the
PC. It's good to have heard about the video controller, but the real interest
lies in its application. The same thing may be said for the directory or the
keyboard buffer. The use of everything inside the IBM PC is the real substance
of this book. So that we do not, however, start on an ill-prepared expedition,
let’s spend a few moments sharpening our tools in this speedy and not nec-
essarily exhaustive review:

4 Assembly Language Remembered

The Basics

The essentials of the IBM PC are more or less these; it is a 16-bit machine
with many clever components, among which is a sophisticated 8088 micro-
processor. This processor includes four general registers which play the part
of variables in our programs. They are named AX, BX, CX, and DX. Each of
these 16-bit registers in turn may be broken into two 8 bit (one byte) registers.
For instance, AX can be thought of as being made up of AH (its high byte)
and AL (its matching low byte). Most commands can be used with either full
registers or half registers (for instance, one may say either ADD BX,5 or ADD
BL,5).

The IBM PC uses ASCII. Each ASCII character, like “w" or “A”, is con-
verted into an ASCII code of 8 bits and so each character takes up one byte
in memory.

We'll frequently use hexadecimal numbers. Their attraction is that one
hexadecimal digit represents four bits. We can convientiently express the
contents of a 16 bit register as a four digit hex number. For example, AX can
hold the numbers 1234H, ABCDH or 8B4CH but not 12345H.

The 8088 also uses segmentation, an unusual method of addressing mem-
ory. Each address or location in memory is pointed to by two 16 bit numbers,
the segment address and the offset address.

A segmented address is written like this: 1234:5678, always in Hex. Here
the segment address is 1234H and the offset address from the beginning of
the segment is 5678H. The real address in memory (we'll always use seg-
mented addresses) is found by multiplying the segment address by 16 (10H)
and adding the offset address. Here that gives us the 20 bit address 179B8H.
An address of 1234:5678, therefore, is the same as a distance from the begin-
ning of memory of 179B8H bytes.

An address such as AAAA:BBBB may be thought of as a distance or offset
of BBBBH bytes into a segment starting at AAAAOH. These segments may be
started at any multiple of 10H bytes in memory. Using segmentation, the PC
can express 20-bit addresses in two 16-bit words.

Since you have to be able to reach everywhere you want with a segmented
address, special segment registers have been introduced. One of these is the
code segment register. The PC will find the next command to execute using
the segmented address CS:IP, using the numbers in the code segment register
CS and the instruction pointer register IP to form the command’s address.
DOS takes care of these addresses for you when it loads your program and
the 8088 is in charge of them when the program is running.

Also of importance is the data segment register, DS, which is usually
more under our control than CS. After we've decided where we want to get
data from, we’ll set DS and then only have to worry about the offset address
inside the data segment (like DS:1111 or DS:EEEE).

Talking our way through segments provides a rather substandard intro-
duction to them. The best way to learn about segment registers is to see them
in action, and we'll put them to work as soon as we can.

Assembly Language Remembered 5

The Heart of Assembly Language

A small group of commands make up the real core of assembly language.
Here is a brief review of each:

MOV
MOV is the very heart of assembly language. If you've understood MOV
it may be said that you're on your way. Some MOVs:

MOV BX,5CH
MOV AX, [BX]
MOV AX,CX

The first command moves 5CH into the register BX. The next command
uses the terrific ability of BX to act as an index. This is one of the capabilities
that have set the 8088 and like microprocessors apart from the previous
generation, and it will be important for us. If the 16 bits you want to pluck
from memory start at address 1234:5678, then DS must be 1234H and BX
must be set to 5678H. When BX is put into brackets, MOV AX,[BX] will move
that word into AX. The PC will assume you're using the data segment since
this method of addressing is used for data, not commands in a program. MOV
AX,[BX] is really shorthand for MOV AX,DS:[BX]. This is called indirect
addressing. What makes it so flexible is that by continually incrementing BX
you can scan up or down a whole line of data. The utility of indirect addressing
is almost inexhaustible, as we will see.

MOV AX,CX, as you probably know, simply moves whatever number is
in CX into AX, leaving the number in CX unchanged.

Intel’s 8088 stores words in memory in a maddening fashion, with the
low byte first and the high byte last (that is, with the higher byte higher in
memory). 1234H, for example, would be stored as 34H 12H. If the hex number
1234H is in AX and you MOV [BX],AX then 34H (the lower byte) will be
stored at address DS:[BX] and 12H at DS:[BX + 1] so that 1234H will appear
in memory as 34H 12H.

Conversely, MOV AX,[BX] will restore AX to 1234H. This method of
storage may try your patience for a while but with practice it will quickly
become familiar.

CMP

CMP is usually used in conjunction with jump commands so we'll now
introduce the JE command—Jump if Equal—for the purposes of illustration.
Jumps need to be supplied with some label to jump to in your code and in
this example we’'ll be jumping to a line labelled END. Here are some CMPs
and JEs:

CMP AX,5 CMP AX,[BX] CMP AX,BX

JE END JE END JE END
[Some Commands] [Some Commands] [Some other Commands]

END:[Exit] END:[Exit] END:[Exit]

6 Assembly Language Remembered

In the first jump example above, the contents of AX are compared with
5 and, if AX does hold 5, JE END will cause us to jump to the line labelled
END. If AX was not equal to 5 then the program would simply continue with
the next line.

CMP compares by actually subtracting the second number from the first
without changing either. It does, however, set the PC’s internal flags. Every
command with some numerical result (ADD, CMP, SUB, and so on) sets some
of the flags. We will use none of these flags directly. We will usually use CMP
to set the flags and then use a jump which will first check how the flags are
set and then jump accordingly. Although other commands are occasionally
used, CMP is most often used to set the signals for a following jump. Here's a
list of the PC’s flags (for future reference only):

Flag Meaning Where (If) Used
Carry =1 if an operation left a carry UNDEL
Parity =1 if result has a even # of 1s [Communication Programs]
Auxillary Carry Used with Binary Coded Decimal [1/0 Programs]
Zero =1 if the result is zero CLEANUP
Sign =1 if result is negative (Sign PCALC
bit=1)
Trap Used in single-stepping programs [Debugging Programs]
Interrupt Enable =1 to allow hardware interrupts CLOCK
Direction Sets direction in string searches [All kinds of Programs]
Overflow Result exceeds signed number PCALC
range

All of these flags are stored in a flag register. The only contact we'll have
with this flag register is pushing or retrieving it onto or from the stack.

In the second jump example above, AX is compared with the data word
at the address DS:BX. If DS=1111 and BX=2222, we will compare the
number in the AX register to the value at address 1111:2222.

CMP AX,[BX]
JE END

[Commands]

END:[Exit]

If the two are equal we will jump in the next step to the line labelled
END. If they are not, program execution will continue with the command
after JE END.

In the third jump example the number in AX is compared with the
number in BX. If the two are equal, we will jump to END.

The Jumps

There are many jumps that the IBM PC, always a versatile machine, can
make. The small army (don’t memorize them) that we'll use includes:

Assembly Language Remembered 7

JMP JE JNE Jz JINZ
JL JG JLE JGE
JA JB JC

The mnemonics on the first line mean Jump (unconditional—always
jump), Jump if Equal, Jump if Not Equal, Jump if Zero, Jump if Not Zero.
We'll see these in use shortly.

The next line means Jump if Less than, Jump if Greater than, Jump if
Less than or Equal to, Jump if Greater than or Equal to. These jumps are
used if you are comparing two signed numbers—that is, they respect the sign
bit (the highest bit in a number) and treat negative numbers as less than
positive ones. The sign bit and signed numbers will be reviewed in the section
covering our calculator, PCALC.

The last line has the commands for Jump if Above, Jump if Below, and
Jump if Carry flag set. These jumps are made by comparing the unsigned
magnitude of two numbers. A 1 in the highest bit position merely means a
big number as far as these jumps are concerned, not a negative one. We won't
have to worry much about the difference between Jump if Above and Jump
if Greater because we'll rarely use signed numbers.

Each mnemonic usually offers enough letters to figure out the jump’s
meaning. To use a jump you must label part of your code so that you can
jump to it when the time comes. Labels in this book are done like this:

CMP AX,5
JE 0K
MOV AX,5S

--> 0K: MOV BX,CX

If AX is equal to 5 then when the program reaches JE OK, it will jump
immediately to the line labelled OK instead of continuing on to execute the
line MOV AX,5, which means that here we will end up with 5 in AX no matter
what.

From Fundamental to Fancy

If you’ve mastered the above core of commands you've got a credible
foothold in assembly language. Despite its humble reputation, assembly lan-
guage can include some fancy commands. We'll review an additional set that
will tighten our grip on programming.

INC

A small but useful and fast command, INC increments. For instance:
INC BX

increases the number in BX by one. DEC is the antonym of INC.

