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INTRODUCTION

Among the most fascinating mathematical problems are those which are easily
formulated, but withstand for a long time sophisticated attacks for solving them.
One instance of this kind of problems is the by now famous 3n + 1 problem: Let
f(n) :=n/2, if n is even, and f(n) := 3n+ 1, if n is odd. Choosing a natural
number z as starting number and applying f repeatedly produces a sequence of
natural numbers, which is called f-trajectory of z and denoted by

Trl#) &= (e, e} FFE), - - o ¥ ) - ) -
For example, taking z = 13 gives the f-trajectory
T¢(13) = (13,40,20,10,5,16,8,4,2,1,4,2,1,...)

which continues periodically with the cycle (4,2,1). All f-trajectories which
have been calculated up to now have this limiting behaviour, and there are
many starting numbers which have been tested (see section 1.3). This leads to
the 3n + 1 conjecture which asserts that any f-trajectory eventually runs into
the limiting cycle (4,2, 1). Is there a rigorous proof that this is the only possible
limiting behaviour of a sequence of natural numbers generated by f?

Many authors consider the 3n + 1 conjecture as intractably hard—and they
may well be right, as the problem is still open. On the other hand, the problem
i1s not new in the mathematical literature. Its—somewhat foggy—origin dates
back to the 1930’s; but since the 1970’s we observe a rapidly growing interest
in this problem and mathematics which people consider to be connected to it.
(Proof : see the bibliography at the end of these notes.) If the 3n+ 1 conjecture
itself appears to be intractable, what is, then, the mathematics people do around
1t, and is 1t really justified to claim that there is some progress towards a solution
of the original problem? I do not plan to give an answer to this question in a
few words, I just describe the facts and leave the final judgement to the reader.

The strategy for finding interesting things about an “intractable” problem is
threefold: translate the conjecture into as many different contexts as you can,
formulate weaker statements implied by the conjecture in question and try to
prove some of them, and wait for flashes of genius giving new and interesting
insights. In the case of the 3n+1 problem, the conjecture has been reformulated,
for instance, in terms of formal languages (see section 1.12), and even in terms of
analytic functions in the complex unit disk (see section 1.13), leading to problems
which seem as intractable as the original one. Following the second device, an
“intermediate” conjecture is:
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FINITE CYCLES CONJECTURE. There are only finitely many cyclic numbers,
i.e., the number of integers y > 0 such that f*(y) =y for some n € N 1s finite.

By now, this is also unproved. But there are some results in this direction:
for example, R. P. Steiner proved in 1978, using a deep result of A. Baker on
linear forms in logarithms, that there is just one cycle of a special type which
had been called circuit (see section 1.9).

A priori, an f-trajectory can either turn out to be eventually cyclic, or it
must grow to infinity (this is due to the fact that f produces a unique successor
to each number). Even the following consequence of the 3n 4 1 conjecture is
unsolved.

(No) DIVERGENT TRAJECTORY CONJECTURE. There is no diwergent 3n + 1
trajectory, i.e., there is no y € N such that lim f"(y) = co.
n— 00

But, also in this case there is a partial result: J. C. Lagarias showed in 1985
that, if a divergent f-trajectory happens to exist, then it cannot grow too slowly
(see section 1.6).

* * *

The point of view on the 3n + 1 problem adopted here is based on a nice idea
due to L. Collatz: he represented an arbitrary integer function g : N — N, say,
as a directed graph I'y with the domain N of g as infinite set of vertices, and
with all pairs (n, g(n)) as directed edges. This graph derived from the function
¢ is now called the Collatz graph of g. Taking g := f, with the integer function
f defined above, we clearly have the following equivalence:

the 3n + 1 conjecture holds <= the graph I'y is (weakly) connected.

For a general integer function g : N — N, the (discrete) dynamical system
on N generated by g consists of all possible g-trajectories. Now it is clear that
any g-trajectory must remain in some weak component of I'y. Moreover, two
g-trajectories Tg4(x) and 74(y) coalesce, i.e. there are integers n, m > 0 such that
g"(z) = ¢g™(y), if and only if z and y belong to the same weak component of
the graph I'y. Taking a fixed g-trajectory 7q4(z), the domain of attraction of this
trajectory consists of all starting numbers y € N whose g-trajectory coalesces
with Tg(z). So we infer that a domain of attraction of the dynamical system on
N generated by g is just a (weak) component of I'y. This means: the study of a
dynamical system on N is equivalent to the study of a Collatz graph. |

The topic of interest here is the dynamical system on N which 1s generated
by the 3n + 1 function

To(n) :=n/2 if n is even,
Ti(n) :=(3n+1)/2 if n 1s odd.

This function T replaces the function f defined above without loss of information:
if n is even, then T'(n) = f(n), and if n is odd, then T'(n) = f(f(n)) (as 3n +1

T:NoN, T(n) ::{
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is even whenever n is odd). In this sense T “shortens” the f-trajectories; several
authors prefer to deal with 7" instead of f. To study the dynamical system on
N generated by T', we emphasize the predecessor sets

Pr(a) ={beN:a€Tr(b)} = {b“e N : some T-iterate of b hits a} .

As any domain of attraction may be written as a union of predecessor sets, to
study dynamical systems can mean to study predecessor sets. An interesting
point about a predecessor set is any information refering to its size. In this
number-theoretic setting, all information concerning the size of a set of natural
numbers is contained in the counting function of that set. Here we consider
counting functions of predecessor sets,

Za( ) —Z’pT(a) .—I{nEPT( x}|

For technical reasons, it is easier to deal with predecessor sets of non-cyclic
numbers, i.e. to natural numbers which do not pertain to a T-cylce. This is
not really a restriction, as any domain of attraction can be written as a disjoint
union of a trajectory and some predecessor sets of non-cyclic numbers (which
can be chosen pairwise disjoint). For example, the domain of attraction of the
T-cycle (1,2) is given by {1,2} UPr(4) (observe that a € Pr(a) for each a € N).
At this stage, we are still very close to the 3n + 1 conjecture, as there are the
equivalences:

the 3n + 1 conjecture holds <= Pr(4) =N\ {1,2}
< Zs(z) =z —2 for integers z > 2.

But the 3n + 1 conjecture itself may be intractable. So, we have to look for
less ambitious assertions for treatment. Let us first state some properties which
a general dynamical system on N given by g : N — N may or may not have.

POSITIVE PREDECESSOR DENSITY PROPERTY FOR FIXED a € N:

Iim inf ——= (:r)
I —00

UNIFORM POSITIVE PREDECESSOR DENSITY ON A C N:

liminf(inf Z“(“’:)) >0.

r—00 acA T

Note that the 3n + 1 conjecture implies that the 3n + 1 function shares the
positive predecessor density property for a = 4. Uniform positive density is only
interesting for infinite sets A; it seems reasonable to take A :={a € N: a Z 0

mod 3}, as the predecessor sets of multiples of 3 are easily calculated:

Pr(3k) = {2" 3k : n € Ngo}, hence Z3i(z) = [log2 %J .
Whether or not the 3n + 1 function has the uniform positive density property
seems to be quite independent from the 3n + 1 conjecture.

Neither of these two properties is known for the 3n + 1 function. But there
has been some progress in a much weaker formulation of the uniform positive
predecessor density property.
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FIND GOOD EXPONENTS ¢ > 0 SUCH THAT

liminf< inf M)>0.

r—00 aZ0 mod 3 re

There has been a certain industry in improving the exponent e. The first
who established that there is such an exponent ¢ > 0 was R. E. Crandall (1978);
actually Crandall derived his estimate only for the counting function Z;(z),
but we shall see in section I1.6 that his method also proves the relation above.
Crandall’s method has been pushed further by J. W. Sander (1987) to give c = 1
(who also formulated it only for Z; (z)). Finally, D. Applegate and J. C. Lagarias
(1995) called Crandall’s approach tree-search method and improved it to produce
a computer-aided proof for ¢ = 0.654. The tree-search method is related to the
approach given here. In section I1.6, we discuss tree-search in our terminology
established in chapter 11, showing that, in fact, the above uniform lim inf-relation
is what has been proved.

The best result in this direction known up to now is the theorem of Applegate
and Lagarias (1995) stating that, for each a # 0 mod 3, there is a constant
ca > 0 such that Z,(z) > c, %81 for each z > a. The computer-assisted proof is
based on a different idea called Krasikov inequalities and initiated by 1. Krasikov
(1989). Although Krasikov inequalities appear more powerful in improving the
constant ¢, this method is not discussed in these notes because it is not directly
related to the approach prosecuted here.

One of the main results of these notes is the reduction theorem linking dis-
tribution properties of sums of mixed powers to dynamic properties like those
stated above. To be more explicit about this, let j, k denote two non-negative
integers. Then we are concerned with sums of mixed powers

990 4 9G4 9¥3Q2 4 ..y DG

where j +k > ag > --- > a; > 0. The set of all such sums will be denoted
by R; k. Then the cardinality of this set will be proved to be just the number
of possible choices of integers ay, ..., a; satisfying the condition above. This is
elementary combinatorics:

j+k+1>
Rix|= ;
Ronl= (7717

Now the question is: given an integer £ > 1, for which indices j, k does the set
Rk meet all prime residue classes to modulus 3¢ (observe that an element of
Rjk cannot be divisible by 3, hence R\ is contained in the union of the prime
residue classes to modulus 3¢)? Technically, we do not want to deal with two
indices j, k, but we want to deal with large sets R; .. Hence, let us restrict
attention to the sets R;_; ; where the binomial coefficient is (ZJJ) The unsolved
problem is the following.
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COVERING CONJECTURE FOR MIXED POWER SUMsS. There is a constant
K > 0 such that, for every j,£ € N, the following implication holds:

IRj-15 > K -2-3"

= Rj—1,; covers the prime residue classes to modulus .

This conjecture seems reasonable: as there are precisely 2-3¢~! prime residue
classes modulo 3¢, the precondition says that the set R;_; ; has sufficient ele-
ments to put at least K of them into each prime residue class modulo 3°. If the
distribution of R;_1 ; among those prime residue classes is not too unbalanced,
one should expect that, for large K, we find at least one of the mixed power
sums of R;_1; in each prime residue class. Of course, the essential content of
the covering conjecture is in the asymptotics £ — oo. If the conjecture is true,

then it ensures that there is a sequence (j;)¢en satisfying the two conditions:
(i) each set Rj,_1 j, covers the prime residue classes modulo 3¢, and
(i) lim ’7‘: log, 3.

£—00
These two conditions will be technically essential in the proof of the following
reduction theorem: If the covering conjecture for mixed power sums is true, then
the dynamical system on N generated by the 3n + 1 function has the following

UNIFORM SUB-POSITIVE PREDECESSOR DENSITY PROPERTY:

T it ( -

T—00 aZ0 mod 3 z?

) >0 for any 6 € R satisfying 0<d < 1.

In fact, the implication remains valid if the covering conjecture for mixed
power sums is slightly weakened. We need not assume that there is a constant
K > 0 with the required property. It suffices to assume that K is a function
of ¢ which grows sufficiently slowly when ¢ tends to infinity; more explicitly, 1t
suffices to assume that K (£)e~* remains bounded for any constant 5y > 0.

The proof given here for the reduction of the uniform sub-positive predeces-
sor density property to a covering conjectures for mixed power sums requires
asymptotic analysis of binomial coefficients. In addition, we make use of inte-
gration theory on the compact topological group Z3 of invertible 3-adic integers.
The proof gives, in addition, some argument why we cannot prove a uniform
positive predecessor density property on the basis of a covering conjecture for
mixed power sums like that given above. This has to do with the fact that
the precise asymptotics of the binomial coefficient (ij) is less than a constant
times 227, So the feeling arises that the 3n 4 1 predecessor sets may not have
the uniform positive density property. In this context, we also give a technical
condition on the distribution of mixed power sums which is sufficient for the
positive predecessor density property for an individual @ € N (not divisible by
3, of course).

The intuitive content of the reduction is the following. The sums of mixed
powers described above can be seen as the “accumulated non-linearities” occur-
ing when iterating the 3n+1 function 7". Then the conjecture on the distribution
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of power-sums states that the accumulated non-linearities of the 3n + 1 func-
tion behave chaoticly. On the other hand, the uniform sub-positive predecessor
density property would mean some regular behaviour of the dynamical system
generated by T'. So the reduction theorem means, intuitively, the more chaotic
the behaviour of the accumulated non-linearities, the more regular is the be-
haviour of the dynamical system.

There are also many other results about the mathematical nature of the Col-
latz graph of T', or, equivalently, about the dynamical system generated by T—
which justifies the title. Let us first briefly describe what is basic for collecting
mathematical information about this dynamical system. A dynamical system
consists of its trajectories. As there are difficulties in describing the limiting be-
haviour of the trajectories, we are forced to restrict our attention, at least at the
beginning, on finite portions of trajectories. A finite portion of a T-trajectory,
from b to a, say, has the form

b5 Tk) S T20) S ... D a= T*(b).

Let us assume that on the k+£ steps from b to a, the function T" takes precisely k
times the branch T and precisely £ times the branch 7;. The number of possible
such (k, £)-step portions of T-trajectories terminating at a € N will be denoted
by (observe that, if k& and £ are fixed, then there is a one-one-correspondence
between the (k, £)-step portions and their initial vertices b, even if a is an element
of a T-cycle)

es(k,a) ;= [{b € N: T**(b) = a, k times Ty, £ times T}.}|.

These quantities es(k, a) constitute the basic objects for most of the research
presented in this book. They are linked to 3n + 1 predecessor density estimates
via the implication, which is valid for non-cyclic numbers a € N (theorem I11.2.5),

liminf (%) 5 ¢
n—oo n

z\ log2 B
== Za(z) > C (—) for some constant C' > 0 and large z,
a

where s, (a) is the n-th estimating series
o 3
sn(a) == ;ee (n + Vlog2 §J ,a) 4

An important observation is that e;(k,a) depends on a only through its
residue class to modulus 3¢ (this is one reason why we use £ as an index), which
implies that we are concerned with a family of functions

ee(k,-) : Zs — Ny where k, £ run through Ny;
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here Z3 denotes the group of 3-adic integers. A simple consideration shows that
e¢(k,a) = 0 whenever £ > 1 and 3 | a. Hence, the set {es(k,) | £ > 1,k > 0}
is a family of functions on the compact topological group Z} of invertible 3-adic
integers. The use of 3-adic integers in the context of the 3n + 1 problem first
appeared in [Wir3] (1994); the group of invertible 3-adic integers has also been
connected to 3n + 1 iterations, in a somewhat different setting, by Applegate
and Lagarias [AL3] (1995).

As the domain of definition Z3 of our basic functions eg(k,-) is a compact
topological group, it admits a unique normalized Haar measure. It turns out
that the e, (k, -) are integrable w.r.t. this Haar measure, with the 3-adic average

= 1 k+¢
eg(k) ::/Z;el(k,a)dazm( i ) .

We obtain, for instance, to the following results:

(1) The estimating series given above give rise to a sequence of functions
sp : Z5 — Ng which turns out to be discontinuous (theorem II1.2.7) but
perfectly Haar integrable (lemma II1.3.6).

(2) The following is true (theorem II1.5.2):

n—oo

liminfi/ sp(a)da > 0.
2n J,

.
3

This means: If a number ¢ € N with a Z 0 mod 3 happens to have
the property e;(k,a) = €,(k) for an appropriate portion of the pairs
(k,£), then the predecessor set Pr(a) has positive asymptotic density.
Of course, the conclusion remains valid if, for an appropriate portion of
the pairs (k, £), e;(k, a) is sufficiently close to the 3-adic average.

(3) The numbers e,(k, a) can be constructed inductively without reference to
the Collatz graph (corollary 11.4.4). After an—admittedly complicated—
normalization procedure (section IV.2), it turns out that the essential
ingredient is an asymptotically homogeneous Markov chain in the sense
that sequences of transition measures converge vaguely (theorem IV.4.1).
Moreover, the limiting transition probability is averaging over a € Z3.

(4) The limiting transition probability is shown to admit exactly one invari-
ant density (theorem IV.5.1), which comes from a C* function on R
which i1s a polynomial on each interval outside the classical Cantor set

(lemma IV.5.3).

The techniques to prove result (2) are essential for the proof of the reduction
theorem discussed above. Result (3) embodies a first vague idea of “asymptotic
self-similarity” of the Collatz graph. It would be nice to know more about this
asymptotic self-similarity, and to compare it to the phenomena occurring in the
context of discrete-time dynamical systems in the complex plane.

In these notes, 1 almost everywhere resisted the temptation to generalize a
result to other functions than the 3n + 1 function. A natural candidate for such
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generalizations would be a function T defined like the 3n + 1 function T', but
with T,(n) := (¢gn + 1)/2 for odd n, where ¢ is a previously fixed odd natural
number. If ¢ has the property that 2 generates the multiplicative group of prime
residue classes to modulus ¢¢ for each £ € N, then a good part of the results
presented here admit a straightforward generalization to apply to iterations of
T,.

* * *

The plan of the book is as follows. Chapter I gives a brief survey of some
strains of research on the problem. We already find a broad variety of differ-
ent mathematical methods which have been used to attack the 3n + 1 problem,
including probability analysis, continued fractions, formal languages, and holo-
morphic functions in the complex unit disc.

In Chapter II, the essential notions for discrete dynamical systems on N and
for the Collatz graph are given. Then the counting functions e,(k, a) and some
variations thereof are introduced and discussed. These counting functions are
linked to lower estimates for the predecessor counting functions Z,(z) via a
series similar to, and, in fact, the model for the estimating series described
above. It is shown that known density estimates (e.g., by Crandall [Cra] (1978)
or Applegate and Lagarias [AL1] (1995)) for 3n + 1 predecessor sets perfectly
fit into our framework, which leads to slightly stronger formulation of those
estimates.

Chapter III mainly deals with the use of 3-adic numbers. Motivated by the
estimate for Z,(z) given in chapter I, the estimating series are introduced and
discussed. The remaining part of chapter III studies their 3-adic averages, com-
ing across a rigorous counterpart of the usual 3n + 1 heuristics saying that in
an “average” finite portion of a 3n + 1 trajectory, the steps arising from T, and
those arising from 73 are, more or less, balanced. The chapter concludes with
a proof of result (3) mentioned above, and with a short discussion of possible
generalizations to pn + 1 functions for so-called Wieferich primes p.

Chapter IV contains all the stuff pertaining to the asymptotically homoge-
neous Markov chain mentioned above. The construction of this Markov chain is
given explicitly, including descriptions of the transition probabilities in terms of
combinatorial number theory. These explicit descriptions are used to formulate
and prove the result indicated under (2) above.

Finally, chapter V takes up essential ideas from the previous chapters to prove
the reduction theorem.

It is a great pleasure for me to include a long list of people who stimulated and
supported my research on the 3n+ 1 problem in one way or another. First of all,
let me express special gratitude to K. P. Hadeler, J. C. Lagarias, K. R. Matthews,
G. Meinardus, D. Merlini, and H. A. Miiller, for giving me access to important
information around the 3n + 1 problem, which I hardly could have received
otherwise. I am indebted to L. Berg and J. C. Lagarias for valuable comments
on a preliminary version of this. For further stimulating information, discussions
on the topic, or encouragement to proceed, I also thank M. Kudlek, J. W. Sander,
P. Schorn, and the following (in part former) mathematicians at the university
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of Eichstatt: A. Cornea, S. Deschauer, V. Krafft, J. Rohlfs, H.-G. Weigand,
R. Wittmann, and especially W. Rump who originally drew my attention to the
problem. Finally, I am grateful to those people who answered my request for
sending reprints or preprints of their papers on the problem, and who are not
yet mentioned: J. Blazewicz, S. Eliahou, G.-G. Gao, 1. Korec, G. T. Leavens,
and B. Schuppar.

Eichstatt, october 1997
G. J. Wirsching



CHAPTER 1

SOME IDEAS AROUND 3n + 1 ITERATIONS

The 3n+1 problem can be found in many places. It is presented in D. R. Hofs-
tadter’s well-known book Godel, Escher, Bach [Hof] (1980), pp. 400-402, where
a natural number satisfying the 3n + 1 conjecture (see section 1 for a precise
statement) is called a wondrous number. The problem has been described in
M. Gardner’s article [Grd] (1972) in Scientific American and in C. S. Ogilvy’s
book Tomorrow’s math [Ogi] (1972), p. 103f. It found entrance in R. K. Guy’s
problem book [Guy1] (1981); Guy also wrote some further introductory articles
about 3n + 1 iterations [Guy2] (1983), [Guy3] (1986).

In addition, there are more than fifty research articles containing substantial
results around the 3n + 1 problem. This chapter includes hints to some of the
most important strains of research about this topic; thereby we come across
a wealth of different mathematical ideas. The material is organized roughly
according to themes, and inside a special topic according to date of publication.

1. The problem

The set of natural numbers (starting with 1) is denoted by N = {1,2,3,...}.
If we want to include 0, we write Ng = {0} UN. The set of integers is denoted
by Z = —N U Ny. For an arbitrary integer function f : Z — 7Z, we denote
by f* = fo ff=! the k-fold iterate of f, for each k € N, with the (natural)
convention f° =id. If n € Z, the f-trajectory of n (or with starting number n)
is the sequence

Ti(n) = (fk(n))k>O = (n,f(n),fof(n),fofof(n),...).

An f-cycle is generated by an integer a with the property f*(a) = a for some
k € N. For notational definiteness, we choose the minimal period k and write a
cycle as a k-vector,

Qy(a) = (@, £(a),..., /(@)
In the german retroversion of [Col2] (1986),* L. Collatz calls the function

3n+1 fur ungerade n

(1) s ={

S fur gerade n,

*This paper originally was written in german, and then translated into chinese by Ren Zhip-
ing; only the chinese translation is published. I am grateful to G. Meinardus, who sent me
both the chinese version, and a retranslation into german by Zhangzheng Yu (1991).
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the “3n + 1”-Funktion. Meanwhile it turned out to be more convenient to use
instead the function

n/2 if n 1s even,

(1-2) T:N-=N, T(")‘{(3n+1)/2 i i odd,
(cf., for instance, [Terl], [Lagl], [BeM], and most of the articles cited in our
bibliography. Henceforth in these notes, this function 7" will be called the 3n +1
function, and we shall refer to that function f as the Collatz function. The letter
T will be reserved for the 3n + 1 function, but we do not reserve the letter f for
the Collatz function (even in [Col2], f is also used to denote other functions).
In some papers, T is called 3z + 1 function, but I prefer the name 3n+ 1 function
to emphasize that the problem is to deal with natural numbers.
The famous problem about the 3n + 1 function is the following

3n 4+ 1 CONJECTURE. For any starting number in N, the T-trajectory even-
tually ends in the cycle (1,2).

A fallacious “proof” of this conjecture has been published by M. Yamada
[Yam] (1980). The error has been described by J. C. Lagarias in his review
(see also [Yam] for a citation). Prizes have been offered for its solution: $ 50 by
H. S. M. Coxeter in 1970, then $ 500 by Paul Erdés , and £ 1000 by B. Thwaites
[Lagl].

2. About the origin of the problem

The exact date of the first occurence of the 3n + 1 conjecture is unclear.
L. Collatz reports in [Col2] (1986) that he represented integer functions by
graphs (for the precise definition, see chapter II) already in his student days
from 1928 to 1933. He considered a certain classification of the possible graphs
and tried to find simple examples for each type. Looking for a graph containing a
“Kreis” (which is a cycle in our terminology) and representing a function f which
should be as simple as possible, he was led to the observation that necessarily
f(n) < n for certain numbers n, and f(n) > n for others. The first attempt was

9.1 ooy 2 if n 1s even,
(21) f(n)'_{n+1 if n 1s odd,
which gives only the cycle (1,2), as is easily shown. The second attempt ]?(n) =
2n + 1 for odd n does not give any cycle at all, as odd numbers are mapped to
larger odd numbers. And the next attempt is the Collatz function (1.1), of which
Collatz reports that the only cycle he found was “der triviale Kreis” (4,2,1). He
writes that he did not publish the problem because he was unable to solve it.
Collatz also reports that he told the problem to his colleague H. Hasse in 1952.
Hasse apparently circulated it by mouth during a visit to Syracuse university
in the 1950’s, where he proposed the name Syracuse problem. Later on, the
problem also received the names Kakutani’s problem and Ulam’s problem, see
[Lagl].



