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Preface

The explosion in computing we are witnessing is arousing extraordinary interest at
every level of society. As the power of computing machinery grows, calculations once
infeasible become routine. Another factor, however, has had an even more important
effect in extending the frontiers of feasible computation: the use of efficient algorithms.
For instance, today’s typical medium-sized computers can easily sort 100,000 items in
30 seconds using a good algorithm, whereas such speed would be impossible, even on
a machine a thousand times faster, using a more naive algorithm. There are other
examples of tasks that can be completed in a small fraction of a second, but that would
require millions of years with less efficient algorithms (read Section 1.7.3 for more
detail).

The Oxford English Dictionary defines algorithm as an "erroneous refashioning
of algorism" and says about algorism that it "passed through many pseudo-
etymological perversions, including a recent algorithm". (This situation is not corrected
in the OED Supplement.) Although the Concise Oxford Dictionary offers a more up-
to-date definition for the word algorithm, quoted in the opening sentence of Chapter 1,
we are aware of no dictionary of the English language that has an entry for algo-
rithmics, the subject matter of this book.

We chose the word algorithmics to translate the more common French term
algorithmique. (Although this word appears in some French dictionaries, the definition
does not correspond to modern usage.) In a nutshell, algorithmics is the systematic
study of the fundamental techniques used to design and analyse efficient algorithms.
The same word was coined independently by several people, sometimes with slightly
different meanings. For instance, Harel (1987) calls algorithmics "the spirit of
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Xiv Preface

compuiing”, adopting the wider perspective that it is "the area of human study,
knowledge and expertise that concerns algorithms".

Our bouok is neither a programming manual nor an account of the proper use of
data structures. Still less is it a "cookbook” containing a long catalogue of progratis
seady to be used directly on a machine to solve certain specific problems, but giving at
best a vague idea of the principles involved in their design. On the contrary, the aim of
our book is to give the reader some basic tools needed to develop his or her own algo-

‘rithms, in whatever field of application they may be required.

Thus we concentrate on the techniques used to design and analyse efficient algo-
rithms. Each technique is'first presented in full generality. Thereafter it is illustrated by
concrete examples of algorithms taken from such different applications as optimization,
linear aigebra, cryptography, operations research, symbolic computation, artificial intel-
ligence, numerical analysis, computing in the hufnanities, and so on. Although our
approach is rigorous.and theoretical, we do not neglect the needs of practitioners:
besides illustrating the design techniques employed, most of the algorithims presented
also have real-life applications.

To profit fully from this book, you should have some previous programming
experience. However, we use no particular programming language, nor are the exam-
ples for any particular machine. This and the general, fundamental treatment of the
material ensure that the ideas presented here will not lose their relevance. On the other
hand, you should not expect to be able to use the algorithms we give directly: you will
always be obliged to make the necessary effort to: transcribe- them into some

appropriate programming language. The use of Pasca} or similarly structured language
will help reduce this effort to the minimum necessary.

Some basic mathematical knowledge is required to understand this book. Gen-
erally speaking, an introductory ondergraduate course in algebra and another in cal-
culus should provide sufficient background. A certain mathematical maturity is more
important still. We take it for granted that the reader is familiar with such notions as
mathematical induction, set notation, and the concept of a graph. From time to time a
passage requires more advanced mathematical khowledge, but such passages can be
skipped on the first reading with no loss of continuity.

Our book is intended as a textbook for an upper-level undergraduate or a lower-
level graduate course in algorithmics. We have used preliminary versions at both the
Université de Montréal and the University of California, Berkeley. If used as the basis
for a course at the graduate level, we suggest that the material be supplemented by
attacking some subjects in greater depth, perhaps using the excellent texts by Garey
and Johnson '(1979) or Tarjan (1983). Our book can also be used for independent
study: anyone who needs to write better, more efficient algorithms can benefit from it.

“Some of the chapters, in particular the one concerned with probabilistic algorithms,
contain original material.

It is unrealistic to hope ta cover all the material in this book in an undergraduate
course with 45 hours or so of classes. In making a choice of subjects, the teacher
should bear in mind that the first two chapters are essential to understanding the rest of
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the book, although most of Chapter 1 can probably be assigned as independent reading.
The other chapters are to a great extent independent of one another. An elementary
course should certainly cover the first five chapters, without necessarily going over
each and every example given there of how the techniques can be applied. The choice
of the remaining material to be studied depends on the teacher’s preferences and incli-
nations.The last three chapters, however, deal with more advanced topics; the teacher
may find it interesting to discuss these briefly in an undergraduate class, perhaps to lay
the ground before going into detail in a subsequent graduate class.

Each chapter ends with suggestions for further reading. The references from each
chapter are combined at the end of the book in an extensive bibliography including
well over 200 items. Although we give the origin of a number of algorithms and ideas,
our primary aim is not historical. You should therefore not be surprised if information
of this kind is sometimes omitted. Our goal is to suggest supplementary reading that

" can help you deepen your understanding of the ideas we introduce.

Almost 500 exercises are dispersed throughout the text. It is crucial to read the
problems: their statements form an integral part of the text. Their level of difficulty is
indicated as usual either by the absence of an asterisk (immediate to easy), or by the
presence of one asterisk (takes a little thought) or two asterisks (difficult, maybe even a
research project). The solutions to many of the difficult problems can be found in the
references. No solutions are provided for the other problems, nor do we think it advis-
able to provide a solutions manual. We hope the serious teacher will be pleased to have
available this extensive collection of unsolved problems from which homework assign-
ments can be chosen. Several problems call for an algorithm to be implemented on a
computer so that its efficiency may be measured experimentally and compared to the
efficiency of alternative solutions. It would be a pity to study this material without
" carrying out at least one such experiment.

The first printing of this book by Prentice Hall is already in a sense a second edi-
tion. We originally wrote our book in French. In this form it was published by Masson,
Paris. Although less than a year separates the first French and English printings, the
experience gained in using the French version, in particular at an international summer
school in Bayonne, was crucial in improving the presentation of some topics, and in
spotting occasional errors. The numbering of problems and sections, however, is not
always consistent between the French and Eng'ish versions.

Writing this book would have been impossible without the help of many people.
Our thanks go first to the students who have followed our courses in algorithmics over
the years since 1979, both at the undergraduate and graduate levels. Particular thanks
are due to those who kindly allowed us to copy their course notes: Denis Fortiry,, -
Laurent Langlois, and Sophie Monet in Montréal, and Luis Miguel and Dan Philip in °
Berkeley. We are also grateful to those people who used tHe preliminary versions of
our book, whether they were our own students, or colleagues and students at other
universities. The comments and suggestions we received were most valuable. Our war-
mest thanks, however, must go to those who carefully read and reread several chapters
of the book and who suggested many improvements and corrections: - Pierre
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Beauchemin, André Chartier, Claude Crépeau, Bennett Fox, Claude Goutier, Pierre
L’Ecuyer, Pierre McKenzie, Santiago Miro, Jean-Marc Robert, and Alan Sherman.

We are also grateful to those who made it possible for us to work intensively on
our book during long periods spent away from Montréal. Paul Bratley thanks Georges
Stamon and the Université de Franche-Comté. Gilles Brassard thanks Manuel Blum
and the University of California, Berkeley, David Chaum and the CWI, Amsterdam,
and Jean-Jacques Quisquater and Philips Research Laboratory, Bruxelles. He also
thanks John Hopcroft, who taught him so much of the material included in this book,
and Lise DuPlessis who so many times made her country house available; its sylvan
serenity provided the setting and the inspiration for writing a number of chapters.

Denise St.-Michel deserves our special thanks. It was her misfortune to help us
struggle with the text editing system through one translation and countless revisions.
Annette Hall, of Editing, Design, and Production, Inc., was no less misfortuned to help
us struggle with the last stages of production. The heads of the laboratories at the
Université de Montréal’s Département d’informatique et de recherche opérationnelle,
Michel Maksud and Robert Gérin-Lajoie, provided unstinting support. We thank the
entire team at Prentice Hall for their exemplary efficiency and friendliness; we particu-
larly appreciate the help we received from James Fegen. We also thank Eugene L.
Lawler for mentioning our French manuscript to Prentice Hall’s representative in
northern California, Dan Joraanstad, even before we plucked up the courage to work on
an English version. The Natural Sciences and Engineering Research Council of Canada
provided generous support.

Last but not least, we owe a considerable debt of gratitude to our wives, Isabelle
and Pat, for their encouragement, understanding, and exemplary patience—in short,

for putting up with us— while we were working on the French and English versions of
this book.

Gilles Brassard
Paul Bratley
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Preliminaries

1.1 WHAT IS AN ALGORITHM?

The Concise Oxford Dictionary defines an algorithm as a “process or rules for (esp.
machine) calculation”. The execution of an algorithm must not include any subjective
decisions, nor must it require the use of intuition or creativity (although we shall see an
important exception to this rule in Chapter 8). When we talk about algorithms, we
shall mostly be thinking in terms of computers. Nonetheless, other systematic methods
for solving problems could be included. For example, the methods we learn at school
for multiplying and dividing integers are also algorithms. The most famous algorithm
in history dates from the time of the Greeks: this is Euclid’s algorithm for calculating
the greatest common divisor of two integers. It is even possible to consider certain
cooking recipes as algorithms, provided they do not include instructions like “Add salt
to taste”. :

When we set out to solve a problem, it is important to decide which algorithm
for its solution should be used. The answer can depend on many factors: the size of
the instance to be solved, the way in which the problem is presented, the speed and
memory size of the available computing equipment, and so on. Take elementary arith-
metic as an example. Suppose you have to multiply two positive integers using only
pencil and paper. If you were raised in North America, the chances are that you will
multiply the multiplicand successively by each figure of the multiplier, taken from
right to left, that you will write these intermediate results one beneath the cther shifting
each line one place left, and that finally you will add all these rows to obtain your
answer. This is the “classic” muitiplication algorithm.
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However, here is quite a different algorithm for doing the same thing, sometimes
called “mmnltiplication a la russe”. Write the multiplier and the multiplicand side by
side. Make two columns, one under each operand, by repeating the following rule
until the number under the multiplier is 1: divide the number under the multiplier by -
2, ignoring any fractions, and double the number under the multiplicand by adding it to
itself. Finally, cross out each row in which the number under the multiplier is even, .
and then add up the numbers that remain in the column under the multiplicand. For
example, multiplying 19 by 45 proceeds as in Figure 1.1.1. In this example we get
19+76+152+608 = 855. Although this algorithm may seem funny at first, it is essen-
tially the method used in the hardware of many computers. To use it, there is no need
to memorize any multiplication tables: all we need to know is how to add up, and
how to double a number or divide it by 2.

45 19 19
22 38
11 76 76
5 152 152
2 304 0
1 608 608

855  Figure 1.L1. Multiplicatic~ d la russe.
\

We shall see in Section 4.7 that there exist more etficient algorithms when the
integers to be multiplied are very large. However, these more sophisticated algorithms
are in fact slower than the simple ones when the operands are not sufficiently large.

At this point it is important to decide how we are going to represent our algo-
rithms. If we try to describe them in English, we rapidly discover that natural
languages are not at all suited to this kind of thing. Even our description of an algo-
rithm as simple as multiplication @ la russe is not completely clear. We did not so
much as try to describe the classic multiplication algorithm in any detail. To avoid
confusion, we shall in future specify our algorithms by giving a corresponding pro-
gram. However, we shall not confine ourselves to the use of one particular program-
ming language: in this way, the essential points of an algorithm will not be obscured
by the relatively unimportant programming details.

We shall use phrases in English in our programs whenever this seems to make
for simplicity and clarity. These phrases should not be confused with comments on the
program, which will always be enclosed within braces. Declarations of scalar quanti-
ties (integer, real, or Boolean) are usually omitted. Scalar parameters of functions and
procedures are passed by value unless a different specification is given explicitly, and
arrays are passed by reference. ‘

The notation used to specify that a function or a procedure has an array param-
eter varies from case to case. Sometimes we write, for instance

procedure proc (T : array)
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or even

procedure proc2(T)

if the type and the dimensions of the array T are unimportant or if they are evident
from the context. In such a case #T denotes the number of elements in the array 7. If
the bounds or the type of 7" are ignportant, we write

procedure proc3(T[1..n])

or more generally

procedure proc4d(T |a ..b]: integers) .

In such cases n, a, and b should be considered as formal parameters, and their values
are determined by the bounds of the actual parameter corresponding to 7" when the pro-
- cedure is called. These bounds can be specified explicitly, or changed, by a procedure
call of the form

proc3(T[1..m]) .

To avoid proliferation of begin and end statements, the range of a statement such
as if, while, or for, as well as that of a declaration such as procedure, function, or
record, is shown by indenting the statements affected. The statement return marks
the dynamic end of a procedure or a function, and in the latter case it also supplies the
value of the function. The operators div and mod represent integer division (dis-
carding any fractional result) and the remainder of a division, respectively. We assume
that the reader is familiar with the concepts of recursion and of pointers. The latter are
denoted by the symbol “T”. A reader who has some familiarity with Pascal, for
example, will have no difficulty understanding the notation used to describe our algo-
rithms. For instance, here is a formal description of multiplication a la russe.

function russe (A,B)
- arrays X,Y
{initialization}
X[l]«A; Y[l]«B
I« 1
{make thé two columns}
while X [/] > | do
X[i+1) < X[i] div2
Y[i+1] e« Y[i] +Y[i]
P e—1i+1
{add the appropriate entries }
prod « 0
while i > 0 do
if X [/] is odd then prod < prod + Y [i]
I —1i—1
return prod
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If you are an experienced programmer, you will probably have noticed that the
arrays X and Y are not really necessary, and that this program could easily be
simplified. However, we preferred to follow blindly the preceding description of the
algorithm, even if this is more suited to a calculation using pencil and paper than to
computation on a machine. The following APL program describes exactly the same
algorithm (although you might reasonably object to a program using logarithms,
exponentiation, and multiplication by powers of 2 to describe an algorithm for multi-
plying two integers ...).

V R-A RUSAPL B;T
[1] Re+/(2|LA+T)/BxT<1,2*112*A V

On the other hand, the following program, despite a superficial resemblance to the one
given previously, describes quite a different algorithm.

function not-russe(A,B)
arrays X,Y
{initialization }
X[1]<A; Y[1]«< B
i «1
{make the two columns}
while X [/] > 1 do
X[i+1] &« X[i] -1
Y[i+1]« B
&0 +1
{add the appropriate entries }
prod « 0
while i > 0 do
if X [{] > O then prod < prod + Y [i]
i i —1
return prod

We see that different algorithms can be used to solve the same problem, and that
different programs can be used to describe the same algorithm. It is important not to
lose sight of the fact that in this book we are interested in algorithms, not in the pro-
grams used to describe them.

1.2 PROBLEMS AND INSTANCES

Multiplication 4 la russe is not just a way to multiply 45 by 19. It gives a general
solution to the problem of multiplying positive integers. We say that (45,19) is an
instance of this problem. Most interesting problems ihclude an infinite collection of
instances. Nonetheless, we shall occasionally consider finite problems such as that of
playing a perfect game of chess. An algorithm must work correctly on every instance
of the problem it claims to solve. To show that an algorithm is incorrect, we need only
find one instance of the problem for which it is unable to find a correct answer. On the
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other hand, it is usually more difficult to prove the correctness of an algorithm.. When
we specify a problem, it is important to define its domain of definition, that is, the set
of instances to be considered. Although multiplication a la russe will not work if the
first operand is negative, this does not invalidate the algonthm since (—45, 19) is rot an
instance of the problem being considered.

Any real computing device has a limit on the size of the instances it can handle.
However, this limit cannot be attributed to the algorithm we choose to use. Once again
we see that there is an essential difference between programs and algorithms.

1.3 THE EFFICIENCY OF ALGORITHMS

When we have a problem to solve, it is obviously of interest to find several algorithms
that might be used, so we can choose the best. This raises the question of how te
decide which of several algorithms is preferable. The empirical (or a posteriori)
approach consists of programming the competing algorithms and trying them on dif-
ferent instances with the help of a computer. The theoretical (or a priori) approach,
which we favour in this book, consists of determining mathematically the quantity of
resources (execution time, memory space, etc.) needed by each algorithm as a function
of the size of the instances considered.

The size of an instance x, denoted by | x|, corresponds formally to the number of
bits needed to represent the instance on a computer, using some precisely defined and
reasonably compact encoding. To make our analyses clearer, however, we often use
the word “size” to-mean any integer that in some way measures the number of com-
ponents in an instance. For example, when we talk about sorting (see Section 1.7.1),
an instance involving » items is generally considered to be of size n, even though each
item would take more than one bit when represented on a computer. When we talk
about numerical problems, we sometimes give the efficiency of our algorithms in terms
of the value of the instance being considered, rather than its size (which is the number
of bits needed to represent this value in binary).

The advantage of the theoretical approach is that it depends on neither the com-
puter being used, nor the programming language, nor even the skill of the programmer,
It saves both the time that would have been spent needlessly programming an
inefficient algorithm and the machine time that would have been wasted testing it.
It also allows us to study the efficiency of an algorithm when used on instances of any
size. This is often not the case with the empirical approach, where practical considera-
tions often force us to test our algorithms only on instances of moderate size. This last
point is ‘particularly important since often a newly discovered algorithm may only
begin to perform better than its predecessor when both of them are used on large
mstances

‘It is also possible to analyse algorithms using a hybrid appreach, where the form
of the function describing the algorithm’s efficiency is determined theoretically, and
then any required numerical parameters are determined empirically for a particular



