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Introduction

Symmetric probability measures on the infinite product

of a set F (equiped with a o - algebra) are a well-known concept in probability
theory: A probability measure on @ is said to be symmetric if it is invariant under
the group of those transformations of @ which are defined by a permutation of finite-
1y many coordinates. Apparently the first place in which this notion appeared was a
contribution of J. Haag to the International Congress of Mathematicians at Toronto

in 1924 . B. de Finetti (1931) independently introduced the idea of symmetric
probability measures. For the case F = {0 , 1}  he proved the following theorem
which is now well-known: Each symmetric probability measure u is a mixture of homo-

geneous product measures, i.e. , u has a representation
(0.1) noo= Jm(da) o ® a @

where m 1is a probability measure on the set of all probability measures on F
Moreover, m is uniquely determined and is obtained as the limit distribution of
the empirical distributions. (It is worthwile mentioning that de Finetti was interest-
ed in this result for philosophical reasons: It shows that a statement of the form
"I believe that the tosses of this coin are independent and identically distributed,
with the unknown probability of heads occuring lying somewhere between 1/3 and 2/3"
is equivalent to the purely subjective statement "I believe the tosses are symmetrical-
ly distributed and that the frequency of heads will fall somewhere between 1/3 and
243" .}

De Finetti's theorem was extended to more general F's by A. Khintchine (1932,
1952) , B. de Finetti (1937) , E.B. Dynkin (1953) and finally E. Hewitt and

L.J. Savage (1955) (this last paper should be consulted for the earlier references).
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Hewitt and Savage pointed out that the representation (0.2) results from a combina-
tion of the following two assertions: Each symmetric u 1is the mixture of extreme
symmetric probability measures, and the extreme symmetric probability measures are
Just the homogeneous product measures. They proved that the second assertion is true
without any condition on F , and found general conditions implying the first. (Their
famous 0 - 1 1law is equivalent to the statement that the homogeneous product mea-
sures are extreme symmetric measures; L.E. Dubins and D.A. Freedman (1979) have
shown that the first assertion may fail to hold even when F is a separable metric
space.) There are at Teast two lines of further research which arose from their paper.
The first Tine was concerned with the question of whether the 0 - 1 Tlaw could be
extended to products of not necessarily identical probability measures, see, for in-
stance, D. Aldous and J. Pitman (1977) , G. Simons (1978) and the references
therein. A second group of papers dealt with the problem of whether de Finetti's re-
presentation theorem has an extension to probability measures with a weaker symmetry
condition; for instance a condition which is satisfied by all mixtures of certain
Markov chains; see D.A. Freedman (1962) , T. Hoglund (1974) , S.L. Lauritzen
(1974) , and P. Martin-Lof (1974)

Recently, and independently of this statistical tradition, the need for such re-
presentation theorems also arose in Statistical Mechanics. It is the purpose of this
text to explain the origins of this need and to give some of the required theorems.

So let us describe the problem. Let F = {0, 1} , choose a countably infinite set

S and regard the product @ = FS as the space of all configurations of indistin-
guishable particles in S , no two of which are allowed to occupy the same site. If
(apart from this exclusion rule) the particles do not interact but possibly prefer
certain sites then in equilibrium the state of this particle system would be describ-
ed by a (not necessarily homogeneous) product measure. Clearly, from a physical point
of view it is much more natural to consider particle systems with an interaction. Then,
as well as specifying a self-potential which describes to what extent the particles
prefer to stay at each site, it is also necessary to give the additional energy re-
quired in order that a pair of sites should be occupied. (This, of course, is assuming

only a pairwise interaction.) In this case the set of equilibrium states (which is pos-



Vil

sibly not a singleton!) is given by the set of all so-called (grand canonical) Gibbs
measures for this interaction. These are defined as those probability measures which
have prescribed versions (depending on the interaction) of their conditional proba-
bilities with respect to the configurations outside each finite region.

In certain situations, however, it is only the interaction potential which is
determined by the physical circumstances and not the self-potential. For instance,
suppose we have a time evolution of the particle system in which the particles may
change their positions but cannot be created or destroyed. Moreover, assume that the
particle motion is governed by the interaction in the sense that those particle jumps
are favoured which entail the largest gain of total energy. In order to establish
that such an evolution is locally in equilibrium it is sufficient to know that in each
finite region the configurations have a particular distribution (given in terms of
the interaction) when in addition to the configuration outside the region the particle
number in the region is also fixed. We call a probability measure with this property
a canonical Gibbs measure because these specific local equilibrium distributions cor-
responding to given environments and particle numbers are just the so-called canonical
Gibbs distributions. If there is no interaction the canonical Gibbs measures are exact-
ly the symmetric measures.

In this text we will ask whether the analogue of de Finetti's result holds, name-
1y whether each canonical Gibbs measure is a mixture of measures for which the distri-
butions of the local particle numbers also have a particular form (being defined in
terms of a self-potential), i. e., a mixture of grand canonical Gibbs measures. We
will show that the answer is in the negative when the interaction and the self-poten-
tial are spatially very inhomogeneous but is positive as soon as these are, in some
sense, sufficiently homogeneous. In our framework there will be no difficulty to show
that each canonical Gibbs measure is a mixture of extreme canonical Gibbs measures.
Thus our main task will be to find natural conditions which ensure that each extreme
canonical Gibbs measure is a (grand canonical) Gibbs measure. As a particular result
we will obtain some extensions of the Hewitt/Savage 0 - 1 Tlaw to inhomogeneous non-
product measures.

Thus far we have only described particle systems on a discrete set. But clearly
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the same questions arise if the position space of the particles is continuous, and

of course this is the case of most interest in physics. Therefore we will also be
concerned with canonical and grand canonical Gibbs point processes, and we will ob-
tain some extensions of the result stated immediately below which is the point pro-
cess counterpart of de Finetti's theorem, and was first proved by K. Nawrotzki (1962)
and D.A. Freedman (1963) . Suppose u is a point process on the real line (i. s
a probability measure on the set of all Tocally finite point configurations on R)
satisfying the following symmetry condition: For each bounded interval A and a
fixed number of particles in A the positions of these particles are independently
and uniformly distributed. Then u is a mixed Poisson process, i. e., u has a re-

presentation

(0.2) . Jm(dz) o,
where m is a (uniquely determined) probability measure on [0, o [ and n2
denotes the Poisson point process on R with intensity z >0

The notion of a canonical Gibbs measure has an obvious generalization, namely
the concept of a microcanonical Gibbs measure. To obtain its definition we have only
to change the italicized phrase above "when ... the particle number in the region
is also fixed" into "when ... the values of certain extensive quantities (as, for
example, the particle number and the interaction energy) in the region are also spe-
cified" . However, we think it is reasonable to confine ourselves to canonical Gibbs
measures. The reader interested in the microcanonical case is referred to M. Aizenman
et al. (1978) , C. Preston (1978) , and R.L. Thompson (1974) .

I am much indepted to C. Preston for help with the English and to U. Sander for

typing the manuscript.
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§ 1 Basic concepts

We will consider both discrete and continuous models for an interacting particle
system. In both cases we restrict ourselves to the situation which is usually con-
sidered in classical statistical mechanics. In the discrete models the particles are
allowed to occupy the sites of some countably infinite set S , e.g. the three-dimen-
sional integer lattice. If the particles are indistinguishable, then at each site

X € S we have the alternatives: x 1is occupied by a particle or not. To stress the
symmetry between these two possibilities we imagine the empty sites to be occupied

by particles of a species 0 . More generally, we will consider an arbitrary finite
set F of particle types. Then the space of all particle configurations is @ = FS Y

In the continuous case we assume that there is only one type of particle and the
particles take their positions in a nice subset S of a Euclidean space. If we ex-
clude the possibility that two particles have the same position the set @ of all
locally finite subsets of S becomes the configuration space. (The generalization
to more general spaces S will be clear whenever it is possible. Furthermore, the
case of several types of particles can be reduced to the case of a single type by
embedding several copies of S in a higher dimensional space.)

In order to completely formulate the models, in both the discrete and the con-
tinuous case, it is necessary to specify the interaction between the particles. Then
(under a hypothesis of thermodynamic equilibrium) the commonly accepted Ansatz of
Gibbs yields the probability distributions for local configurations conditioned with
respect to a fixed environment. The objects of our study are probability measures on
Q@ whose local behaviour is determined by the Gibbs distributions.

We should mention that a unified treatment of both the discrete and the continuous
case would be possible using the formalism of point process theory or the abstract
setting of Preston (1976, 1978). However, we think that each case is better treated

separately, and this facilitates the possible study of only one of the cases.



1.1 The discrete model

Let us start with S , a countably infinite set of particle sites, and F , a finite
set of types of particles with cardinality IFI > 2 . The configuration space is
9 = F°

For each V< S et

=9

(1.1) X

v ioo = (0y)yes oy = oy )yey

be the projection from @ on QV = F We use the same symbol for the projec-
tion from Qw to QV whenever Wo V . If V and W are disjoint subsets of S
and w € QV s T E Qw , we denote by wz the configuration on V UMW with
(un;)V =w and (m;)w =z .

For any a€F , wc€ Qy let

(1.2) N (a, w)

n
oy,
x
m
<<
€

n
Q
-

be the number of a - particles in the configuration « . (Which V has to be used
will be clear from the context. If w € @ and only the particles in V are count-

ed we write N (a, wv) . ) Finally, let

(1.3) N (w) = (N (a, w))a€F
We let
(1.4) S = {AcS : 0 < IAl < e}

denote the system of all non-empty finite subsets of S . For singletons in S we

usually write x instead of {x} . Often we use the symbol



(1.°5) Tim
A4S
with the meaning that the 1imit is taken over a fixed sequence (An)n>1 in S such

that AyEA (n>1) and U A_ = S . This sequence may be chosen

n+l n>1 n
arbitrarily unless the contrary is stated.
For any A€ S lTet

(1.6) A = Lefo,1,2,..3F : = L@ =nn

a€eF
be the range of the function w - N (wA) , and for L €A let
(1.7) Q = lwegq, = N (w) = L}

be the set of configurations in A with given L

For any V< S we denote by

(1.8) Fy o= o (X, @ x€V)

the o - algebra of the events in V which are generated by the finite-dimensional
projections in V . It is well-known that F = FS is generated by the product
topology on @ (with the discrete topology on F ). Since @ 1is compact the set of
probability measures on (@, F) also is compact in the weak topology. Note that a
sequence (un) of probability measures on (@, F)  converges weakly to some wn
as soon as all cylinder probabilities converge:

wo (X, =z) > w(X,=z) (c€g,NrES)

The following sub - ¢ - algebras of F will play a central role: the tail field



(1.9) £ « 0 F
« res M

and the o - algebra of symmetric events

(1.10) E = N E

Here for any A € S

(1.11) E, = o (N(X), Fg )

denotes the o - algebra of events which are invariant under permutations of the sites
in A . Note that EA =] EA' whenever A < p!
The objects which we are interested in are probability measures on (@, F)

whose conditional probabilities with respect to either F or E, have a par-

SNA A
ticular version. This version has the form postulated by Gibbs and is determined by

a potential @ describing the interaction of the particles.

(1.12) Definition: A function

is called a potential if

(i) o (A, - ) s FA - measurable for any A € S . (Sometimes therefore we
shall think of @ (A, - ) as a function on 2 )
(ii) forany A €S, z € Q > w€q, the energy of ¢ 1in A with boundary
condition w
E, (zlw) = % @ (A, T we_,)
& A€ES :AnA+D el

is well-defined (as the finite 1imit of the partial sums over all AcV if



V  runs through the directed set S ) and continuous as a function of w .
This continuous dependence of the energy on the boundary condition says that the
potential decays sufficiently rapidly for sets A with "large diameter" . A well-

known sufficient condition for (ii) is

(1.13) b3 heoA, - )N < = (x €59) 5
XEAES
where Il - |l denotes the sup-norm.

Without loss of generality we could assume that the potential vanishes for cer-
tain configurations, see e.g. Sullivan (1973). We shall not use such a normalization
unless F = {0, 1} . In this case we can assume that there is a function S - TR
(again denoted by @ ) such that

(1.14) o (A w) = o (A)w (A€ES, weER)

n
—_

where w = i w
XEA

The so-called chemical potential @ (x, a) (x €S, a€F) specifies to
which extent the site x favours the occurence of an a - particle. In order to
favour type - a particles on the whole of S against all other types it is sufficient
to add a constant (written in the form - log z(a)) to ®( . , a ) . Since this pro-

cedure will be important for us we shall include it from the beginning:

(1.15) Definition: A function

z ¢ F - [0, is called an activity if ¥ z(a) > O
a€F

A denotes the set of all activities.
As we shall see at once in (1.16) , it makes no difference for us if some
z € A is multiplied by a positive factor. Therefore we write 2y~ 7, if

zy=cz for some ¢ >0 . In the case F = {0, 1}  the equivalence class of



any z € A usually is represented by the number z' € [0, »] given by

z(1) / z(0) if  z(0) > 0
z' =
o otherwise
In the following we fix a potential ® . Together with an activity z € A,

® defines a system of conditional probabilities as follows:

(1.16) pefinition: Let A €S, w€qQ . The probability distribution on Q,

defined by

v (tle) = Z, (2, w)

is called the (grand canonical) Gibbs distribution on A with boundary condition
w corresponding to the potential @ and activity z . The normalization factor

Z, (z,0) = < m z(a)N(a’C) exp [-E, (zlw)]

(
A
cenA aeF

is called the partition function.
It follows directly from the definition that the family of Gibbs distributions

is consistent in the following sense:

(1.17)  ¥2 (zlw) = v2 (gylougy,) vh (X, = tpdlo)

whenever A c A, T € Q 5 o € o . Conversely, any reasonable consistent system
of conditional probabilities can be described in terms of a potential. The Mobius

inversion formula shows (see, for example, Sullivan (1973)) :

(L.18) Remark: Suppose that a system 04 conditional probabi-

(95(-10)) pes uea



Lities is consistent in the sense of (1.17) and that the function gA(cI.) are

FS\A - measurable, continuows, and stnictly positive. Then there 4s a potential @
1

Auch that 9, = Yy fon al AN E S
If u 1is a probability measure on (@, F) and A €S, T € 2, then we let
(1.19) My (zl:) = wu (XA = cIFS\A)

denote the conditional probability of the event {XA = ¢} with respect to the o -

algebra F and the measure u

SNA
(1.20) Definition: A probability measure w on (2, F) is called a Gibbs measure
with respect to the activity z € A and the potential @ if for any A€ S and

L € QA

wy (gle) = Yi (zl-) p - a.s.

We let G (z) = G (z,®) denote the set of all such Gibbs measures.

This notion is due to Dobrushin (1968) and Lanford and Ruelle (1969). For this
reason, Gibbs measures are often called DLR - states. They have given rise to an ex-
tensive theory describing the properties of many-particle systems in thermodynamic
equilibrium. Certain aspects of this theory can be found in Preston (1973, 1976) and

Ruelle (1978), for instance. In particular, one knows:

(1.21) Theorem: G (z) 44 always non-emply, convex, and weakly compact. For some

® and z we have |G (z)| > 1

The non-uniqueness phenomenon |G (z)| > 1 has the physical interpretation of
a phase transition and is therefore of particular interest. However, since this pheno-
menon is not the theme of this text we refer the reader to Dobrushin (1968 b), e.g..

Here we will identify the set G (z) only in two simple situations:

(1.22) Example: Suppose that o (A, - ) =0 whenever  IAl >1 . Then G (z)



48 a singleton consisting of the product measure whose marginal distributions
are given by
n(X, = a) = z(a) exp [-® (x,a)] / £ z(b) exp [- @ (x5 b)]
beF

Indeed, it is easy to see that yi (-lw) is a product measure with these

marginal distributions and does not depend on « . Also, it is simple to verify:

(1.23) Example: Let a € F and suppose that z(b) =0 unless b =a
Then for each ® , G (z) consists of the point mass €q On the constant config-

wation whose value at each site i8 a

What is the difference in the local behaviour of two Gibbs measures with respect
to the same potential but different activities? Obviously, their behaviour will be
different when an a - particle at some site is replaced by a particle of a type
b #a . For some models describing the time evolution of a many particle system
(the so-called birth - and - death or spin - flip processes, see Liggett (1977), for
instance) only this kind of replacements occur during the evolution. Therefore, if
a Gibbs measure 1is invariant under such an evolution then its activity is uniquely
determined. A different type of process has been introduced by Spitzer (1970). It
models a system of infinitely many moving particles, see section 2.1 for details.

In this kind of time evolution, particles of different types interchange their posi-
tions, and the behaviour of a Gibbs measure under such interchanges depends only on
its potential and not on its activity. Indeed, such interchanges do not alter the
total particle numbers in sufficiently large regions, and for each A € S and

L€ AA the conditional probability given with respect to a Gibbs distribu-

L
tion yi (-lw) (if it is well-defined) does not depend on z , and is given by

YL («lw) , which is defined as follows:

(1.24) Definition: Let A€ES, wen , LE AA . The probability distribution

on a, defined by



o Ele) = 1 (@) 7, ()7 e [-E(tle)]  (zea

)
AL &

is called the canonical Gibbs distrnibution for @ on A with particle numbers

L(a), a € F, and boundary condition « . The normalization factor

ZA,L (w) = EQ exp [- E
ESaLL

A (zlw)l

is called the canonical partition function. If L ¢ A we put Z (w) = 0.

A A,L
The following consistency property, which is easily verified, makes precise the

statement preceding the definition (1.24):

(1.25) vy (glo) = vy (ele) vy (2, 1)

whenever z €A, NES, LE AA, T €EQ and ® € @ . Furthermore, the

AL
family of canonical Gibbs distributions satisfies the consistency condition

(1.26) v, (clw) = YLN(E,) (e leugy) 7y (INCK) = N(gy) Xy = 5y 3 1)

where AN ks LE AA, T €Q and w € Q

AL ?
Similarly as in (1.20) , the system of canonical Gibbs distributions can be

used for the definition of canonical Gibbs measures. These will be the central notion

of this text. In particular, we will see in § 2 that these measures are invariant under

the particle motions mentioned above. Note that for any A€ S and ¢ € @, the

A
function

w = YA,N((»A) (Elw)

is measurable with respect to EA s
(1.27) Definition: A probability measure u on (2, F) is called a canonical

Gibbs measwre corresponding to the potential @ if for all A €S and ¢ € Q,



