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Preface

This book results in part from lectures held by the first author
at the Pedagogical University of Bydgoszcz in 1984 - 85. A part of the
present text (chapters I, II, IV) is a revised version of lecture notes
[156], which appeared in 1885 under the same title (in Russian) in 350
copies, in the form of mimeographed notes (a university issue). Chapter
III includes new results.

The text is supplemented with an Author Index and Subject Index; each
chapter is followed by short comments on the history of results exposed
in the chapter.

It is the authors’ hope that the book may be of interest to those who
are just beginining to deepen their knowledge of Banach space geometry
and approximation theory, as well as to specialists. The second chapter
can perhaps prove to be interesting also to specialists in mathematical
economy.

This book would never have appeared without encouraging help from
many persons.

First of all, the authors are grateful to Professor Ward Cheney for
his suggestion to submit the manuscript to this series and for his inte-
rest and encouragement along the way to its completion.

Also our thanks go to Professors Yu. D. Burago, M. I. Kade&, S. A.
Konjagin, A. Pelczynski, S. Rolewicz, P. Wojtaszczyk, W. Wojtynski, W.

A. Zalgaller, Dr. V. M. Kade&, Dr. A. Koldobskii and Dr. K. Kirsten for
fruitful discussions about problems dealt with in this book.

Special gratitude is due to Professor Czestaw Bessaga who has read
through the first version of the text and helped a lot in elaborating
the final version.

Finally, we are glad to be able to thank Dr. M. E. Kuczma, Mr M. Wéj-
cikiewicz and Miss J. Wéjcikiewicz who translated the text into English.

The authors also would like to express their gratitude to Dr. M. Ba-

ran for his help in preparing the final version of this book on computer.

Wiodzimierz Odyniec and Grzegorz Lewicki

Krakdéw, April 18990
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Introduction

§ 1. General survey

The first 30 years of our century , the time when the edifice of func-
tional analysis was raised, is also the period during which the founda-
tions of the theory of best approximations in normed space were laid. The
name forever connected with the origins of that theory is that of S. Ba-
nach's ([7]).Later on the ideas of Banach were developed in the works of
S. Mazur, M. G. Krein, S. M. Nikolskii, N. I. Ahiezer, J. Walsh, A. N.
Kolmogorov, A. I. Markusevi&, R. James, R. Phelps, A. L. Garkavi, I. Sin-
ger, E. W. Cheney, S. B. Stec¢kin, and others ( see [72],[124]1,0183],[192]
for detailed references).

The problem of best approximation in a normed linear space X by ele-
ments of a subspace D ( here and elsewhere, by a subspace we always mean
a closed subspace ) is formulated as follows. Given x € X, find an ele-

ment y € D for which the lower bound
x

Ax,D) = inf<llx - yll: y e D> C0.1.1>
is attained.
The number p(x,D) is called the best approximation, or a distance,

to x from D. Element Y. C(which need not be unique) is called an element

of best approximation from D to x.

The question of vital importance in computing ( or estimating > the
quantity o(x,D), as well as in veryfying is whatever or not the subs-
pace D is complemented in X; that is to say, whether there exists a pro-
Jection of X onto D. In particular, if P is such a projection, then we

have for every x € X

Ix — Pxll < IIT - Pll-p(x,D), co.1.2>
with I denoting the identity operator in X. Since

Ir - Pl =1 + IPI, C0.1.3>
with equality

T - Pl =1 + IPI C0.1.4>

holding in many important specific cases ( see e.g. I. K. Daugavet’s pa-
per [54] >, the problem which naturally arises is that of estimating from
below the norm of P. To serve this purpose, a quantity o(X,D) is intro-
duced, called the relative projection constant:

XX,D) = inf{llPll:P is a projection of X onto D> (0.1.5>

(see [25],[78],[88]1,[901).



Among all projections from X onto D, those are of special interest

whose norms coincide with the constant p(X,D); they are called minimal pro-
jections (provided they exist). In other words, a projection P of a Ba-
nach space X onto a subspace D is minimal if

HPiﬂ > Pl C0.1.86>

for any other projection sz X -+ D.

The problem of finding a best approximating element, as well as that
of finding a minimal projection, is in fact an instance of an optimiza-
tion problem. The relationship between the two types of problems is not
just apparent; it goes quite deep into the inner nature of things,though
certain differences occur at some points. Similarly to the general task
of finding a best approximation, when dealing with minimal projections
we are facing two principal kinds of problems:

CEm) = problem of existence of minimal projection,

CUm) problem of uniqueness of a minimal projection.

In a finite-dimensional space, problem (Em), just as (E)>,the problem

of existence of a nearest element, always has a solution.This is no more
the case for spaces of infinite dimension ( see [39]1,[83]1). Both of this

existence problems can lack a solution. Let us examine two examples. In

each of them X is taken to be c, for D we take two subspaces of codi-
mension 1 defined by two functionals fi, fz & (co)* = l{
Example 0.1.1. a) f = €1/2,1/4,18,...,1.2",...3, x =(2,0,...> € c_,

D =f*o>. It is easy to see that inf{llx - yll:y € D> =1, whereas
Ix — yll > 1 for any particular y in D. Strangely enough,there exists a
minimal projection onto D, of norm 1, which is unique (moreover it is a
SUBA projection) (see [12]1,[211).

b) f, = C14,1-4,174,1.8,1-16,...1.2"*, . ..5, D = f;‘co>

Then 1 < p(X,D) < 2 and there are no minimal projections onto D (see
[211>.

To emphasize the relevance of minimal projections to the problem of
best approximation we mention the following result of P. Franck ([681).
Let £(X,Y> denote the space of all linear operators from X to Y (Banach

spaces) and let fv be the space of all operators in £(X,Y) whose kernels
contain a given subspace V ¢ X. Then for any T € £(X,Y) we have the ine-

quality

inf{IT - TIH:T! (= fv} =z supl I Txl /HxHx:x e V> c0.1.7>

Y



which turns into an equality whenever there exists a norm one projection
of X onto V. (For functionals (0.1.7) holds with an equality sign C([27],
[711>.D

Despite the fact that, historically, the term "minimal projection"
entered the stage relatively late, the study of minimal projections ori-
ginated in fact already in the thirties, mainly in the connection with
geometry of Banach spaces. Projections with unit norm have been treated
most thoroughly; this is chiefly due to the fact that they can be consi-
dered as a generalization of orthogonal projections in Hilbert space.

Numerous mathematicians have been dealing with norm one projections;
let us mention there A. E. Taylor, H. F. Bohnenblust, L. V. Kantorovich,
R. C.James, L. Nachbin, G. P. Akilov, M. Z. Solomjak, J. Lindenstrauss,
M. I. Kade&, Cz. Bessaga, A. Pelczynski, J. Ando, V. I. Gurarii (seel19],
[139], [159] for detailed references).

On the other hand, papers dealing with certain minimal projections
with nonunit norm appeared already in the forties. We wish to emphasize
expecially two of these works, A. Sobczyk [180], 1941, and S. M. Lozin-
skii [1301, 1948.

Using the results of Taylor [186] and Bohnenblust [25], A. Sobczyk
[180] has shown that minimal projections of (c) onto (co) have norm 2
and there are infinitely many of them. (Recall that Cco) is of codimen-

sion 1 in C(cd>. To be precise, if (x> € (¢> then, writing x = (1,1,...2,
(=]

we can find a unique t € R such that x = 3%+ t-xd
Now, if we define an operator P by
Px = x + t b, 0.1.8>
where

b=¢Cb,b,...> € (cd, 1lim_ b = -1 0.1.9
1 2 L4+

w i
then clearly P is a projection of (c) onto Cco); if besides |b [ <1 for
3

all i, then P is a minimal projection.

Lozinskii’s paper [130] is connected with the Fourier projection Fn
of Co(an), the space of all continuous, 2r-periodic function, onto n o
the space of all trigonometric polynomials of order < n (n 2 1). It is

defined by the formula

2n 21
Fn(f) = s fCLd-g (b dt)gw 0.1.10>
kZo o n
where {gk)ﬁ; is any orthonormal basis in L i.e.
2m
i gict)-gft) dt = é”, 0.1.11)>

C(the Kronecker deltad). The main result of this paper is that oC(C (2r),m D=
o kal

= HF“H; in other words that F“ is a minimal projection (see Theorem O.1.3



below). Because of the great importance of the Fourier projection Fn we
present after [35] some basic properties of this operator. We start with

the following

Theorem 0.1.2.(see [35],p.212)The norm of F satisfies the following esti-
n
mation:

4-7%InCnd = IF Il £ InCnd + 3 €0.1.12>
n

Proof.It is well known (see e.g.[2],p.180) that
n
IF I = carn>- s |DnCt)| dt, €0.1.13>
n ]
where
DnCt) = sinCdn + 123 -t)>/sinCC1/2) LD C0.1.14>
for t € [0,2n). The change of variable t + 2x and the inequality
sin(x) < x on [0,2n] give us, following (0.1.13>

ns2
IF I 2 C2snmd - f |sinC(2n+1)3> /x| dx.
n
o
The change of variable x »+» nm-x/(2n+1) then yields

n+1/2 2n
HFnH > (a/m - f |sin(nx)|/x dx > (2sm - S |sinCmo [7x dx.
o o

Breaking the interval into n subintervals, we obtain

1 2 n
HFnH 2 2/mC S+ L+ L.+ S )|sin(nx)|/x dx =
[¢] 1 n-1
1
=2/ S (1/%x + 1/0x+1D> +.. .+ 1/Cx+n-12) - |sin(ax] dx 2
o
1
2 a2/ S (1 + 12 + ...1/n) sinCax) dx 2
o

1
> C(2/m) -1nCnd -SsinCaxd dx = C(4-n°> -1nlnd.
o
That 1 + 12 + ... + 1/n > 1n(n+l> may be seen from a graph of the func-

tion 1/C(x+1) or by induction.
To prove the second inequality, first observe that

n
DCtY =102 + Zlcoscit,) €O.1.15)
i__

Integrating separately over [0,1n] and [1.n,n] we obtain the following

estimations

1/n 1/n n
gsnd - S [DnCt)| dt = (e sn>- S 12 + ZICOSCit)| dt =
o ] =1
< (2/m'nd)-C12 + n) < 1
and
n n
C1/m - S |D Ct)| dt < 1/ J nst dt = 1nCrd) - 1nCl/n) < 2 + 1nCnd
1/n n 1/n

Chere we have used the fact that sin(t/2) = t/n which is evident from



the graph of sinCt/2).Combining the above inequalities we derive the se-—

cond estimation. xx*

Theorem 0.1.3 ([35],p.212) Let P be any projecticn of the space cocan) on-—
to the space . Then Pl = HFnH. In other words Fn is a minimal projec-—
tion among all projections of cocan) onto n -

Proof.Define operators Ta and & by the equations

(T;f)(x) = f{x+s)

n
(3FOC(xd = 121 S CT;EPT;f)Cx) ds.
-n

If we can establish that & = Fn. then we will be finished because

2
HanH = lIgfll = max<|(1/2n)~ J (TLBPT;f)Cx) ds: x € [0,2r]1) =
-n

< IT PT I < IPH-IfN.
-8 8

In order to prove that F‘n = &% it will be enough to prove that ﬁfk = ank

where fk is the function kax) = ewx Ck=0,%1,%2,...), since this family

of functions is fundamental in C°C2n), while the operators & and Fn are

linear and continuocus. If |k| < n, then ank = fk. On the other hand,

'I'afk €n ., so that PT;fk = T;fk' Thus T—aPTafk = fk and ifk fk. CIn

the integration, the integrand is independent of s.) Suppose next that
|k| > n. Then, by €0.1.10> and €0.1.11>, F f = 0. Since Tf = e““-rk,
iks

it follows that (TLBPTafk)(x) = e -(Pfk)(x—s). But Pfk =3 nn.and conse-—

quently, as a function of s, e*' is orthogonal to (Pfk)Cx—s). Hence

ka = 0O, which completes the proof. s

Theorem 0.1.4. ([35],p.214)Let P be a projection of the even part of C°C2n
onto the even part of . Then II -PlI = C1/2)-CHFnH + 1).
Proof.Define the linear operator

4
CBFfOCxd> = C12rd- S CT}CI = P)C'I'_B + T;)f)(x) ds
-1

in which Ta. as in the previous theorem, denotes the translation opera-
tor. The crux of the proof is in verifying the equation & =1 - Fn. Af -
ter that we write ICI - Fn)(f)H = @O <= 2-I1T -Pl-lIfll whence

2-1T =PI 2 IT - Fnﬂ =1 + HFnH.( The last equality can be obtained using
Daugaviet’s Teorem from [54].) In order to prove that & =1 = Fn. it

sufficies to prove that ifk = I - Fn)fk. where fk(x) = cos(kx), since



these functions form a fundamental set and the operators in questions

are continuous. Thus we must show that &fk = O when k £ n and ka = fk

for k > n. We have

(T;fk)Cx) = cos(k(x+s)) = cos(ks) -cosC(kx) - sinCks) - -sinCkx).
Hence (T + T Jf = B:cos(ks)-f
-8 s k k

and TCI -P>XXT + TOf = 2-cos(ks)-T(f - Pf D.
8 -9 s k s k k

Now if k < n, fk = Pfk so that §fk = 0. If k > n, then
n

(Gfk)Cx) = (1/11) S cos(ksdlcosCksdcos(kx)-sinCks)sinCkx) - CPkax+s)]ds
-n

Since (Pfk)(x—s) is a trigonometric polynomial of degree < n in s,the

integral invelving it vanishes, by orthogonality. By the orthonormali -

ty relations the remaining integration yields cosCkx) = fk(x).***

The Banach-Steinhaus Theorem, Theorems (0.1.2) and (0.1.3) yield the fol-

lowing

Theorem 0.1.5. (Charsziladze-Lozinski Theorem I) For each n let there be

given a continuous projectionnP ofOC cz2nd ontonn . Then there exists a
function f e C°C2n) for which HPan is unbounded as n -+ oo.
Proof.By the Thecrems (0.1.3> and (0.1.4> HPnH is unbounded because

IP I = UF I = C4/n2> 1nCnd.

n n

Ifr HPnfﬂ were bounded for all f, then by the Banach-Steinhaus Thecrem,
HPnH would be bounded. s
A simple consequence of Theorem (0.1.4) is
Theorem 0.1.6. (Charsziladze-bLozinski Theorem II) For each n, let Pn de-
note a projection of Cn[a.bJ onto the subspace of algebraic polynomials
of degree < n. Then there exists a function f € CR[a,b] for which the se-
quence lIf - Pnfﬂ is unbounded.
Proof.We define a map M from Cn[a,b] onto the evan part of C°(2n) by

(MfO)Cad = fCCa+bd2 + ((b-ad/ /2> -cosCad).

The map M is an isometric isomorphism. That is, it is one-to-one,linear,

and has the property IMfll = lifll. Now the operators P: = MPnM_1 are pro-

jections of the even part of cocan) onto the evan trigonometric polyno-
mials of degree < n. By Thecrem (0.1.5>, then, II - P 1"+ w. Hence

n
I - Pnﬂ + o, and by the Banach-Steinhaus Theorem, If - Pnfu is unboun-

ded for some f. ®xx=x



The question of uniqueness of F‘n has remained unsolved until 1968

(see [36],[37),and also [88]). The more general situation has been con-
sidered in ([172]1).

The papers of Sobczyk [180] and bozinski [130], although bearing ve-
ry little resemblance to one another, both lie in the two main streams
of application of minimal projections:geometry of Banach spaces and the-
ory of best approximations. These two principial topics have become the
object of the first general survey by E. W. Cheney and K. H. Price in
1970 ¢ see [39]). One of papers mentioned in that survey deserves a spe-
cial comment. We mean here the considerable progress towards the solu-

tion of problem C(E > achieved by J. R. Isbell and Z. Semadeni in their
m

joint paper [83]. As it is stated by the authors, inspiration came from
B. Griunbaum (see [771).

The main result of [83)] reads as follows

Theorem 0.1.7. (Isbell, Semadeni).lLet D be a complemented subspace of a
Banach space X and suppose that D is isometrically isomorphic to the du-
al of a Banach space Y. Then there exists a minimal projection from X
onto D. This is the case, in particular, if D is a reflexive subspace

of X.

Compare this with the result of R. James’ paper [85] ( which appea-
red one year later, in 1964 > concerning property (EJ: it is only in a
reflexive space that each hyperplane ( codimensiom one sobspace ) enjoys
property E.

Needless to say, Theorem (0.1.7)> does not exhaust all the knowledge on

problem CEm) ( see e.g. [221,[431>. Several results have been obtained

on the existence of minimal projections onto subspaces which are not the

duals of any space. For instance, no infinite dimensional subspace of c
(o]

is a dual space ( see [15],Corollary 2. Nevertheless, some of these sub-

spaces admit minimal projection from c
L=

As regards the problem of uniqueness, survey [39] contains just a
few theorems, which concern norm 1 projections.

This book is mainly devoted to the solution of uniqueness and strong
unicity (see Chapter III) problems for minimal projections (with nonunit
norm in general) in Banach spaces;it also exhibits the relevance of this

problem to the uniqueness problem (Uup) in mathematical programming and

to the problem of characterization of Hilbert spaces.
For quite a long time already spaces with symmetric norm ( for ins-

tance, l;, lp, Lp (1 £ p = o, ¢ D have been used as a tester for new 1i-
[a]

deas in functional analysis,although the term ‘“symmetric space' appeared



relatively recently, in Singer’s papers [175],[176]. ( See e.g. Kadec-
Pelczynhski [81] or [123], or the papers on the interpolation of linear o-
perators [1731,[174], or papers on Banach lattices [1],[87];for detailed
bibligraphy see [17]1,[281,[178]1). Therefore, the problem of uniqueness
of minimal projections deserves special interest in symmetric spaces. On
the other hand, in symmetric space of finite dimension,the uniqueness
problem for minimal projections is essentially a problem of mathematical
programming.

Now, the question of uniqueness in problems of mathematical program-
ming ( we confine attention to linear programming Jadmits two approaches.
The first of them consists in an analysis of the programming algorithm
and requires its execution ( see e.g. [59]). The other possibility is to
inspect carefully the condition of the problem without executing the al-
gorithm. This second way of approach has proved especially fruitful in
the solution of several problems in matrix games (see e.g. [15],[23]1,[26],
[69],0(70],[1281,[1581).

The interrelation between functional analysis and mathematical prog-
ramming is well known. It suffices to resort for instance to the works
of L. V. Kantorovich and his disciples.

In most of these papers, however, methods of functional analysis are
applied in solving one or another problem of mathematical programming,
whereas in the present book the direction is reversed. Methods of mathe-
matical programming ( in particular, the simplex method) are used in Chap-
ter II to the solution of a functional analysis problem, namely, the pro-
blem of uniqueness of a minimal projections in a symmetric space of finite
dimension.

In view of the natural relation between the two uniqueness problems

CUup) and CUM), established in this paper, it seems reascnable to hope

that it might find an application in mathematical programming.

Let us now turn attention to the question of a characterization of
Hilbert spaces within the class of all Banach spaces. This questions be-
longs among problems of functional analysis which have gained big popu-
larity (see e.g. [58],[100]1,[1611>. The following two questions hawve been
posed in this connection by S. Banach [7] (The second question had been
inspired by S. Mazur (see. [8], p.211).

(1.BY) Let B be a Banach space ( dim B 2 3> and k 2 3 an integer. Sup-
pose that all k-dimensional subspaces of B are mutually isometric. Is B
necessarily isometric to a Hilbert space?

(1.B-M> In a Banach space B, if X,y € B are any elements with unit
norm then there exists a linear isometry A carrying B onto itself and
such that Ax = y. (A space with this property is sometimes called an

isotropic space or a space with a transitive norm (see [50])>.)> Supposing



B to be separable, must B be isometric to a Hilbert space?

As shown by S. Rolewicz [167], the assumption of separability is ne-
cessary for a positive answer to problem (1.B-M).

According to the results of further research [131], if the space is
infinite-dimensional, the requirement that the space norm is transitive
cannot be replaced by partial transitivity. More precisely, every sepa-
rable space B is a complemented subspace of a separable space X whose u-
nit sphere contains a dense subset T such that for any x,y € T there is
a linear isometry A of X onto X with Ax =y.

As to the first question, it is still lacking a complete solution in
the case when 4 < dim B < w. The second question is unanswered for dim B =
= . For finite dimensional spaces this problem has been positively solv-
ed by H. Auerbach (see [B], [7]1). For more information the reader is re-
ferred to [611,[62]),[76],[1611].

Along with the questions (1.B) and (1.B-M) we will concern with the
following two problems:

€(1.B° Let B be a Banach space and k a positive integer. Suppose
that all subspaces of codimension k in B are isometric. Is B necessari-
ly isometric to a Hilbert space?

Evidently, the problem C(1.B°> does not differ from the problem (1.B>
in the case of dim B < w.C(If 4 < dim B < o then k < dim B - 1.

(1.0d> Let B be a reflexive Banach space and k a positive integer.
Suppose that each subspace of codimension k in B is the image of mini-
mal projection P&)with norm 1+a, where a =2 O is a constant depending
on B alone. (Then B is called (a,k)-spaced. Is B necessarily isometric
to a Hilbert space? (The case a=0, k=1 is treated in [7], p.254.)

It has to be remarked that problem (1.0d) is closely related to the
well known result of Kakutani (¢ see e.g. [S8] > which states that if in
a Banach space B with dim B 2 3 every subspace is the image of a proje-
ction B with norm IPIl = 1, then B is isometric to a Hilbert space.

Problems (1.B> and (1.B-M) indicate that the task of characteriza-
tion of Hilbert spaces among all Banach spaces unavoidably leads to in-
vestigatjions of the isometry group of Banach spaces involved. Investi-
gation of that type has been originated by S. Banach with regard to spa-
ces lp. Lp (1 <p< o p=a2 >, CX>). Further research has spread to
spaces of complex-valued functions and sequences ( see [63],[64]1,[112],
[163] to mention just a few > on the one hand and the spaces with a ba-
sis and a symmetric norm [167], arbitrary symmetric coordinate spaces
[28] and also certain nonsymmetric coordinate spaces defined by W. Or-
licz [105]1,[1061,[179], on the other. We have not mentioned here the lite-
rature concerning isometries in subspaces of classical spaces ( see e.g.

[1111>, results on the groups of isometries of Banach spaces [S], [167]
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and, in particular, groups containing reflections [1911].
In this paper we take up the problem of characterization of Hilbert

spaces, chiefly, within the class of uniformly smooth strictly normed

spaces. We will be concerned with problems ¢(1.B® and (1.0d), as well
as with certain properties, hitherto ignored, of the isometry subgroup
connected with a fixed subspace of the space under consideration.

36

We now expose in more detail the results of the book.

In Chapter I we pursue the uniqueness problem CUm) in an arbitrary
Banach space.

The main result of section 1 states that, in a three-dimensional
space, a minimal projection with nonunit norm onto a codimension one
subspace always is unique. As regards spaces of higher dimension, an a-
nalogous statesment is not true, in general; this is a result of K.Kur-
sten, which we also present (see also section 3 of Chapter IID.

In section 2 we examine certain properties of minimal projections.
In this context, specific features of projections with nonunit norm are
readily seen. The difference between these operators and projections of
unit norm is made plain by two circumstances. Firstly, the latter always
do attain their norm; and secondly, the question of key significance
for the uniqueness of norm one projections onto a subspace D is the pos-
sibility of a unique norm-preserving extension of functionals on D to
the whole B (see, for instance, Corollary I.2.20; also [13],Thecorem 5).
In other words, what is of main importance for the uniqueness of a pro-
jection with unit norm, is the "smoothness" of points of D in the space
B. For minimal projection with nonunit norm, smoothness of that type is
is also important, but only in the case when dim B/D 2 2. If dim B/D =1
¢ dim B 2 4>, the fundamental part for the problem of uniqueness of mi-
nimal projection with nonunit norm is played by the concept of strict
convexity of a subspace ( see Theorem I1.2.3 below).

In the same section we present V. M. Kadec’s result on the linea-
rity of a Lipschitz projection projection with unit norm.

Section 3 is mainly devoted to an inspection of the two diagrams

1 7 AN s B 2 0.1.186>

with P, P_l (i=1,2,3,4) denoting minimal projections, IPI > 1, HP2U > 1,

HPSH > L, HPin = HP4H = 1. It is pointed out, in what way questions con-

cerning the uniqueness of P are influenced by the uniqueness of the Pt’s.



