José Julio Alferes
James Bailey
Wolfgang May

Uta Schwertel (Eds.)

' Principles and Practice
of Semantic Web
Reasoning

4th International Workshop, PPSWR 2006
Budva, Montenegro, June 2006
Revised Selected Papers

LNCS 4187

@ Springer

José Jilio Alferes James Bailey
Wolfgang May Uta Schwertel (Eds.)

Principles and Practice
of Semantic Web
Reasoning

4th International Workshop, PPSWR 2006
Budva, Montenegro, June 10-11, 2006

Revised Selected %'I_\H{ ﬁ @ :B m

@_ Springer

Volume Editors

José Jilio Alferes

Universidade Nova de Lisboa

Faculdade de Ciéncias e Tecnologia

Department of Computer Science, 2829-516 Caparica, Portugal
E-mail: jja@di.fct.unl.pt

James Bailey

University of Melbourne

Department of Computer Science and Software Engineering
Vic. 3010, Australia

E-mail: jbailey @csse.unimelb.edu.au

Wolfgang May

Universitat Gottingen

Institut fiir Informatik

Lotzestrasse 16-18, 37083 Géttingen, Germany
E-mail: may @informatik.uni-goettingen.de

Uta Schwertel

Universitdat Miinchen

Institut fiir Informatik

Oettingenstr. 67, 80538 Miinchen, Germany
E-mail: uta.schwertel @ifi.lmu.de

Library of Congress Control Number: Applied for

CR Subject Classification (1998): H.4, H.3,1.2, F4.1, D.2

LNCS Sublibrary: SL 3 — Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-39586-5 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-39586-7 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11853107 06/3142 543210

Preface

The papers in this volume represent the technical program of the 4th Work-
shop on Principles and Practice of Semantic Web Reasoning, PPSWR 2006,
held on June 10-11, 2006 in Budva, Montenegro, co-located with the 3rd Euro-
pean Semantic Web Conference, in the young country of Montenegro after its
independence on June 3, 2006.

The Semantic Web is a major endeavor aiming at enriching the existing Web
with meta-data and processing methods so as to provide web-based systems with
advanced, so-called “intelligent”, capabilities. These advanced capabilities, striven
for in most Semantic Web application scenarios, primarily call for reasoning.

Specialized reasoning capabilities are already offered by Semantic Web lan-
guages currently being developed such as the OWL family together with Triple,
SPARQL, or ontology-based application-specific languages and tools like BPEL.
These languages, however, are developed mostly from functionality-centered (e.g.
ontology reasoning or access validation) or application-centered (e.g. Web service
retrieval and composition) perspectives. A perspective centered on the reasoning
techniques complementing the above-mentioned activities appears desirable for
Semantic Web systems and applications. Moreover, there is the general reasoning
underlying the Semantic Web technologies, such as Description Logics, Hybrid
Logics, and others like F-Logic and Logic Programming semantics.

The workshop series on “Principles and Practice of Semantic Web Reasoning
- PPSWR” began in 2003 (cf. Springer LNCS 3208) in response to the need for
a forum for the discussion of emerging work on various forms of reasoning that
are or can be used on the Semantic Web, with a strong interest in rule-based lan-
guages and methods. The workshop addresses both reasoning methods for the Se-
mantic Web, and Semantic Web applications relying upon various forms of reason-
ing. Since 2003, when the conference was held in Mumbai, India, co-located with
ICLP, ASIAN, and FSTTCS, the workshop has been organized yearly: the second
workshop (LNCS 3208) took place in 2004 in St. Malo, France, in conjunction with
ICLP 2004; the third workshop took place in the Dagstuhl Conference Center in
Germany, within a one week Dagstuhl Seminar (LNCS 3703).

The technical program of PPSWR 2006 comprised an invited talk by Harold
Boley on “The RuleML Family of Web Rule Languages”, and the presentation of
14 refereed technical articles selected by the Program Committee among the 25
submitted. These 14 articles discuss various aspects of reasoning on the Semantic
Web ranging from more theoretical work on reasoning methods that can be
applied to the Semantic Web, concrete reasoning methods and query languages
for the Semantic Web, to practical applications.

Besides the presentation of the technical articles, one session was devoted to
the presentation and demonstration of 6 systems, all of them related to reasoning

v Preface

on the Semantic Web. A description of each of these systems is also part of this
volume.

During the workshop, informal on-site proceedings were distributed. The pa-
pers in this volume have been revised by the authors based on the comments
from the refereeing stage and ensuing discussions during the workshop and have
been subject to a final acceptance by the Program Committee.

The workshop has partly been supported by the 6th Framework Programme
(FP6), Information Society Technologies (IST) project REWERSE (cf. http://
rewerse.net), project reference number 506779, funded by the European Com-
mission and by the Swiss State Secretariat for Education and Research.

We would also like to thank the developers of the EasyChair conference man-
agement system (http://www.easychair.org/). EasyChair assisted us in the
whole process of collecting and reviewing papers, in interacting with authors and
Program Committee members, and also in assembling this volume.

Last, but not least, we would like to thank the authors of all papers and
system descriptions that were submitted to PPSWR 2006, the members of the
Program Committee, and the additional experts who helped with the reviewing
process, for contributing and ensuring the high scientific quality of PPSWR 2006.

July 2006 José Julio Alferes
James Bailey

Wolfgang May

Uta Schwertel

Workshop Coordination

Program Committee Chairs:

Organization

José Julio Alferes, Universidade Nova de Lisboa, Portugal
James Bailey, University of Melbourne, Australia

Proceedings Chair:

Wolfgang May, Georg-August-Universitat Gottingen, Germany

Local Organization:

Uta Schwertel, Ludwig-Maximilians-Universitat Miinchen, Germany

Program Committee

José Julio Alferes
Grigoris Antoniou
Matteo Baldoni
Robert Baumgartner
James Bailey

Sara Comai

Wtodek Drabent
Guido Governatori
Nicola Henze
Michael Kifer

Additional Reviewers

Sacha Berger
Sebastian Brandt
Gihan Dawelbait
Norbert Eisinger
Benedikt Linse
Sergey Lukichev
Hans Jiirgen Ohlbach

Georg Lausen

Francesca Alessandra Lisi
Jan Matuszynski
Wolfgang May
Paula-Lavinia Patranjan
Michael Schroder

Uta Schwertel

Dietmar Seipel

Carlos Viegas Damasio
Gerd Wagner

Daniel Olmedilla
Vineet Padmanabhan
Riccardo Rosati

Loic Royer

Claudio Schifanella
Umberto Straccia

Table of Contents

Session 1. Invited Talk

The RuleML Family of Web Rule Languages.........................
Harold Boley

Session 2. Reasoning I

Automated Reasoning Support for First-Order Ontologies..............
Peter Baumgartner, Fabian M. Suchanek

Combining Safe Rules and Ontologies by Interfacing
Of REASOMETS .« . o\ ettt ettt e e e e e e e e
Uwe Afimann, Jakob Henriksson, Jan Matuszyniski

Session 3. Applications

Realizing Business Processes with ECA Rules: Benefits,

Challenges, Limitst e
Frangois Bry, Michael Eckert, Paula-Lavinia Pdtranjan,
Inna Romanenko

Interaction Protocols and Capabilities: A Preliminary Report
Matteo Baldoni, Cristina Baroglio, Alberto Martelli,
Viviana Patti, Claudio Schifanella

Semantic Web Reasoning for Analyzing Gene Expression
Profiles . ..ot e
Liviu Badea

Session 4. Querying

Data Model and Query Constructs for Versatile Web Query Languages:
State-of-the-Art and Challenges for Xcerpt
Frangois Bry, Tim Furche, Benedikt Linse

AMAxO0S—Abstract Machine for Xcerpt: Architecture
and PHNGIPIOS susms spsms seaus i a5 ims 190598 18395 GHE SFIES BEI M EUITEE
Frangois Bry, Tim Furche, Benedikt Linse

X Table of Contents

Towards More Precise Typing Rules for Xcerpt........................ 120
Witodzimierz Drabent

Session 5. Reasoning II

Extending an OWL Web Node with Reactive Behavior 134
Wolfgang May, Franz Schenk, Elke von Lienen

Supporting Open and Closed World Reasoning on the Web............. 149
Carlos Viegas Damdsio, Anastasia Analyti, Grigoris Antoniou,
Gerd Wagner

Reasoning with Temporal Constraintsin RDF 164
Carlos Hurtado, Alejandro Vaisman

Session 6. Reasoning II1

Bidirectional Mapping Between OWL DL and Attempto Controlled
EDGUSH 3« 5 sernmoeims smaminwmsmnomsmesns oo s fEsEE 545 sme namme nms 179
Kaarel Kaljurand, Norbert E. Fuchs

XML Querying Using Ontological Information 190
Hans Eric Svensson, Artur Wilk

Semantic Web Reasoning Using a Blackboard System.................. 204
Craig McKenzie, Alun Preece, Peter Gray

Systems Session

Effective and Efficient Data Access in the Versatile Web Query
Lianguage: XeeFPh: & s: ns sos 55095 60mme comnms cwninn ome s sus ooz 58 s 0850 i85 219
Sacha Berger, Francois Bry, Tim Furche, Benedikt Linse,
Andreas Schroeder
Web Queries with Style: Rendering Xcerpt Programs with CSSV¢ 225
Frangois Bry, Christoph Wieser

Information Gathering in a Dynamic World 237
Thomas Hornung, Kai Simon, Georg Lausen

Practice of Inductive Reasoning on the Semantic Web: A System for
Semantic Web Miningo 242
Francesca Alessandra Lisi

Table of Contents XI

Fuzzy Time Intervals System Description of the FuTI-Library 257
Hans Jiirgen Ohlbach

A Prototype of a Descriptive Type System for Xcerpt 262
Artur Wilk, Wiodzimierz Drabent

Author Index 277

The RuleML Family
of Web Rule Languages*

Harold Boley

Institute for Information Technology — e-Business,
National Research Council of Canada,
Fredericton, NB, E3B 9W4, Canada
harold.boley AT nrc DOT gc DOT ca

Abstract. The RuleML family of Web rule languages contains deriva-
tion (deduction) rule languages, which themselves have a webized Data-
log language as their inner core. Datalog RuleML’s atomic formulas can
be (un)keyed and (un)ordered. Inheriting the Datalog features, Hornlog
RuleML adds functional expressions as terms. In Hornlog with equality,
such uninterpreted (constructor-like) functions are complemented by in-
terpreted (equation-defined) functions. These are described by further or-
thogonal dimensions “single- vs. set-valued” and “first- vs. higher-order”.
Combined modal logics apply special relations as operators to atoms with
an uninterpreted relation, complementing the usual interpreted ones.

1 Introduction

Efforts in Web rules have steadily increased since they were brought
into focus by the RuleML Initiative [http://ruleml.org] in 2000, includ-
ing DARPA’s DAML Rules [http://www.daml.org/rules], IST’s REWERSE
[http:/ /rewerse.net], ISO’s Common Logic [http://cl.tamu.edu], OMG’s Produc-
tion Rule Representation (PRR) [http://www.omg.org/docs/bmi/06-02-08.pdf]
as well as Semantics of Business Vocabulary and Business Rules (SBVR)
[http://www.businessrulesgroup.org/sbvr.shtml], and W3C’s Rule Interchange For-
mat (RIF) [bttp://www.w3.0rg/2005/rules]. RuleML has co-evolved with some of
these other efforts as well as with the Semantic Web Rule Language (SWRL)
[http://www.w3.org/Submission/SWRL], the Semantic Web Services Language
(SWSL) [http://www.w3.org/Submission/SWSF-SWSL], and the Web Rule Lan-
guage (WRL) [http://www.w3.org/Submission/WRL]. This has been supported
by, and influenced, RuleML’s modular design.

The specification of RuleML constitutes a modular family of Web sublan-
guages, whose root accesses the language as a whole and whose members identify
customized, combinable subsets of the language. Each of the family’s sublanguages
has an XML Schema definition, Web-addressed by a URI, which permits inheri-
tance between sublanguage schemas and precise reference to the required expres-
siveness. The family structure provides an expressive inclusion hierarchy for the

* Thanks to David Hirtle for creating the family’s XML Schemas, and the RuleML
Steering Committee for guidance. This research was partially supported by NSERC.

J.J. Alferes et al. (Eds.): PPSWR 2006, LNCS 4187, pp. 1-17, 2006.
© Springer-Verlag Berlin Heidelberg 2006

2 H. Boley

sublanguages, and their URISs are the subjects of (model-theoretic) semantic char-
acterization. The modular system of XML Schema definitions [BBH05] is cur-
rently in version 0.9 [http://www.ruleml.org/modularization].

The RuleML family’s top-level distinctions are derivation rules, queries, and
integrity constraints as well as production and reaction rules. The most de-
veloped branch groups derivation (deduction) rule languages, which themselves
have a webized Datalog language as their inner core. Hornlog RuleML adds
functional expressions as terms. In Hornlog with equality, such uninterpreted
(constructor-like) functions are complemented by interpreted (equation-defined)
functions. This derivation rule branch is extended upward towards First Order
Logic, has subbranches for negation-as-failure, strong-negation, or combined
languages, and languages with ‘pluggable’ built-ins.

This paper takes a fresh look at the family from the perspectives of three
orthogonally combinable branches: the generalized Object-Oriented RuleML
(section 2) as well as the new Functional RuleML (section 3) and the preliminary
Modal RuleML (section 4).

2 Rules in the Key-Order Matrix

This section will propose extensions to OO RuleML [Bol03]. RuleML’s global
markup conventions provide common principles for the family. XML elements
are used for representing trees while XML attributes are used for distinguishing
variations of a given element and, as in RDF, for webizing. Variation can thus be
achieved by different attribute values rather than requiring different elements.
Since the same attribute can occur in different elements, a two-dimensional clas-
sification accrues, which has the potential of quadratic tag reduction.

The data model of RuleML accommodates XML’s arc-ordered, node-labeled
trees and RDF’s arc-labeled (‘keyed’), node-labeled graphs [http://www.dfki.uni-
kl.de/ boley/xmlrdf.html]. For this, RuleML complements XML-like elements
— upper-cased type tags, as in Java classes — by RDF-like properties — lower-cased
role tags, as in Java methods. Both kinds of tag are again serialized as XML
elements, but case information makes the difference. This model with unkeyed,
ordered child elements (subsection 2.1) and keyed, unordered children (subsec-
tion 2.2) has recently been generalized to a ‘key-order’ matrix also permitting
keyed, ordered as well as unkeyed, unordered children (subsection 2.3).

As a running example, we will consider RuleML versions of the business rule
“A customer is premium if their spending has been min 5000 euro in the previ-
ous year.” This can be serialized using various equivalent concrete syntaxes, all
corresponding to the same abstract syntax that reflects the data model.

2.1 Arguments in Order

In RuleML’s most RDF-like, fully ‘striped’ syntax (with alternating type and
role tags), the example can, e.g., be serialized interchangeably as follows:

The RuleML Family of Web Rule Languages

<Implies>
<head>
<Atom>
<op><Rel>premium</Rel></op>
<arg index="1">
<Var>customer</Var>
</arg>
</Atom>
</head>
<body>
<Atom>
<arg index="1">
<Var>customer</Var>
</arg>
<arg index="3">
<Ind>previous year</Ind>
</arg>
<arg index="2">
<Ind>min 5000 euro</Ind>
</arg>

<op><Rel>spending</Rel></op>

</Atom>
</body>
</Implies>

<Implies>

<body>
<Atom>
<op><Rel>spending</Rel></op>
<arg index="1">
<Var>customer</Var>
</arg>
<arg index="2">
<Ind>min 5000 euro</Ind>
</arg>
<arg index="3">
<Ind>previous year</Ind>
</arg>
</Atom>
</body>
<head>
<Atom>
<op><Rel>premium</Rel></op>
<arg index="1">
<Var>customer</Var>
</arg>
</Atom>
</head>

</Implies>

The right-hand serialization is in <Implies> normal form, with the <body>
role tag before the <head> role tag, the <op> role before all <arg> roles, and the
<arg> roles ordered according to increasing <index> attribute values.

Once in <Implies> normal form, all <op> and <arg> roles can be omitted
(left), and the <body> and <head> roles, too (right):

<Implies>
<body>
<Atom>
<Rel>spending</Rel>
<Var>customer</Var>
<Ind>min 5000 euro</Ind>
<Ind>previous year</Ind>
</Atom>
</body>
<head>
<Atom>
<Rel>premium</Rel>
<Var>customer</Var>
</Atom>
</head>
</Implies>

<Implies>

<Atom>
<Rel>spending</Rel>
<Var>customer</Var>
<Ind>min 5000 euro</Ind>
<Ind>previous year</Ind>
</Atom>

<Atom>
<Rel>premium</Rel>
<Var>customer</Var>
</Atom>

</Implies>

The right-hand serialization shows RuleML’s most XML-like, fully ‘stripe-
skipped’ syntax [http://esw.w3.org/topic/StripeSkipping]. Notice that in all of
these syntaxes the three argument positions of the ternary spending relation

4 H. Boley

carry information that must be known, e.g. via a signature declaration, for cor-
rect interpretation.

2.2 Slots are Key

There is an alternative to signature declarations for determining the roles of
children in atomic formulas. In Object-Oriented RuleML [Bol03], the earlier
positional representation style is complemented by a slotted style: the ‘system-
level’ data model with type and role tags is also made available on the ‘user-level’,
permitting F-logic-like role—filler pairs.

For this, a single (system-level) metarole <slot> with two children is em-
ployed, the first naming different (user-level) roles, and the second containing
their fillers.

For example, the fully stripe-skipped positional <Implies> rule above can be
made slotted with user-level roles <spender> etc.:

<Implies>
<Atom>
<Rel>spending</Rel>
<slot><Ind>spender</Ind><Var>customer</Var></slot>
<slot><Ind>amount</Ind><Ind>min 5000 euro</Ind></slot>
<slot><Ind>period</Ind><Ind>previous year</Ind></slot>
</Atom>
<Atom>
<Rel>premium</Rel>
<slot><Ind>client</Ind><Var>customer</Var></slot>
</Atom>
</Implies>

The correct interpretation of the three spending arguments is no longer
position-dependent and additional arguments such as region can be added
without affecting any existing interpretation. A child element, rather than
an attribute, was decided upon for naming the role to provide an exten-
sion path towards (e.g., F-logic’s) schema-querying options. Although problem-
atic in general [http://www.daml.org/listarchive/joint-committee/1376.html], we did
not want to exclude the possibility in RuleML to query a role constant like
<Ind>period</Ind> above through a role variable like <Var>time</Var>.

2.3 Making Independent Distinctions

Recent work on the Positional-Slotted Language [http://www.ruleml.org/#POSL]
led to orthogonal dimensions extending the RuleML 0.9 roles <arg . . .> and
<slot>. So far, the unkeyed <arg index="..."> was always ordered, as indicated
by the mandatory index attribute, and the keyed <slot> was always unordered,
as indicated by the lack of an index attribute. This can be generalized by al-
lowing an optional index attribute for both roles, as shown by the independent
distinctions in the following key-order matrix:

The RuleML Family of Web Rule Languages b

ordered unordered,
keyed |<slot index="...">| <slot>
unkeyed| <arg index="...">| <arg>

Two extra orthogonal combinations are obtained from this system.
First, keyed, ordered children permit positionalized slots, as in this cost fact:

<Atom>
<Rel>cost</Rel>
<slot index="1"><Ind>item</Ind><Ind>jewel</Ind></slot>
<slot index="2"><Ind>price</Ind><Data>6000</Data></slot>
<slot index="3"><Ind>taxes</Ind><Data>2000</Data></slot>
</Atom>

Here, slot names item, price, and taxes are provided, e.g. for readability, as
well as index positions 1-3, e.g. for efficiency.

Second, unkeyed, unordered children permit elements acting like those in a
bag (finite multiset), as in this transport fact:

<Atom>
<Rel>transport</Rel>
<arg><Ind>chair</Ind></arg>
<arg><Ind>chair</Ind></arg>
<arg><Ind>table</Ind></arg>
</Atom>

Here, the arguments are specified to be commutative and ‘non-idempotent’
(duplicates are kept). Ground bags can be normalized using some canonical
(e.g., lexicographic) order, and then linearly compared for equality. Results in
(non-ground) bag unification are also available (e.g., [DV99]).

The RuleML 0.9 rest terms (normally variables) can be correspondingly
generalized by allowing a role <ordertail> to unify with index-attributed
rest elements, <arg index="..."> and <slot index="..."> as well as a role
<commutail> to unify with index-less rest elements, <arg> and <slot>.

The unkeyed RuleML case can be compared with Xcerpt [SB04] in that both
distinguish ordered/unordered and total/partial term specifications, where the
latter in RuleML is notated as the absence/presence of an <orderest> role with
a fresh (e.g., anonymous) variable. However, following our XML-RDF-unifying
data model [http://www.dfki.uni-kl.de/ "boley/xmlrdf.html], in RuleML these dis-
tinctions are made for term normalization and unification; in Xcerpt, for match-
ing query terms to data terms.

3 Equality for Functions

While section 2 dealt with RuleML for logic programming (LP) on the Semantic
Web, functional programming (FP) [BKPS03] is also playing an increasing Web
role, with XSLT and XQuery [FRSV05] being prominent examples. We present
here the design of Functional RuleML, developed via orthogonal notions and

6 H. Boley

freely combinable with the previous Relational RuleML, including OO RuleML
[Bol03], discussed in section 2. This branch of the family will also allow for
FP/LP-integrated programming (FLP), including OO FLP, on the Semantic
Web. Some background on FLP markup languages was given in [Bol00a).

Since its beginning in 2000, with RFML [http://www.relfun.org/rfml] as one of
its inputs, RuleML has permitted the markup of oriented (or directed) equa-
tions for defining the value(s) of a function applied to arguments, optionally
conditional on a body as in Horn rules. Later, this was extended to logics with
symmetric (or undirected) equality for the various sublanguages of RuleML, but
the Equal element has still often exploited the left-to-right orientation of its
(abridged) textual syntax.

It has been a RuleML issue that the constructor (Ctor) of a complex term
(Cterm) is disjoined, as an XML element, from the user-defined function (Fun) of
a call expression (Nano), although these can be unified by proceeding to a logic
with equality. For example, while currently call patterns can contain Cterms but
not Nanos, obeying the “constructor discipline” [O’D85], the latter should also
be permitted to legalize ‘optimization’ rules like reverse (reverse(?L)) = 7L.

This section thus conceives both Cterms and Nanos as expression (<Expr>)
elements and distinguishes ‘uninterpreted’ (constructor) vs. ‘interpreted’ (user-
defined) functions just via an XML attribute; another attribute likewise distin-
guishes the (single- vs. set-)valuedness of functions (subsection 3.1). We then
proceed to the nesting of all of these (subsection 3.2). Next, for defining (inter-
preted) functions, unconditional (oriented) equations are introduced (subsection
3.3). These are then extended to conditional equations, i.e. Horn logic implica-
tions with an equation as the head and possible equations in the body (subsection
3.4). Higher-order functions are finally added, both named ones such as Compose
and A-defined ones (subsection 3.5).

3.1 Interpretedness and Valuedness

The different notions of ‘function’ in LP and FP have been a continuing design
issue:

LP: Uninterpreted functions denote unspecified values when applied to argu-
ments, not using function definitions.

FP: Interpreted functions compute specified returned values when applied to
arguments, using function definitions.

Uninterpreted function are also called ‘constructors’ since the values denoted by
their application to arguments will be regarded as the syntactic data structure
of these applications themselves.

For example, the function first-born: Man x Woman — Human can be un-
interpreted, so that first-born(John, Mary) just denotes the first-born child;
or, interpreted, e.g. using definition first-born(John, Mary) = Jory, so the
application returns Jory.

The distinction of uninterpreted vs. interpreted functions in RuleML 0.9
is marked up using different elements, <Ctor> vs. <Fun>. Proceeding to the

The RuleML Family of Web Rule Languages 7

increased generality of logic with equality (cf. introductory discussion), this
should be changed to a single element name, <Fun>, with different attribute val-
ues, <Fun in="no"> vs. <Fun in="yes">, respectively: The use of a Function’s
interpreted attribute with values "no" vs. "yes" directly reflects uninterpreted
vs. interpreted functions (those for which, in the rulebase, no definitions
are expected vs. those for which they are). Functions’ respective RuleML 0.9
[http://www.ruleml.org/0.9] applications with Cterm vs. Nano can then uniformly
become Expressions for either interpretedness.

The two versions of the example can thus be marked up as follows (where "u"
stands for "no" or "yes"):

<Expr>
<Fun in="u">first-born</Fun>
<Ind>John</Ind>
<Ind>Mary</Ind>

</Expr>

In RuleML 0.9 as well as in RFML and its human-oriented Relfun syntax
[Bol99)] this distinction is made on the level of expressions, the latter using square
brackets vs. round parentheses for applications. Making the distinction through
an attribute in the <Fun> rather than <Expr> element will permit higher-order
functions (cf. subsection 3.5) to return, and use as arguments, functions that
include interpretedness markup.

A third value, "semi", is proposed for the interpreted attribute: Semi-
interpreted functions compute an application if a definition exists and de-
note unspecified values else (via the syntactic data structure of the applica-
tion, which we now write with Relfun-like square brackets). For example, when
"u" stands here for "semi", the above application returns Jory if definition
first-born(John, Mary) = Jory exists and denotes first-born[John, Mary]
itself if no definition exists for it. Because of its neutrality, in="semi" is proposed
as the default value.

In both XML and UML processing, functions (like relations in LP) are often
set-valued (non-deterministic). This is accommodated by introducing a valued
attribute with values including "1" (deterministic: exactly one) and "0.." (set-
valued: zero or more). Our val specifications can be viewed as transferring to
functions, and generalizing, the cardinality restrictions for (binary) properties
(i-e., unary functions) in description logic and the determinism declarations for
(moded) relations in Mercury [SHC96].

For example, the set-valued function children: Man x Woman — 2Hwman
can be interpreted and set-valued, using definition children(John, Mary) =
{Jory, Mahn}, so that the application children(John, Mary) returns {Jory,
Mahn}.

The example is then marked up thus (other legal val values here would be
"0..3", "1..2" and "2"):

8 H. Boley

<Expr>
<Fun in="yes"
val="0..">children</Fun>
<Ind>John</Ind>
<Ind>Mary</Ind>
</Expr>

Because of its highest generality, val="0.." is proposed as the default.

While uninterpreted functions usually correspond to <Fun in="no"
val="1">, attribute combinations of in="no" with a val unequal to "1" will
be useful when uninterpreted functions are later to be refined into interpreted
set-valued functions (which along the way can lead to semi-interpreted ones).

Interpretedness and valuedness constitute orthogonal dimensions in our design
space, and are also orthogonal to the dimensions of the subsequent subsections,
although space limitations prevent the discussion of all of their combinations in
this section.

3.2 Nestings

One of the advantages of interpreted functions as compared to relations is that
the returned values of their applications permit nestings, avoiding flat relational
conjunctions with shared logic variables.

For example, the function age can be defined for Jory as age (Jory) = 12, so
the nesting age (first-born(John, Mary)), using the first-born definition of
subsection 3.1, gives age (Jory), then returns 12.

Alternatively, the function age can be defined for the uninterpreted
first-born application as age (first-born[John, Mary]) = 12, so the nesting
age(first-born[John, Mary]) immediately returns 12.

Conversely, the function age can be left uninterpreted over the returned value
of the first-born application, so the nesting age [first-born(John, Mary)]
denotes age [Jory].

Finally, both the functions age and first-born can be left uninterpreted, so
the nesting age [first-born[John, Mary]] just denotes itself.

The four versions of the example can now be marked up thus (where "u" and
"v" can independently assume "no" or "yes"):

<Expr>
<Fun in="u">age</Fun>
<Expr>
<Fun in="v">first-born</Fun>
<Ind>John</Ind>
<Ind>Mary</Ind>
</Expr>
</Expr>

Nestings are permitted for set-valued functions, where an (interpreted or un-
interpreted) outer function is automatically mapped over all elements of a set
returned by an inner (interpreted) function.

