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Preface

From the outset, our aim in pursuing this project has been to produce a
book that would span, in a single volume, the host of fundamental issues
and algorithmic strategies that have emerged as the general-purpose core in
the discipline of discrete optimization. With roots in mathematical pro-
gramming, computer science, and combinatorial mathematics, this field
now attracts students, researchers, and practitioners alike having a variety
of backgrounds and interests. While this diversity and its concomitant
effect on fundamental results makes the task of unification arduous, we
firmly believe that it also has been a source of substantial richness and has
contributed directly to the ultimate maturation of the discipline.

Following a brief introduction, we begin in Chapter 2 with complexity
theory. Here, we provide an overview of results that have proven central to
the development of the intellectual framework of discrete optimization.
Computations and supporting theory of generic approaches relevant to
various discrete model contexts follow. For problems falling into the poly-
nomial-time solvable category, we treat both matroid (Chapter 3) and
linear programming-based (Chapter 4) procedures. In Chapters 5 and 6, we
take up approaches that are inherently exponential in character, including
in-depth coverage of enumerative (branch and bound) as well as cutting/
polyhedral methods. We conclude (Chapter 7) with a generic treatment of
common nonexact approaches.
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We also would like to call attention to the inclusion of three appendices
covering basic results from the theory of convex sets and polytopes, graphs,
and linear programming. Our principal purpose in adding this material is
to alleviate some potential frustration felt by those having uneven back-
grounds in the aforementioned areas. Still others may find the coverage
useful as a refresher.

Throughout this undertaking, we have tried to remain steadfast in our
goal of making accessible to students, instructors, and researchers the
substantial array of elegant results that have emerged in this field in the
past quarter century. Algorithms are presented in computational format
and demonstrated throughout with examples. Still, we have made every
effort to maintain what we believe to be a suitable and consistent treatment
of underlying theory. We have compiled lists of exercises for each chapter
that span the range from routine applications of algorithms to new research
results, with the more challenging problems appropriately marked with a
star. In short, we have attempted to produce a book possessing both
pedagogical value as a graduate text and reference value in discrete optimi-
zation research.

The material in this volume has been used at Georgia Tech and Purdue
in both Masters- and PhD-level courses carrying such titles as “Integer
Programming,” “Combinatorial Optimization,” and “Discrete Determin-
istic Models in Operations Research.” Accordingly, we have found the
modular organizational structure within chapters to be nicely suited for
tailoring courses to fit varying student backgrounds and topical objectives.
It also facilitates the capability of ““entering” the book at specific sections of
interest.

As a final comment regarding style we should mention the convention
we have adopted pertaining to references. Naturally, we have attempted to
be accurate, providing what we believe to be the principal citing(s) relative
to given concepts, algorithms, theorems, and the like. On the other hand,
we have not sought to be comprehensive in the sense of a literature review,
choosing, instead, to compile a fairly extensive bibliography. Even so, there
will no doubt be some references we have overlooked. OQur only defense in
this regard is an apology to those authors of works omitted and a hope that
what we have included sufficiently supports the coverage comprising this
book.

A large group of individuals have contributed both directly and indi-
rectly to this probject. Some have used various parts of the book (or at least
some manuscript version) in their courses at other universities. Some have
read the manuscript and offered valuable comments on important matters
regarding style, content, and clarity. Still others graciously provided us the
benefit of their substantial expertise in a host of technical issues that
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necessarily arise in a book of this scope. A very partial list of names would
include J. Kennington, M. Karwan, R. Bulfin, V. Chandru, C. Tovey, J.

Vande Vate, J. Jarvis, M. Bazaraa, and R. Jeroslow.
R. Gary Parker

Ronald L. Rardin
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1

Introduction to Discrete
Optimization

Anyone who has ever made responsible decisions of any kind has cer-
tainly encountered discrete decisions; decisions among a finite set of mutu-
ally exclusive alternatives. Stark choices between building and not build-
ing, turning left versus turning right, or visiting city A instead of city B,
simply cannot be escaped. Of course, discreteness of the decision space
offers the advantage of concreteness and indeed, elementary graphs or
similar illustrations can often naturally and intuitively represent the mean-
ing of a particular choice. Discreteness however, also brings forth a heavy
burden of dimensionality. If more than a few choices are to be made, the
decision-maker confronts an incomprehensible expanse of cases, combina-
tions and possibilities requiring his or her evaluation.

Since the 18th century, this intriguing paradox of problems, possessing
intuitive simplicity of presentation coupled with mind-boggling complex-
ity of solution, has combined with the reality that discrete decisions
abound in all areas of management and engineering to attract researchers
to the study of discrete problems. Interest has multiplied with the revolu-
tionary development of computing machines during the second half of the
20th century. For some problems, elegant solution procedures have been
discovered. For most, though, a host of properties and algorithms have
been developed, and considerable progress has attended, but no really
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2 1 Introduction to Discrete Optimization

complete resolution has yet appeared. In a few cases, problems with appar-
ently simple form have yielded to almost no advances at all.

But why is this the case? Why, in fact, does a class of problems that in
many cases appear to pose modest demands often create severe difficulties?
Moreover, given the present state of affairs, what are the prospects for
resolution and, in the interim, what are we to do regarding solutions to
discrete models of practical, real-world problems? The response to these
sorts of questions constitutes, in large measure, the substance of this book.

1.1 Discrete Optimization Defined

Our concern is discrete optimization, the analysis and solution of prob-
lems mathematically modeled as the minimization or maximization of a
value measure over a feasible space involving mutually exclusive, logical
constraints. Enforcement of such logical constraints can be viewed ab-
stractly as the arrangement of given elements into sets. Thus, in their most
abstract mathematical form, discrete optimization problems can be ex-
pressed as

min (or max) oa(T)
subject to TEF

where T is an arrangement, F is the collection of feasible arrangements,
and o(T) measures the value of members of F.

The study of arrangements is at the heart of the definition of combina-
torics. Consequently, the reader will observe that we wish to view discrete
optimization as a branch of combinatorics. This stance is motivated by our
desire to keep absolutely central to the notion of discrete optimization the
element of unavoidable choice among mutually exclusive alternatives.
Discreteness is at the core, not the perifery of the problems we shall discuss.

Certainly, discrete optimization does not encompass all of the vast field
of combinatorics. One popular classification recognizes four forms of
combinatorial problems, distinguished by whether the question is existence
of specific arrangements, versus exhibition or evaluation of required ar-
rangements, versus enmumeration or counting of possible arrangements,
versus extremization of some measure over arrangements. To this extent,
we equate discrete optimization with the last, extremization, branch of
combinatorics.

Much of what follows is concerned with defining and presenting known
results about particular discrete optimization problems. We shall briefly
introduce some here in order to illustrate the enormous diversity of model
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forms that have been studied. The informed reader will also note that we
have included in this introductory list problems spanning the field in terms
of tractability. Some are extremely well solved, while others continue to
frustrate researchers after two centuries of attention.

Traveling Salesman Problem. Given a graph (directed or undir-
ected) with specified weights on the edges, determine a closed traver-
sal that includes every vertex of the graph exactly once and that has
minimum total edge weight.

Postman’s Problem. For a given graph (directed or undirected) with
specified weights on the edges, determine a traversal that includes
every edge in the graph at least once and that has minimum total
weight.

Knapsack Problem. Determine a set of integer values x;, i =1,
2, . . ., nthat minimizes f(x,, X5, . . . , X,) subject to the restric-
tion g(x,, X5, . . . , X,) = b where b is a parameter.

Parallel Machine Scheduling. Given a set T of single operation
tasks, each with processing time 7;, 1 =< j =<|T}, assign each task to
exactly one of m machines so that the completion time of all tasks is
minimized.

Vertex Coloring. Given an undirected graph, determine the mini-
mum number of colors needed to color each vertex of the graph in
order that no pair of adjacent vertices (vertices connected by an edge)
share the same color.

Spanning Tree. Given an undirected graph with specified weights
on the edges, determine a minimum total weight subset of edges that
forms a connected, acyclic graph having at least one edge incident to
every vertex.

Shortest Path. For a given graph (directed or undirected) with speci-
fied weights or lengths on the edges, find a minimum total length
nonrepeating sequence of edges that connects two specified vertices
and that conforms to any directions on edges.

Bin Packing. For a list of n weights, w;, 1 <= n and a set of bins,
each with fixed capacity, say W, find a feasible assignment of weights
to bins that minimizes the total number of bins used.

Matching. Given a list of items i =1, 2, . . . , n and weights w
associated with pairing item { with item j, find a maximum total
weight scheme for pairing items in the list so that each item is paired
with one other at most.
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Set Covering. Given a finite set S, a family of subsets (§,cs8:jel)
and costs, ¢;, associated with the S;, choose a minimum total cost
collection of the subsets that includes every element of S at least once.

Maximum Flow. Given a graph (directed or undirected) and speci-
fied capacities on the edges, find a maximum edge flow between two
specified vertices that conforms to capacities and has total flow into
all other vertices equal to total flow out.

p-Median Problem. For a graph (directed or undirected) with speci-
fied weights on the edges, choose p vertices so that the sum of
distances from all vertices to the closest of the chosen p is minimized.

Fixed Charge Problem. Given a feasible set S of nonnegative activ-
ity or traffic levels, x = (x,, x,, . . . , X,), unit costs v, for employing
X;, and fixed costs f; assessed whenever x; is positive, choose a mini-
mum total cost x € S,

1.2 Discrete Optimization and Integer Programming

All of the above discrete optimization problems, and every model we
shall encounter, can be expressed in the form

n
min (or max) > cx;
j=1

n

(IP) s.t. MNayx;=b  fori=1,2,...,m
j=1
x;=0 forj=1,2, ... ,n
Xx; integer forjel

Here the x; are decision variables constrained by nonnegativity, m linear
inequalities with coefficients a,; and b;, and the requirement that each X;
with je I (IC{1,2, ..., n)) be integral. We seek to minimize or maxi-
mize the sum of the x; times given weights, c;.

Problems in the form (/P) are known as linear integer programming
problems, or more briefly, integer programs. If I={1,2, . . . ,n} we call
the problem a pure integer program and otherwise mixed integer. Aside
from the obvious advantage of treating all problems in a single format,
there can be considerable payoff in viewing discrete optimizations as in-
teger programs. If the last, “x; integer” constraints are dropped in (IP), we
are left with a linear program—the best solved of all broad classes of
optimization problems. General, and sometimes quite efficient, algorithms
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can be derived for (/P) by exploiting this association with linear program-
ming.

In the development to follow we shall present the more current of these
general algorithms and emphasize how many procedures for specific dis-
crete optimization problems can be interpreted as adaptions of general
techniques. At the same time, it would be seriously oversimplifying matters
to suggest that discrete optimization begins and ends with the study of
general techniques for integer programming. Many discrete models can be
forced into the (IP) format only at the cost of introducing immense
numbers of variables and constraints. In such cases, general integer pro-
gramming methods have little or no value, if for no other reason than that
the underlying linear program is far beyond the capabilities of even the best
of current algorithms. Furthermore, many discrete problems, including
most of those that can be regarded as truly well-solved, have been con-
quered precisely because they have exploitable combinatorial structure,
which is not present in general problems and thus not addressed by general
algorithms.

It 1s mainly to avoid such oversimplification that we have chosen to
define discrete optimization as a branch of combinatorics rather than a
division of mathematical programming, even though it is without doubt a
part of both. There is also a more subtle reason. The integrality constraints
of (IP) formulations, which are totally or partially relaxed in general
algorithms, are exactly the combinatorial, disjunctive characteristics that
make the problems discrete. If discrete optimization problems are too
casually couched 1n the integer programming format, it is very easy to be
lulled into believing that relaxed structure is unimportant. How much
difference can it make that some variable takes on the value 7/10 instead of
0 or 1? In truly discrete problems, it makes all the difference. The phenom-
enon coded by a 0- | variable may simply have no interpretation when the
variable assumes a fractional value; rounding to either O or 1 is in effect
guessing a solution that might very well have been obtained without any
optimization at all. Even though the integer programming point of view is
highly relevant to much of discrete optimization, we believe one is less
likely to be mislead if he or she keeps primary focus on combinatorial
aspects of the problems.

1.3 Why are Discrete Optimization Problems Difficult to Solve?
Anyone who has had even the most passing introduction to discrete

optimization problems is at least subtly aware of their inherent difficulty.
What is it about discrete problems that makes them difficult to solve?
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It is turning out that trying to provide a satisfactory answer to this
question is one of the most intriguing phases of theoretical investigation in
discrete optimization. Considerable progress has been achieved, and we
shall devote a whole chapter to it in this book. Even at this introductory
point, however, it seems appropriate to provide some preliminary insight
into the fundamental causes of the intransigence that surrounds many
discrete problems.

Superficially, it is quite clear why discrete problems are difficult. Their
feasible solution spaces are enormous in size, and they grow explosively
with the number of discrete choices to be resolved. For example, a problem
requiring a modest 200 independent, binary decisions has 22®, or about
10%° solutions to consider. A case with 201 binary decisions has twice as
many.

This immense and exponentially growing size of discrete solution spaces
categorically rules out a complete enumeration of the solutions in all but
the smallest of cases. Often, the enumeration of even a tiny fraction of the
set of solutions is computationally untenable.

A cynic might observe that the simplest of continuous optimization
problems has a truly infinite solution space, and some such problems have
been well-solved since the era of Newton and Liebnitz. There must be
more to problem complexity than mere cardinality of the solution space.

Size of the solution space is relevant only if the problem must be solved
by enumerating all, or at least a significant fraction, of the solutions.
Unfortunately, that is precisely the state of our present knowledge regard-
ing most discrete optimization problems. Furthermore, there is strong
reason to believe that quite fundamental limits of our mathematics and
computing machines will leave most discrete problems permanently in this
“enumeration required” category.

To escape such enumeration, one must be able to find short cuts. Many
successful algorithms take advantage of proofs that optimal solutions occur
within a very small subset of the feasible points, e.g., the extreme points,
inflextion points, etc. Others depend heavily on formal characterizations of
progress. They stop only when theory is available to show that, since no
further progress of the designated kind can be achieved, the current solu-
tion is necessarily optimal.

Numerous simplifying results of these two types are available in discrete
optimization. With the exception of the minority of problems that are
well-solved, however, none of the available results appears even close to
providing completely satisfactory algorithms. Although they may reduce
the number of solutions that need to be considered, and/or provide a
conclusive progress test, the problem or test left to be resolved is usually a
difficult discrete optimization problem.
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1.4 Progress in Discrete Optimization

There is a degree of gloom in the picture we have painted so far. As a
consequence, even the most acclaimed of discrete optimizers is sometimes
(at least briefly) overcome by pessimism about the prospects for the field.

We find the challenge of dealing, however partially, with such difficult
but important problems, and of establishing the boundaries of tractability
in discrete optimization more than a little exciting. Our principal motiva-
tion in preparing this book is to collect the immense knowledge that is
available.

There have been significant success stories in discrete optimization.
Among these, one would necessarily include the landmark work on net-
work flows of Ford and Fulkerson, the early work on cutting planes by
Gomory, and the elegant results of Edmonds on optimum matchings. The
past 10 to 15 years alone have brought forth some major developments
including the initial efforts of Cook and later of Karp, which gave impetus
to many of the results in complexity theory that now saturate the literature.
During this period, the four color conjecture was converted to theorem
status, a fairly complete theory of cutting planes emerged, Lagrangean
techniques were successfully adapted to discrete optimization, and the
ellipsoid and related methods provided a polynomial time solution scheme
for linear programs.

But recent years have not been marked by theoretical developments
alone. Recognition that general methods were not on the horizon focused
attention on a host of special cases and examples of moderate size. A great
deal of practical progress occurred. Genuinely large knapsack problems
can now be treated efficiently (empirically speaking); certain scheduling
problems have been conquered; and even the notorious traveling salesman
problem has been humbled somewhat. Problems of sizes unheard of even a
decade ago can now be rather routinely solved.

1.5 Organization of the Book

This book presents general theory and algorithms relevant to all parts of
discrete optimization. We begin (in Chapter 2) on what has come to be the
common language of discrete optimization — complexity theory. Included
are the ideas of computability, worst-case analysis, and the notions of P,
NP, and NP-Complete.

The remainder of this book is composed of five chapters addressed to the
algorithmic categories delineated by complexity theory. In Chapters 3 and
4, we address polynomial procedures. Primary topics include matroids,
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polynomial solution of linear programs, and their relation to combinator-
ial polyhedra. Chapter five covers the class of procedures commonly re-
ferred to as partial enumeration or branch and bound. Standard linear
programming based methods are fully treated, along with newer Lagran-
gean dual ideas and Benders decomposition. In Chapter 6, polyhedral
description or cutting methods are presented. All of the modern general
theories of these approaches are discussed along with an introduction to
the specialized facetial techniques that have proven useful on specific
models. Finally, in Chapter 7, we turn to nonexact, heuristic procedures.
After general discussions of how these algorithms may be evaluated, we
define and investigate three broad classes: greedy, local search, and trun-
cated exponential. We have also included three appendices in order to
provide some background pertaining to fundamental results from linear
programming, graph theory, convex sets and polytopes.

EXERCISES

1-1. Formulate each of the following problems defined in Section 1.1 in
the (mixed-)integer format (/P) of Section 1.2. Then comment on the
interpretation (if any) of a solution satisfying all constraints except the
integrality requirements. Each formulation should employ a number of
constraints and variables that grows as a low order polynomial (e.g., 7%, m?)
with the problem size.

(a) Traveling salesman problem (directed graph)

(b) Traveling salesman problem (undirected graph)

(¢c) Postman’s problem (directed graph)

(d) Postman’s problem (undirected graph)

(e) Knapsack problem (f(x,, X2, . . . , X,) & /(X
glxy, x5, . . ., Xx,) 2 2%, a;x; for integer ¢; and ;)

(f) Parallel machine scheduling

(g) Vertex coloring

(h) Spanning tree (directed graph, at most one inbound arc per vertex
in the solution)

(i) Spanning tree (undirected graph)

(j) Shortest path (directed graph, weights nonnegative)

(k) Shortest path (undirected graph, weights nonnegative)

(1) Bin packing

(m) Matching

(n) Set covering
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(o) Maximum flow (directed graph)

(p) Maximum flow (undirected graph)

(q) p-Median (directed graph)

(r) p-Median (undirected graph)

(s) Fixed charge problem (S 2 {x € R™ x =0, Ax = b} for integer ma-
trix A and vector b)

1-2. Formulate each of the following problems in the (mixed-)integer
format (IP) of Section 1.2. Then, comment on the interpretation (if any) of
a solution satisfying all constraints except the integrality requirements.
Each formulation should employ a number of constraints and variables
that grows as a low order polynomial (e.g., n%,m?) with the problem size.

(a) (Uncapacitated Facilities Location). Given a set of candidate facility
locations i =1, 2, . . . , m, a set of customer demand points j =1,
2, ..., n, positive construction costs f; for constructing facility £
and nonnegative transportation cost v; for supplying demand j from
facility #, find a minimum total cost collection of facilities to build
such that each demand is allocated to one open facility.

(b)(Capacitated Facilities Location). Same as above except each candi-
date facility has an associated capacity, s;, and each customer has an
associated demand, d;. Total demand of customers (partially or fully)
assigned to a facility cannot exceed its capacity.

(c) (Assignment). Given »n objects, 7 locations, and weights w; of assign-
ing object i to location j, find a minimum total weight assignment of
objects to locations (each object and location assigned once).

(d) (Generalized Assignment). Given m objects and 7 locations, weights
w;; of assigning object / to location J, capacities u; of locations j = 1,
2, . . ., n, and positive integer sizes @; of objects i= 1,2, . . . , m,
find a minimum total weight assignment of objects to locations that
conforms to capacities (each object assigned once, total size assigned
to a location = capacity).

(e) (Edge Covering). Given an undirected graph with nonnegative
weights w; on edges e = (7, j), find a minimum total weight collection
of edges such that each vertex is incident to at least one edge of the
collection.

(f) (Tardiness Machine Scheduling). Given a set of tasks j=1, . . . , n,
associated positive integer times 7; required by the tasks on a single
machine, due dates 4| for tasks and a collection < of precedence pairs
(1, j) indicating that task / must complete before task j can begin, find
a sequencing of tasks on the machine that minimizes total due date
violation.
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1-3. Formulate each of the following problems (treated further in Section
2.3.2) in the (mixed-)integer format (/P) of Section 1.2. Then comment on
the interpretation (if any) of a solution satisfying all constraints except the
integrality requirements. Each formulation should employ a number of
constraints and variables that grows as a low order polynomial (e.g., n?, m?)
with the problem size.

(a) (Max Clique). Given an undirected graph, find the maximum k such
that the graph contains a clique (vertex induced complete subgraph)
of size k.

(b)(Vertex Cover). Given an undirected graph, and vertex weights, w;,
find the minimum weight collection of vertices such that every edge
is incident to at least one vertex in the collection.

{c) (Set Packing). Given a finite set S, a family of subsets (S;C S: j € J}
and values »; associated with each subset S, find a maximum total
value collection of the subsets that includes every element of S at
most once.

(d)(Set Partitioning). Given a finite set S, a family of subsets (S, C S:
J € J} and weights w; associated with each subset S}, find a minimum
total weight collection of the subsets that forms a partition of § (every
element of .S occurs exactly once).

(e) (Steiner Tree). Given an undirected graph, a subset of distinguished
vertices, .S, and nonnegative edge weights, w,, find a minimum
weight subset of edges that forms a tree (connected, cycle free sub-
graph) having edges incident to every vertex of .S.

(f) (Partition). Given positive integers a,, a,, . . . , a, and correspond-
ing weights w,, w,, . . . , w,, find a partition of {1, 2, . . . , n} into
two subsets of equal a; sum, such that the first has maximum total w;
weight.

(g) (Minimum Cut). Given a directed graph, two distinguished vertices
s # t, and positive weights w;; on arcs, find a minimum total weight
cut separating s and ¢ (arc subset including at least one element of
every s-to-t path).



