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Foreword

The present volume contains the text of three series of lectures given in Montecatini for the period
June 4-June 10, 1990, during the C.I.LM.E. session "Recent Developments in Geometric Topology and
Related Topics™.

Geometric Topology can be defined to be the investigation of global properties of a further structure

(e. g. differentiable, Riemannian, complex, algebraic etc...) assigned to a topological manifold.

As a result of numerous recent outstanding achievements, which are as complex as they are deep, and
always involve a dramatic spectrum of tools and techniques originating from a wide range of domains,
Geometric Topology appears nowadays as one of the most fascinating and promising fields of

contemporary mathematics.

Our main goal in organizing the session was to gather a distinguished group of mathematicians to
update the subject and to give a glimpse on possible future developments.

We can proudly affirm that the lecturers did a superb job.

For an idea of how rich and interesting was the subject-matter that they presented, it is enough to give

a brief description of the three main topics.

The geometry and the rigidity of discrete subgroups in Lie groups especially in the case of lattices in
semi-simple groups.Two main streams of approaches are considered:

1) the geometry and the dynamics of the action of discrete subgroups on the ideal boundary of the
ambient group;

i) the theory of local and infinitesimal deformations of discrete subgroups via elliptic P.D.E. and
Bochner type integro-differential inequalities.

The basics of these two methods are fully described and more advanced materials are covered.

The study of the critical points of the distance function and its application to the understanding of
the topology of Riemannian manifolds.

Moving from Toponogov’s celebrated theorem and from a complete description of the techniques of
critical points of distance function, three basic results in global differential geometry are discussed:

1) the Grove-Petersen theorem of the finiteness of homotopy types of manifolds admitting metrics with
bounds on diameter, volume and curvature;

i) Gromov’s bound on the Betti numbers in terms of curvature and diameter;

iit) the Abresch-Gromoll theorem on finiteness of topological type, for manifolds with nonnegative

Ricci curvature, curvature bounded below and slow diameter growth.



Vi

[3] The theory of moduli space of instantons as a tool for studying the geometry of low-dimensional
manifolds.

As main topics, we can quote:

i) the correspondence between instantons over algebraic surfaces and stable algebraic vector bundles,
with the investigation of the relations between the geometry of an algebraic surface and the differential
topology of its underlying 4-manifold;

ii) the existence of infinitely many exotic C®-structures on some topological 4-manifolds;

iii) the theory of the decomposition of 4-manifolds along homology 3-spheres.

Finally, it is worthwhile adding that the texts of the present volume capture completely the spirit and

the atmosphere of a very successful event.

Paolo de Bartolomeis

Franco Tricerri
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Critical Points of Distance Functions

and Applications to Geometry

Jeff Cheeger

Introduction

Critical points of distance functions

Toponogov’s theorem; first applications
Background on finiteness theorems

Homotopy Finiteness

Appendix. Some volume estimates

Betti numbers and rank

Appendix: The generalized Mayer-Vietoris estimate
Rank, curvature and diameter

Ricci curvature, volume and the Laplacian
Appendix. The maximum principle

Ricci curvature, diameter growth and finiteness of

topological type.

Appendix. Nonnegative Ricci curvature outside a compact set.

0. Introduction

ments in geometric topology and related topics”, June 4-12, 1990, at Montecatini Terme. Their
aim is to expose three basic results in riemannian geometry, the proofs of which rely on the tech-
nique of “critical points of distance functions” used in conjunction with Toponogov’s theorem on

geodesic triangles. This method was pioneered by Grove and Shiohama, [GrS].

i) the Grove-Petersen theorem of the finiteness of homotopy types of manifolds admitting metrics

These lecture notes were written for a course given at the C.I.M.E. session “Recent develop-

Specifically, we discuss

with suitable bounds on diameter, volume and curvature; [GrP],

ii) Gromov’s bound on the Betti numbers in terms of curvature and diameter; [G],
iii) the Abresch-Gromoll theorem on finiteness of topological type, for manifolds with nonnegative

Ricci curvature, curvature bounded below and slow diameter growth; [AGl].

The first two of these theorems are stated in § 3 and proved in § 4 and §§ 5-6, respectively.

The third is stated and proved in § 8.



The reader is assumed to have a background in riemannian geometry at least the rough
equivalent of the first six chapters of [CE], and to be familiar with basic algebraic topology.
For completeness however, the statement of Toponogov's theorem is recalled in § 2. Additional

material on finiteness theorems and on Ricci curvature is provied in § 3 and § 7.

1. Critical Points of Distance Functions.
Let AM"™ be a complete riemannian manifold. We will assume that all geodesics are

parametrized by arc length. For p € A", we denote the distance from z to p by T,p and put
ppl2) = TP

Note that p,(x) is smooth on M \ {pU C,}, where C,, the cut locus of p, is a closed nowhere
dense set of measure zero.

Grove and Shiohama made the fundamental observation that there is a meaningful definition
of “critical point” for such distance functions, such that in the absence of critical points, the
Isotopy Lemma of Morse Theory holds. They also observed that in the presence of a lower
curvature bound, Toponogov’s theorem can be used to derive geometric information, from the
ezistence of critical points. They used these ideas to give a short proof of a generalized Sphere
Theorem, see Theorem 2.5. Other important applications are discussed in subsequent sections.

Remark 1.1. If the sectional curvature satisfies Kpy < K (for ' > 0) and ¢ is a critical
T

VK’

the change in the topology when crossing a critical level. But so far, this fact has not had strong

point of p, with py(¢) < then there is also a reasonable notion of indez which predicts
applications.

Definition 1.2. The point g (# p) is a critical point of p, if for all v in the tangent space,
My, there is a minimal geodesic, v, from ¢ to p, making an angle, 4 (v,7'(0)) < 12(‘, with v'(0).
Also, p is a critical point of p,.

From now on we just say that ¢ is a critical point of p.

Remark 1.3. If ¢ # p is a critical point of p, then ¢ € C,. If ¢ is not critical, the collection
of tangent vectors to all geodesics, v, as above, lies in some open half space in M. Thus, there
exists w € My, such that § (w,v(0)) < g—, for all minimal v from p to q.

Put B.(p)={z | T, p <}

Isotopy Lemma 1.4. Ifr; < r; < oo, and if Br,(p) \ B,,(p) is free of critical points
of pp, then this region is homeomorphic to B, (p) X [r1,72].Moreover, OB, (p) is a topological
submanifold (with empty boundary).

Proof: If z is noncritical, then there exists w € M, with J (;y'(O),w) < %, for all minimal ¥
from z to p. By continuity, there exists an extension of w to a vector field, W, on a neighborhood,
Uz, of z, such that if y € U; and o is minimal from y to p, then § (¢/(0), Wz(y)) < % Take a

finite open cover of B,,(p) \ Br, (p), by sets, U, locally finite if r; = 0o, and a smooth partition



of unity, Y ¢; = 1, subordinate to it. Put W = 3 ¢;W,,. Clearly, W is nonvanishing. For each

integral curve ¢ of W, the first variation formula gives
. x
pp(¥(t2)) = pp(¥(t1)) < (t1 = ta) cos(3 —€)

for some small e. This holds on compact subsets if r, = co. The first statement easily follows.

To see that B, (p) is a submanifc;ld, let ¢ € 0B, (p), ¢ a minimal geodesic from ¢ to p,
and V a small piece of the totally geodesic hypersurface at ¢, normal to 0. Then for z € V,
sufficiently close to g, each integral curve, ¥, of W through z intersects dB,, (p) in exactly one
point, z/ € 8B, (p) (¥ extends on both sides of V). It is easy to check that the map, z — 2/,
provides a local chart for 0B, (p) at q.

Example 1.5. M compact and ¢ a farthest point from p implies that ¢ is a critical point of
pp, obviously, the topology changes when we pass ¢. This observation was made by Berger, well
in advance of the formal definition of “critical point”; [Be].

Example 1.6. If v is a geodesic loop of length £ and if v | [0, g] and 7 | [g,l] are minimal,
then 7(%) is a critical point of 4(0). In particular, if ¢ is a closest point, to p on C,, and ¢ is
not conjugate to p along some minimal geodesic then ¢ is a critical point of p; see Chapter 5
of[CE]. Thus, if p, g realize the shortest distance from a point to its cut locus in M ", and are not
conjugate along any minimal v, then p and ¢ are mutually critical.

Example 1.7. On a flat torus with fundamental domain a rectangle, the barycenters of the

sides and the corners project to the three critical points of p, other than p itself.

Q q3

) )

*p 1? %@
Fig. 1.1

Example 1.8. A conjugate point need not be critical. Here is a concrete example. Write
the standard metric on S? in the form g = dr? + sin? r d?, where 0 < r < x, 0 < @ < 2. Let
f(r,8) be a smooth function, periodic in , such that
i) f(r,8) =1, for all (r,0) satisfying any of the following conditions:

n 3
osrsZ) ZWS"S’H
xr—e<f<nm+e.

Here we require € < 7/4.



ii) f > 1 elsewhere.

The metric ¢’ = fdr? + sin? r d6? satisfies ¢’ > g. In fact, if the intersection of a curve, ¢,
with the region, /4 < r < 3n/4, is not contained in the region # — ¢ < § < 7 + ¢, then its length
with respect to ¢’ is strictly longer than with respect to g. It follows that for the metric ¢’, the
only minimal geodesics connecting the “south pole” (§ = ) to the “north pole”, (§ = ) are the
curves ¢(t) = (t,6p), # — € < 8 < m+ €. Since 2¢ < m, it follows that the north and south poles
are mutually conjugate, but mutually noncritical.

We are indebted to D. Gromoll for helpful discussions concerning this example.

Remark 1.9. The criticality radius, rp, is, by definition, the largest r such that B.(p) is
free of critical points. By the Isotopy Lemma 1.4, By, (p) is homeomorphic to a standard open

ball, since it is homeomorphic to an arbitrarily small open ball with center p.

2. Toponogov’s Theorem; first applications.
Denote the length of v by L[v].
By definition, a geodesic triangle consists of three geodesic segments, v;, of length L[y;] = ¢;,
which satisfy
7i(€i) = 7i+1(0) mod 3 (i =0,1,2) .

The angle at a corner, say 70(0), is by definition, J(—73(€2),75(0)). The angle opposite 7;
will be denoted by a;.

A pair of sides e.g. 72, 7o are said to determine a hinge.

Fig. 2.1

Let M}, denote the n-dimensional, simply connected space of curvature = H (i.e. hyperbolic
space, Euclidean space, or a sphere).

Toponogov's theorem has two statements. These are equivalent in the sense that either one
can easily be obtained from the other.

Theorem 2.1 (Toponogov). Let M™ be complete with curvature Kpr > H.
A) Let {y0,71,72} determine a triangle in M™. Assume 11, 72 are minimal and €, + €3 > &. If
H > 0, assume L[y) < \/LIT Then there is a triangle {y,,7,,7,} in M}, with L{vi] = L[y,] and

a <a, a <a.



B) Let {v2,7} determine a hinge in M[" with angle a. Assume v, is minimal and if H > 0,
T
Liyo] < \/—ﬁ Let {12,

angle a. Then

"_/0} determine a hinge in M}, with L[vy,] = L[*_/.], : = 0,2, and the same

72(0),70(€o) < 7,(0),70(lo) -

Proof: See [CE], Chapter 2.

Remark 2.2. In the applications of Toponogov which occur in the sequel, the following
elementary fact is often used without explicit mention. Consider the collection of hinges, {lo’ 12}
in }\{,2{, with fixed side lengths, (o, (2 and variable angle a; 0 < a < w. Then W 18 a
strictly increasing function of a.

Remark 2.3. If the inequalities in A) or B) are all equalities, more can be said (see [CE]).

By using Toponogov’s theorem we can derive geometric information from the existence of
critical points.

Let the triangle, {v0,71,72} satisfy the hypothesis of Toponogov’s theorem, and assume
7Yo(€o) is critical with respect to v9(0). Then (as explained in detail in the applications), we can
i) bound from above the side length ¢; (see Theorems 2.5, 4.2),

ii) bound from below, the excess, ¢y + ¢; — (; (see Proposition 8.5),

ii1) bound from below, the angle a; (see Lemma 2.6, Corollaries 2.7, 2.9, 2.10 and 6.3).

Remark 2.4. It is important to realize that in order to obtain the preceding bounds, we do
not assume az < 7/2. The assumption that () is critical with respect to 7o(0) implies that
X (—%5(€0),71(0)) £ m/2, for some minimal ¥, from 7v9(0) to vo(&o). This is all that we require.

Theorem 2.5 (Grove-Shiohama). Let M™ be complete, with Ky > H, for some H > 0. If
M™ has diameter, dia(M™) > -2—71'1;, then M™ 1s homeomorphic to the sphere, S™.

Proof: Let p,¢g € M™ be such that p,g = dia(M"); in particular, p and ¢ are mutually
critical (see Example 1.5).

Claim. There exists no z # ¢, p which is critical with respect to p (the same holds for gq).

Proof of Claim: Assume z is such a point. Let v, be minimal from ¢ to z. By assumption

there exists 49, minimal from z to p, with

a; = § (—73(€2),710(0)) <

oy

Similarly, since p and ¢ are mutually critical, there exist minimal 41, 4; from p to ¢ such that

3 (=7%(€) M) < 7
and
(=A@, ON < 5 -

™

Note that L{y;] = L[11] = 5,7 >

S

2



Apply A) of Toponogov's theorem to both {+y,71,72} and {~o,%1,72}. Since a triangle in
M? (the sphere) is determined up to congruence by its side lengths, we get a unique triangle,
{7_0,11,12}, in M?%, all of whose angles are < 7/2. By elementary spherical trigonometry, this
implies that all sides have length < Q—WE, contradicting p,q > .

Given the claim, the proof is easily completed (compare the proof of Reeb’s Theorem given

in [M]).
The following observation and its corollaries (2.7, 2.10) are of great importance.
Lemma 2.6 (Gromov). Let q; be critical with respect to p and let q; satisfy

Piqz 2 VD1

for some v > 1. Let 1,72 be minimal geodesics from p to ¢1,q2 respectively and put 0 =
4 (11(0),72(0)).
1) If Kar >0,
6 > cos™H(1/v) .
i) If Ky > H, (H < 0) and p,gz < d, then

85 sos™ (tanh( \/—Hd/t/))
- tanh(vV—Hd) /

Proof: Put p,q1 =z, 41,92 = ¥, P4z = 2. Let o be minimal from ¢; to ¢g2. Since ¢ is critical

for p, there exists 7, minimal from ¢ to p with

4 (0'(0),7'(0)) <

o] 3

i) Applying Toponogov’s Theorem B) to the hinges {0, 7} and {y1,72} gives
22 S IZ + ?/2 ]
y? <22+ 2% —2zzcosf (law of cosines)

Since z > v - z, the conclusion easily follows.
ii) By scaling, we can assume H = —1. Replace the inequalities above by the following ones from

hyperbolic trigonometry (see e.g. [Be])

coshz < coshzcoshy ,

coshy < cosh z cosh z — sinhz sinh zcos § .

Substituting the second of these into the first and simplifying gives

_, ,tanhz
9 go l(t’,anhz)

which suffices to complete the proof.



Corollary 2.7. Let q1,...,qn be a sequence of critical points of p, with
P i+t 2 vDqi (v >1)

1) If Kpyn > 0 then
N < N(n,v)

W)y If Kpy > H (H <0) and gy < d, then
N < N(n,v,Hd?*) .

Proof: Take minimal geodesics, ; from p to ¢;. View {7/(0)} as a subset of S*~! C M.
Then Lemma 2.6 gives a lower bound on the distance, 8, between any pair 7;(0),7;(0). The balls
of radius 6/2 about the 7/(0) € S"! are mutually disjoint. Hence, if we denote by V;,_y,1(r), the
volume of a ball of radius » on S"~!, we can take

Va—1.1(7)

N=v 6

where Vi—1,1(7) = Vol(S™~1) and 6 is the minimum value allowed by Lemma 2.6.

Remark 2.8. It turns out that Corollary 2.7 is the only place in which the hypothesis on
sectional curvature is used in deriving Gromov’s bound on Betti numbers in terms of curvature
and diameter. For details, see Theorem 3.8 and §§ 5-6.

The following result is a weak version (with a much shorter proof) of the main result of
[CGI2], compare also § 8.

Corollary 2.9. Let M™ be complete, with 'pyn > 0. Given p, there ezists a compact set
C, such that p has no critical points lying outside C. In particular M™ i3 homeomorphic to the
wnterior of a compact manifold with boundary.

Proof: The first statement, which is obvious from Corollary 2.7, easily implies the second.

Corollary 2.10. Let M(n,v, Hd?) be as in Corollary 2.7, and let rivN < ry. Then there

ezists (s1,2) C [r1,72] such that p;*((s1,52)) is free of critical points and
82 — 81 > (72 --1‘11/‘/)(1+x/+~--uN’)_1

Moreover, the set of critical points has measure at most (1 — v™)r,.
Proof: Let 7y +£; denote the first critical value > ry; €2 +v(ry +£€;) the first after v(ry +£€;)
etc. It is easy to see that in the worst case
b=bp=-=¢,
Cwv(ri+ )+ 0O+ )+l=r,

The first assertion follows easily. The proof of the second is similar.



Remark 2.11. The proof of Corollary 2.7 casily yields an explicit estimate for the constant

N. For example, in case Ny > 0, we get

=1
us
N(n,v) < (}T(l/u)

Thus, for v close to 1,

3. Background on Finiteness Theorems.

The theorems in question bound topology in terms of bounds on geometry. In subsequent
lectures we will prove two such results due to Gromov, [G] and Grove-Petersen [GrP). Before
stating these, we establish the context by giving an earlier result of Cheeger [C1], [C3] (see also
[GLP], [GreWu], [Pel], [Pe2], [We] for related developments).

Theorem 3.1. (Cheeger). Givenn,d,V,\' > 0, the collection of compact n-manifolds which

admit metrics whose diameter, volume and curvature satisfy,
dia(M™) < d ,
Vol(M™) >V,

| Kar| < IC

contains only a finite number, C(n,,V~=1d", Nd?), of diffeomorphism types.

Remark 3.2. The basic point in the proof is to establish a lower bound on the length
of a smooth closed geodesic (here one need only assume s > I). This, together with the
assumption Ky < K, gives a lower bound on the injectivity radius of the exponential map (see
[CE], Chapter 5). Although Theorem 3.1 predated the use of critical points, the crucial ingredient
in the Grove-Petersen theorem below is essentially a generalization of the above mentioned lemma
on closed geodesics (compare Example 1.6).

Theorem 3.3 (Grove-Petersen). Given n,d,V > 0 and H, the collection of compact n-

dimensional manifolds which admit metrics satisfying
dia(M™) < d,
Vol(M™) >V ,
Ky 2 H
contains only a finite number, C(n,V~1d"™, Hd?), of homotopy types.
Remark 3.4. In [GrPW], the conclusion of Theorem 3.3 is strengthened to finiteness up
to homeomorphism (n # 3) and up to diffeomorphism (n # 3,4). The proof employs techniques
from “controlled topology”. Thus, Theorem 3.3 supersedes Theorem 3.1 (as stated) if n # 3,4.

However, Theorem 3.1 can actually be strengthened to give a conclusion which does not hold

under the hypotheses of Theorem 3.3.



Given { M} as in Theorem 3.1, there is a subsequence { M}, a manifold M™, and diffeomor-
phisms, ¢; : M™ — M7, such that the pulled back metrics, ¢}(g,), converge in the C'2-topology,

for all @ > 1 (see the references given at the beginning of this section for further details).

Example 3.5. By rounding off the tip of a cone, a surface of nonnegative curvature is
obtained. From this example, one sees that under the conditions of Theorem 3.3, arbitrarily

small metric balls need not be contractible. Thus, the criticality radius can be arbitrarily small

(compare Remark 1.9).

AN
Fig. 3.1

However, it will be shown that the inclusion of a sufficiently small ball into a somewhat larger

one is homotopically trivial.
Example 3.6. Consider the surface of a solid cylindrical block from which a large number,

7, of cylinders (with radii tending to 0) have been removed.

‘---—-—_-_
oo

G.:
G

\
\
F=
/

S P

N S

Fig. 3.2
The edges can be rounded so as to obtain a manifold, M?, with Vol(M?) > V, dia(M?) < d (but
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inf 'y;2 — —o0, as j — o0). For the first Betti number, one has b‘(‘\llz) =2) — oc.
J
Note that the metrics in this sequence can be rescaled so that KM] > -1, Vol(l\[f) — oo.
Then, of course, dia(M}) — co as well.

Example 3.7. Consider the lens space L?, obtained by dividing

S* = {(z122) | |21? + [=2> = 1},

by the action of Z , = {1.a,...,a"~ '}, where a : (z1,32) — (e*™/"z;, €¥™/"z;). Then dia(L3) =
1, K3 = 1, but Vol(M3) — 0, and H\(L},Z ) = Z,. Thus, if the lower bound on volume is
relaxed, there are infinitely many possibilities for the first homology group, H;. Nonetheless, the
following theorem of Gromov asserts that for any fized coeflicient field, F', the Betti numbers,
b*(M™) are bounded independent of F.

Theorem 3.8 (Gromov). Gwen n,d >0, H, and a field F, if

dia(M™) < d,

Ny > H

then
Zb‘(M") < C(n, Hd?) .

Corollary 3.9. If M™ has nonnegative sectional curvature, Xpm > 0, then

D> H(M™) < C(n).

Remark 3.10. The most optimistic conjecture is that Iy > 0 implies b'(M™) < (':), and
hence, 3_, b'(M™) < 2". Note b*(T") = (7) where T" is a flat n-torus. At present, one knows only
that Kp» > 0 (in fact Ricpn > 0) implies b*(M™) < n. But the method of proof of Theorem 3.8
does not give this sharp estimate; compare also [GLP], p. 72.

In proving Theorems 3.1, 3.3 and 3.8, a crucial point is to bound the number of balls of
radius ¢ needed to cover a ball of radius r.

Proposition 3.11 (Gromov). Let the Ricci curvature of M™ satisfy Ricprn >
(n—1)H. Then givenr,e > 0 and p € M™, there ezists a covering, B,(p) C UY B.(p:), (pi € Br(p))
with N < Ny(n, Hr?,r/¢). Moreover, the multiplicity of this covering is at most No(n, Hr?).

Remark 3.12. The condition Ricpsn > (n—1)H is implied by K« > H, in which case, the
bound on N; could be obtained from Toponogov's theorem. For the proof of Proposition 3.11,
see § 7.

Remark 3.13. The conclusion of Theorem 3.8 (and hence of Corollary 2.7) fails if the
hypothesis K, > H is weakened to the lower bound on Ricci curvature, Ricpy» > (n — 1)H; see

[An], [ShY].
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Remark 3.14. S. Zhu has shown that homotopy finiteness continues to hold for n = 3,
if the lower bound on sectional curvature is replaced by a lower bound on Ricci curvature; [Z].

Whether or not this remains true in higher dimensions is an open problem.

4. Homotopy finiteness.
Pairs of mutually critical points.

The main point in proving the theoreni on homotopy finiteness is to establish a lower bound
on the distance between a pair of mutually critical points (compare Example 1.6). For technical
reasons we actually need a quantitative refinement of the notion of criticality.

Definition 4.1. ¢ is e-almost critical with respect to p, if for all v € M, there exists 7,
minimal from ¢ to p, with § (v,7'(0)) < T +e.

Theorem 4.2. There ezist € = e(n,V~'d"* Hd?*), § = §(n,V~1d", Hd*) > 0, such that if

p,gEM”
dia(M™) < d ,

Vol(M™) >V,
Kyn 2 H |
P, q < od,
then at least one of p,q 1is not e-almost critical with respect to the other.

The proof of Theorem 4.2 uses two results on volume comparison. The first of these, Lem-
ma 4.3, is stated below and proved in the Appendix to this section. The second result, Proposi-
tion 4.7 is stated and proved in the Appendix.

For X C Y closed, put

T(X)={¢geY |¢,X <r}

(the case of interest below is Y = S"~1, the unit (n — 1)-sphere).

Recall that the volume of a ball in MJ; is given as follows. Put

(ﬁsinsx/l?s)"" H>0
.An_.J’H(S) = S"‘l H=0

(g sinh = H 5)"~! H<0
Voar) = vnes [ Avcsn(s)ds
where v,_1 = V,—1,1(7) is the volume of the unit (n — 1)-sphere. Then in M,
Vol(Br(p)) = Vau(r) -

Lemma 4.3. Let X C S™ be closed. Then

Vol(T,, (X)) S Vai(ri)
Vol(Tr, (X)) = Vaa(rz)




