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Foreword

This book brings together the state of the art in research on applications of process
algebras to parallel and distributed processing.

Process algebras constitute a successful field of computer science. This field has
existed for some 30 years and stands nowadays for an extensive body of theory
of which much has been deeply absorbed by the researchers in computer science.
Moreover, the theoretical achievements of the field are to a great extent justified by
applications. The applications, in turn, strongly influence how the field evolves: some
of the field’s success may be attributed to frequently addressing needs that arose in
practice.

Meanwhile, an explosion of complex systems of interacting components has been
going on since the emergence of parallel and distributed processing. The complex-
ity of the systems in question arises to a great extent from the many ways in which
their components can interact. In developing a complex system of interacting com-
ponents, it is important to be able to describe the behavior of the system in a precise
way at various levels of detail, and to analyze it on the basis of the descriptions. Pro-
cess algebras were and are developed for that purpose. Roughly speaking, a process
algebra provides a collection of operators, a collection of equational laws for these
operators, and a mathematical model of these laws. The latter allows for the behavior
of a system to be described as composed of the emergent behaviors of several inter-
acting components and for the described behavior to be analyzed by mere algebraic
calculations.

The advent of process algebras was marked by the introduction of CCS in the
seminal monograph A Calculus of Communicating Systems by Milner, published as
volume 92 of Springer’s Lecture Notes in Computer Science in 1980; the elaboration
of CSP in the influential paper “A theory of communicating sequential processes” by
Brookes, Hoare, and Roscoe, published in the Journal of the ACM in 1984; and the
presentation of ACP as a strict algebraic theory in the paper “Process algebra for
synchronous communication” by Bergstra and Klop, published in Information and
Control in 1984.

The very first applications of process algebras were mostly concerned with the
description and analysis of communication protocols. Later on, the applications
became more and more advanced. Often, they were concerned with the description
and analysis of embedded systems, and more recently with Internet-based distributed
systems.

The applications of process algebras led to a number of developments. The
very first applications brought about the development of basic algebraic verifi-
cation techniques, i.e., basic techniques to establish—on the basis of algebraic
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viii Foreword

calculations—whether the actual behavior of a system is in agreement with its
expected behavior. The construction of basic tools to facilitate description and anal-
ysis followed. Later applications led to extensions of existing process algebras and
the development of more advanced algebraic verification techniques. Both make it
easier to describe and analyze the behaviors of the systems often encountered in prac-
tice nowadays: systems that may change their communication topology dynamically,
systems that must react within a certain amount of time under certain circumstances,
systems that exhibit at certain stages behavior that is stochastic in nature, systems
that in their behavior depend on continuously changing variables other than time,
etc. Experience with the existing process algebras led also to the development of spe-
cial process algebras for the definition of the semantics of programming languages
that support parallel programming or the design of microprocessors that utilize par-
allelism to speed up instruction processing.

It is difficult to foresee future developments and applications, yet some tendencies
are noticeable. One area that is gaining momentum is specialized process algebras
that are tailored to a certain paradigm for parallel or distributed computing or even
to a certain technology for parallel or distributed computing. This fits in with the
tendency to apply process algebras to describe and analyze a prototype of a certain
class of systems. Such applications can be useful in understanding certain aspects of
the systems of an emerging class. However, the adequacy of the prototypes may be a
major issue, because often drastic simplifications are needed to keep the description
manageable. There is also a tendency to apply process algebras outside the realm of
computing, which shows promise.

Many theoretical developments in the field of process algebras were collected by
Bergstra, Ponse, and Smolka in the Handbook of Process Algebra, published in 2001.
In 2005, a workshop was organized in Bertinoro, Italy, to celebrate the first 25 years
of research in the field. Several special issues of the Journal of Logic and Algebraic
Programming are devoted to this workshop. Despite the importance of applications
of process algebras for the success of the field, both the handbook and these spe-
cial issues concentrate strongly on the theoretical achievements. This shortcoming is
compensated for in a splendid way by this book, which brings together the state of
the art in research on applications of process algebras.

Kees Middelburg
Programming Research Group
University of Amsterdam, the Netherlands
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Introduction

Parallel processing is a rich and rapidly growing field of interest in computer sci-
ence. Its spectrum ranges from small-scale, fine-grained multithreaded parallelism on
single- and multicore processors to coarse-grained parallel execution on large, geo-
graphically dispersed distributed systems. With the rapid commoditization of mul-
ticore computers, developers are increasingly eager to exploit those multiple cores.
Yet, this requires them to adopt parallel execution models that in turn need to explic-
itly address the underlying concurrency issues.

At the other end of the spectrum are applications that are spread out over a network
of computers. They may be tightly coupled, such as for multiple computers cooper-
ating on a single application in a high-performance cluster. Or, they may be loosely
organized, as for mobile agents or service-oriented architectures (SOA). Regardless
of the scale, a common requirement in parallel execution models is for carrying
out interprocess communication and synchronization. Programmers know—or soon
learn—that when this requirement is handled carelessly, a host of unpleasant failure
modes tend to manifest: deadlocks, unrepeatable errors from race conditions, along
with corruption of shared data.

One root cause is that the usual tools that programmers know best—mutexes,
semaphores, condition variables, monitors, and message-passing protocols—are dif-
ficult to use correctly. Ad hoc design is common, and too often, success seems like a
matter of good luck. In reality, many programmers new to parallel programming
have an insufficient theoretical basis for what they are trying to do. Meanwhile,
designers have learned that modeling is extremely helpful for all phases of system
development—from understanding the requirements to expressing the specifications,
and for systematically, even automatically, deriving an implementation “correct by
construction” from the model. Yet, most popular modeling tools do not seem to give
sufficient guidance for programming in concurrent environments.

Help is coming forth from computer scientists, who are fond of developing rigor-
ous and logical ways of thinking and reasoning about computing. The purpose of this
book is to show how one formal method of reasoning—that of process algebra—
has become a powerful tool for solving design and implementation challenges of
concurrent systems. Its power stems from providing a sound theoretical basis for
concurrency, along with a formal notation that—in contrast to popular modeling
techniques—is unambiguous. The price for obtaining the benefits is the necessity of
coping with mathematical notation, symbols, and equations. Admittedly, this prospect
may appear daunting to conventionally trained developers, who likely feel more com-
fortable drawing UML diagrams than puzzling out obscure equations. Fortunately,
practitioners of process algebraic techniques are building domain-specific languages
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Xii Introduction

and application-specific tools that can be utilized by developers who then need to
know less about the underlying theoretical elements. In such tools, the process
algebra may be largely kept under the hood.

This book is not intended as a tutorial in process algebras, but there is space here
for a brief orientation: Just as with the “algebra” we all learned in grade school,
its ingredients include symbols standing for constant values and for variables,
and operators that act on the symbols. While elementary algebra is concerned
with manipulating numbers, a process algebra—or the synonymous term process
calculus—is concerned with the creation, life, and death of processes that carry out
computations. The emphasis is on interactions of processes among each other and
with their environment. Symbols are used to stand for individual actions or events
that a process may engage in; the processes themselves; channels, an abstraction used
for interprocess communication; and data transmitted over the channels. Operators
specify a sequential ordering of events; a choice between several events; if/then
decisions; looping or recursive invocation of processes; composition of processes
so that they execute concurrently, either synchronizing cooperatively on specified
events, or running independently; and syntax for parameterizing and renaming so
that process definitions can be reused in a modular fashion. Practitioners can use
one of the classical process algebras mentioned in the Foreword—CCS, CSP, and
ACP—or a more recent one such as the pi-calculus. Established process algebras
have the advantage of the availability of automated tools that can be used for
exploring a specification’s state space and proving properties such as absence of
deadlock (see Section 9.1 for a good explanation of these provable properties).
Alternatively, practitioners can extend any of the base algebras by adding new
symbols and operators, or even invent a new process algebra from scratch. A key
advantage of formal, mathematical notations with rigorous semantics is that one
can prove that particular conditions such as deadlock states do or do not exist, not
just hope for the best, or discover them at runtime.

While the notion of process algebras goes back over two decades, what is new
is the rapid proliferation of parallel computing environments that need their help
in transforming sequential programming models to new ones better suited to paral-
lelism. The urgent necessity for reliably exploiting concurrent computing resources
has caused researchers to press classical process algebras into practical service, along
with their invention of new ones. This book is intended as a showcase for recent
applications of process algebras by current researchers from diverse parts of the inter-
national computer science community. While these contributions may appear largely
theoretical due to the quantities of symbols and formulas, they are, in reality, pro-
cess algebras applied to specific problems. The formalism is needed to establish the
soundness of the theoretical basis, and to prove that the resulting tools are properly
derived.

This book will be of special interest to students of process algebras, to practi-
tioners who are applying process algebras, and to developers who are looking for
fresh approaches to software engineering in the face of concurrency. The chapters
are worth studying from two perspectives: first, those who identify with the problem
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domains (e.g., middleware systems or multicore programming) may ask, “Are the
authors doing something that I could use, or can I adapt their approach?” and second,
those who are interested in process algebras as a tool can ask, “How did the authors
use a process algebra in their solution? What role did it play? How did they formally
define it, and what did they prove in order to give it a sound basis?” A common pat-
tern is to first create a process algebra whose symbols and operators are tailored to the
problem domain (e.g., mobile agents). Next, a virtual (or abstract) machine (VM) is
defined that executes specifications in the process algebra. Because both are formally
defined, it is possible to prove that the VM is correct with respect to the algebra. The
last step is to implement the VM, and this may be done by transferring it into a lan-
guage that is semantically close, e.g., a functional programming language. Since the
target language already possesses a compiler and/or runtime framework, the job of
implementation is done, at least for prototyping and demonstration purposes.

The applied nature of the contributions is emphasized by organizing them into
three target areas:

Part I Parallel Programming, Part II Distributed Systems, and Part III Embedded
Systems.

We will now introduce each section and the chapters within it.

PartI Parallel Programming

The specific problem in view here is how to parallelize an algorithm, so as to take
advantage of, say, multiple processor cores. In an ideal world, parallelization would
be accomplished automatically, perhaps by compilers that are able to detect implicit
parallelism in source code and generate instructions for concurrent threads on their
own. Bearing in mind that modern processors already do this, in effect, with instruc-
tion streams—selecting independent instructions for out-of-order execution by mul-
tiple logic units—it may seem surprising that compilers have largely failed to match
this at the source code level. But processors are detecting and exploiting implicit
fine-grained parallelism. In contrast, fine-grained parallelism in software algorithms
is often not worth exploiting, since there are significant overheads in spawning, man-
aging, and collecting results from concurrent threads, plus potential bottlenecks for
access to shared data. Furthermore, automatically identifying higher-level, coarse-
grained parallelism implicit in source code, while desirable from an efficiency per-
spective, has proven to be a very challenging problem.

Therefore, in the real world, parallelization is still done on a best effort basis by
hand, and then it becomes a question of ensuring that a parallel version is truly equiv-
alent to the serial version. Our contributors have developed formal methodologies for
achieving precisely that result.

In Chapter 1, Anand and Kahl address programming the Cell BE (Broadband
Engine) processor from Sony, Toshiba, and IBM. Its heterogeneous multicore archi-
tecture features eight Synergistic Processor Units (SPUs) with their own local storage
on a token ring under the control of a general-purpose Power Processor Element
(PPE) core. The SPUs are intended to act as coprocessors for the PowerPC, being
loaded on-the-fly with instructions and data, and coordinating via signals. The authors’



X1iv Introduction

Coconut tool set provides the means to take an algorithm written in a domain-specific
language (DSL) embedded in Haskell, and parallelize it for the Cell BE. The key to
their approach is utilizing a graph-based internal representation of the program’s
data and control flows, which are then targeted to a VM that deals strictly with con-
currency issues, e.g., data transfers and interprocessor signaling. The programmer
manipulates the graph to create a high-performance schedule on the eight SPUs,
with the authors’ tool being used to verify that the scheduled version is correct,
i.e., independent of a parallel execution order. The role of process algebra in this
approach is to define the VM language, and then carry out correctness verification.
While currently targeted to the Cell BE, their approach can potentially be ported to
other multicore platforms.

In Chapter 2, Loidl et al. take an approach similar to that in Chapter 1 in that they
also develop a runtime environment, Glasgow parallel Haskell (GpH), that can be
ported to different parallel platforms, and they also focus on a functional program-
ming language. Rather than attempting to automatically extract parallelism from
GpH source code, they allow programmers to insert “par” and “seq” constructs into
a program to give “semi-explicit” direction while carrying out successive steps of
refinement to a parallel version. Their runtime environment, GUM, has been ported
to a number of different parallel platforms.

These two chapters describe tools that are currently being used to program parallel
systems. In comparison, Chapter 3 is more theoretical. Degerlund and Sere present
an approach to taking algorithms described using another formal model called action
systems, and developing an equivalent parallel version useful for scientific comput-
ing. An action system is specified using a process algebra called refinement calculus.
The steps of refinement are used to introduce parallelism into the action system, with
execution on a parallel target platform in view. The formal semantics of the refine-
ment calculus ensure that the transformations are correct.

Part I Distributed Systems

Process algebras find their natural application in terms of formally modeling and
verifying the behavior of distributed systems. Distributed systems are quite diverse,
and this section also has the largest number of chapters.

We start with the work of Groote et al. in Chapter 4, who have developed a pro-
cess algebra, mCRL2, which is specifically targeted at distributed applications. Its
provision for local communication scope (i.e., restricted to a hierarchy of processes),
as opposed to purely global scope, makes it useful for describing component-based
architectures. mCRL2 also accommodates true concurrency “multiactions” distinct
from interprocess communication, and supports the specification of abstract data
types and action times. The authors have built tools capable of analyzing proper-
ties and simulating applications specified using mCRL2. This chapter has examples
of visualizing the state space of a specification by means of a generated graphic.

One category of distributed systems that is currently gaining attention is the SOA
that enables a business process to be automated by invoking software components
located across a network. However, business processes and services described in
words are subject to misinterpretations, leading to errors in integrating SOAs. A key
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area for formalization is turning prose descriptions into unambiguous specifications.
Chapters 5 and 6 make contributions in this area.

Chapter 5 shows Nestmann and Puhlmann using an existing process algebra, the
pi-calculus, to formally specify business processes. Their approach allows business
processes to be captured in the form of Business Process Modeling Notation (BPMN)
process graphs—whose nodes specify interactions such as parallel split, synchroniz-
ing merge, exclusive choice, and others—and then converted to pi-calculus agents
enhanced by the authors’ “trio” construct. Interactions of business processes and
services can be formally modeled, and the models analyzed for various soundness
properties. The authors have created a tool to automate the property analysis.

In Chapter 6, Rosa uses an ISO-standard process algebra, LOTOS, to formalize the
construction of middleware systems. Each architectural component is specified as a
single LOTOS process, which defines the component’s structure—the ports available
to connect to other components—and behavior in process-algebraic terms. The use
of a formal notation as an architecture description language, in contrast to ambiguous
prose descriptions, aids both would-be service providers and service integrators, and
makes it possible to prove temporal properties of an architecture. The author further
employs this technique to create a library of abstract message-oriented components
for use in defining middleware. A third demonstration formalizes middleware for
wireless sensor networks.

Another manifestation of distributed systems is based on the notion of mobile
agents moving around a network. The purpose is to send software to the data rather
than pulling the data down to a computation node. As argued in Chapter 8, mobility
helps to minimize the impact of two problems common to distributed systems: net-
work latency and network failure. Systems based on mobile agents will also benefit
from formal descriptions, especially when it comes to ensuring security. Chapters 7
and 8 deal with mobility. As in Chapters 1 and 2, the authors of Chapters 7 and 8
take the approach of formally defining a VM.

In Chapter 7, similar to Chapters 5 and 6, Paulino targets SOA and middleware.
His VM, service-oriented mobility abstract machine, is based on an extension of the
pi-calculus. By programming for the VM, programmers can be abstracted from the
details of the network while still utilizing mobility. The author’s strategy for deploy-
ment is to execute the machine on network nodes running an existing framework
called DiTyCO.

In Chapter 8, Phillips presents his Channel Ambient (CA) calculus for specifying
mobile applications. The textual notation also has a helpful graphical counterpart.
Based on the abstract notion of an “ambient’—which may stand for a machine, a
mobile agent, or a software module—the CA calculus provides operations whereby
ambients may interact, and migrate in and out of each other, via channels. Security
properties can be verified for a given specification. The execution target is called
the Channel Ambient Machine (CAM), and its correctness with respect to the CA
calculus is proven by the author. His implementation strategy is to map the CAM to
a functional programming language, OCaml, that can then be executed on network
nodes.
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Part Il Embedded Systems

While an exact definition of an embedded system is debatable, it is generally
described as a product that contains within it some combination of software run-
ning on a general- or special-purpose processor, plus associated custom digital logic.
The latter is commonly used to accelerate specific portions of calculations, which
would otherwise require a more expensive processor in order to meet timing con-
straints. The term “embedded” refers to the fact that the end user is not necessarily
aware that the product contains a computer, and, in any case, cannot utilize the com-
puter for some other purpose. Embedded systems have special design constraints
because, unlike software for desktop or server computers, the products have a sig-
nificant recurring cost, such as parts, assembly, packaging, labor, etc., in addition
to the nonrecurring engineering cost that goes into developing and interfacing the
software and hardware components. Furthermore, they may have to meet rigorous
requirements of power consumption (battery life), size, and weight. Cell phones and
digital cameras are common examples. Robotic devices, such as autonomous vac-
uum cleaners, are embedded systems. Some are safety-critical, such as an antilock
brake controller. The aim of choosing the best combination of hardware and soft-
ware is to meet all the performance requirements at the lowest manufacturing cost,
i.e., offering a sufficient set of features at a competitive price.

Parallelism in embedded systems comes in several forms: embedded devices are
often designed in terms of concurrent threads, some monitoring sensor inputs, others
computing outputs, or actuating control outputs. Some have multiple processors,
which may be heterogeneous, such as a 16-bit microcontroller plus a DSP, and some
have hardware/software concurrency. They are often designed and marketed in a
family of related products with more/fewer features, or adding features over time, or
that utilize differing HW technology more favorable to different production quanti-
ties. Formal methods are very attractive for ensuring reliability, especially for safety-
critical products, and those in hard-to-access locations.

In Chapter 9, McEwan leads off with a contribution targeted at formally deriving
a hardware implementation, although his technique is also applicable to software.
As with Chapter 3, which combines the state-based formalism of action systems
with the event-based refinement calculus, McEwan combines state-based Z with the
event-based process algebra CSP, in a formal methodology called Circus. Z is used to
provide a formal model for the data. Refinement toward an implementation proceeds
by applying laws that safely inject parallelism into a sequential specification. The
target language, Handel-C, used to synthesize digital logic, is close to CSP. Circus
is flexible enough to allow engineering choices to guide the refinement, while still
ensuring that the resulting implementation is correct.

Typical parallel systems leave the scheduling of multiple processes to the oper-
ating system under the assumption of adequate CPU time and memory. Accord-
ingly, many process algebras used to specify parallel systems do not have visibility
into process scheduling, yet real-time embedded systems must guarantee responses
within certain time constraints, and do so in the context of limited resources (chiefly
CPU time and memory). Formal notations to specify resource requirements such
as timing constraints are therefore of great utility in the embedded domain.
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In Chapter 10, Mousavi et al. address this problem by developing a pair of process
algebras, together called PARS: one to specify processes, and another to specify
scheduler behavior. The two, combined, produce a scheduled system.

The final chapter, Chapter 11, considers embedded systems through the lens of
product lines, in which reuse of concurrent artifacts across different hardware plat-
forms is emphasized. Yovine’s solution is to use an algebraic language, FXML, to
specify concurrent behavior, associated control and data dependencies, and timing
constraints. FXML specifications are then processed by a software synthesis tool,
Jahuel, to yield an implementation customized for a given platform. Platforms may
differ in the means by which concurrency is supported and interprocess synchro-
nization and communication are carried out. FXML can also be used in a design
automation toolset as an intermediate specification with formal semantics. More-
over, one can define a translation of a nonformal language into FXML, thus giving
the language a formal semantics and opening up the possibility of verification.

We would be remiss not to acknowledge a “dark cloud” in the picture: the chal-
lenge of scaling up some of these techniques for industrial-sized applications. Such
specifications may have so many states that automated verification tools cannot reach
them all in reasonable time. This drawback may not be evident from these chapters
themselves, since the authors were forced to use small examples, both for the sake of
clarity and due to space limitations. Yet some claim to have applied their techniques
to larger-scale problems. For more details, consult the references to the authors’ own
related work, and they will be pleased to answer queries.

The process of collecting these chapters has highlighted for us, as educators, that
colleges and universities have further to go in training undergraduates to be com-
fortable with concurrency and skilled in reliable methods of parallel programming.
More exposure to formal methods is also needed, so that these approaches do not
appear so foreign. As it is, in most software development curriculums, particularly in
North America, formal methods are more “honored in the breach” than by system-
atic instruction. At the same time, researchers will do well to embed their process
algebraic techniques into tools suitable for users without special training, in order to
widen their prospects for adoption.

To conclude, we offer this book as an early collection of research fruits in what
will undoubtedly become a burgeoning growth industry in the coming years, and to
which the editors are eager to contribute their own research.
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