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2 1. G. MALKIN

CERTAIN QUESTIONS ON THE GENERAL THEORY

OF THE STABILITY OF MOTION IN THE SENSE OF LIAPOUNOFF

Introduction

We will study here the problem of the stability of motion in the
3
sense of Liapounoff[ ] from the mathematical point of view., This consists
of the following:

Given a system of differential equations

-

(1) _ = Ki(t,xl,...,xn) (1 =1,2,...,n),
dt
where the Xi in the region

(2) tzto,lxi\ £ H, £y 2 0, H>0 (i=1,2,...,n),
are certain continuous functions of £,Xq,...,X, reducing to zero for
X =.e..=x = 0.

If we consider t as the time and X,...,X 28 certain func-
tions of the coordinates and velocities of a dynamic system, a definite
motion of the system will correspond to every solution of equations (1).
Since X;(t,0,...,0) =0, equations (1) admit of the obvious solution
X) = eee Xy = 0. We will call the motion corresponding to this solu-
tion "undisturbed." Motions corresponding to all remaining solutions of
equations (1) will be called "disturbed" and these equations themselves

will be called the "equations of disturbed motion."
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It is required to. find whether it is possible to find for every
positive number € , no matter how small, another positive number L
such that, if the initial values xg of the quantities xg corresponding

to t = tl) t o are chosen in accordance with the conditions

(3) B (s = 1,2,..0,m),
then for all ¢t ) f'l we shall have
(4) lxa\ £ € ' (e =2,2,500sm)5

If such a'number V] exists, the undisturbed motion is called
"stable" with respect to the quantities XysesesXye In the contrary case,
it is called "unstable.™*

Inequalities (3) and (4) define two regions near the origin of
coordinates. Later on we shall call the second of these (defined by
inequalities (4)), region K.

Tt may happen that in fulfilling condition (3) we may also
satisfy the condition that

Limx, = 0 (s =21,2,,0s,n),
t >

that is, that every disturbed motion sufficiently near the undisturbed
motion approaches it asymptotically. In this case we will say that the

undisturbed motion is "asymptotically" stable.

¥It is possible to investigate a more general problem: that of the
stability of the same motion but with respect not to all, but to only
certain of the quantities =xy,...,x,, for instance with respect to the
quantities x. seeesXp (m < n} The treatment of this problem is derived
from the preceding by .the substitution for inequalities (4) of the fol-
lowing

%] ¢ € (1 =21,2,...,m).
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Liapounoff divides into two categories all methods which it is
possible to indicate for the solution of the problem of stability. He
includes in the first categary those methods which reduce to the direct
consideration of the disturbed motion, that is, to the determination of
the general or a particular solution of equations (1). It is usually
necessary to search for these solutions in a variety of forms, of which
the simplest are those which reduce to the usual method of successive
approximations.

Liapounoff calls the totality of all methods of this first
category the "first method."

It is possible, however, to indicate other methods of solution
of the problem of stability which do not necessitate the caleulation of
a particular or the general solution of the equations of disturbed motion,
but which reduce to the search for certain functions of t,xl,...,xn,
possessing special properties. ILiapounoff calls the totality of all
methods of this second category the "second method."

ILiapounoff states several general propositions as a basis for
his second method. But before going into the formulation of these propo-
sitions, we will give here ¢ertain definitions which we will use in the
future.

Let V(t,xj,...,x,) represent a certain function of tyXyyeeesX,
which is continuous for all values of these variables lying in the region

v

(5) t > Tix )4 & {& = 1,2 ..0,0),

where T > t; 1is an arbitrarily large positive number, and which reduces

to zero for Xy = ... = X, = 0.
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Definition 1. The function V is called semi-definite if in
region (5) it may assume values of only one fixed sign (or also zero

values).

Definition 2. The function V, if it is independent of t,
is called definite if it is semi-definite in region (5) and reduces to
zero only for Xy = eee = x = 0.

The function V, if it is dependent on t, is called definite

if it satisfies one of the following conditions in region (5):
v 2 W(xl,...,xn), V< W(xpyeeenx),

where W 1is a certain positive definite function, independent of t.

Definition 3. We will say that the function V(t,xl,...,xn)
admits of an infinitely small upper bound if for every positive number € >
no matter how small, a positive number h (different from zero) may be
found such that for all values of the variables tsX950.0,%, satisfying
the conditions

e stl < h (s = 1,2,...,n)

we have

irlLe,

Definition 4. A definite function V, whose total derivative
with respect to time in virtue of the equationsg of disturbed motion, that

is, the expression
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ox + A Xl +* 0.+ G

9t 0x 3 x,

4

either is a semi-definite function opposite in sign to V or is identically
equal to zero, is called a "Liabounoff function.”

Using these definitions, we are able to express Liapounoff's
basic theorems in the following way:

Theorem A. If a Liapounoff function exists for the

equations of disturbed motion, the undisturbed motion

is stable.

Note. Let us suppose that for the equations of disturbed motion
it is possible to find a function V(t,xl,...,xn), possessing the follow-
ing characteristics:

1) V reduces to zero when Xy = X5 = ... = X = 0

2) for all values of the variables lying in the region

t 2T, YxleH, x4 arbitrary

(6)
(1 =1,2,...,k; s =kel,...,n),

the function V satisfies the condition
V 2 W(xp,eee%)
where W is a function of Xp,...,% independent of t and is positive

definite

3) for all values of the variables lying in region (6),



