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Preface

The study of interacting particle systems has traditionally focused on cases where
the underlying topology can be described by simple structures such as regular
crystalline lattices or by a continuum medium. The emerging science of com-
plex networks addresses complementary situations where the underlying topol-
ogy is a graph whose structure is complex, irregular, and dynamically evolving.
Complex networks are ubiquitous in nature. Natural networks include biologi-
cal networks (metabolic networks, gene regulatory networks, protein interaction
networks, signaling networks, epidemic networks), and ecological networks (food
webs). Man-made networks include communications networks (WWW, Internet,
phone, wireless), transportation infrastructures (power grid, waterways, natural
gas, roadways, airlines), and social interactions (acquaintance networks, scientific
collaboration networks, terrorist networks).

Network science dates back to Leonhard Euler who initiated graph theory by
his solution in 1736 to the famous Konigsberg bridges problem. For the next 200
years graph theory dealt with regular or small structures. Network science was
reborn with the introduction of random graph theory, through the seminal works
of Ray Solomonoff and A. Rapoport in 1951, and separately, by the works of P&l
Erd6s and Alfréd Rényi in 1959-1960 who introduced probabilistic methods to
graph theory.

Currently, a third revolution is underway. It has been motivated by the emer-
gence of communication networks and the need to characterize biological net-
works and facilitated by the availability of large data sets and the explosive
growth in computing power. Based on characteristics of real-world networks, the
small-world network model by Duncan Watts and Steven Strogatz and the pref-
erential attachment model of scale-free networks by Albert-Lészlé Barabdsi and
Réka Albert have reshaped the way we think of networks.

These contributions showed that the structure of many real-world large-scale
complex networks are far from those of the traditional random graphs, and they
opened up many avenues for future research. They demonstrated that complex
networks is an intellectually deep and ripe area, relevant to many scientific disci-
plines including physics, biology, engineering, and social science, far beyond the
traditional fields of mathematics and computer science.

Now, the research front turns to networks dynamics. Most networks have
the role and function to transport or transfer entities (information, energy, etc.)
along the links. Optimizing transport efficiency and quantifying network vul-
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nerabilities and robustness constitute the next open questions. Predicting the
dynamical evolution of the network structure and its coupling with the trans-
port processes are the ultimate challenge for complex networks science.

This volume of the Lecture Notes in Physics series focuses on the application
of techniques from statistical physics to characterization and modeling of com-
plex networks. There is a deep connection between statistical physics and sta-
tistical graph theory as both aim to characterize macroscopic observables based
on a probabilistic treatment of all microstates of the system. As a concrete ex-
ample, the polymerization process proposed by Paul Flory and used by chemical
physicists to model gelation is equivalent to the growth of a random graph. This
natural connection between statistical mechanics and statistical graph theory is
currently being exploited by many physicists and the present volume presents
the state-of-the-art in the application of statistical physics methods to complex
networks research.

This volume consists of four parts. The first two parts concern theory and
modeling of networks while the last two parts involve applications to real-world
networks. Part I deals with theoretical characterization of structural properties of
networks including spectral and extremal properties and structural robustness.
Part II addresses dynamical aspects of networks including evolving networks,
dynamical processes and transport on networks, and synchronization of net-
works. Part III focuses on information and social networks including publication
networks, collaboration networks, email communication, and board membership
networks. Part IV starts with an overview of networks in biological systems,
followed by applications to genetic and neural networks.

The articles in this volume were written by speakers at the conference “Com-
plex Networks: Structure, Dynamics, and Function”, the 23rd annual conference
of the Center for Nonlinear Studies at Los Alamos National Laboratory, held
from May 12-16, 2003 in Santa Fe, New Mexico, USA. The papers in this volume
are review articles by experts in network science, many of whom made seminal
contributions to the foundations of this novel field. As a collection, this volume
covers a large fraction of the state-of-the art of complex network research. The
articles are aimed at students, newcomers to the field, as well as experts. All
articles have been carefully peer-reviewed not only for scientific content but also
for self-consistency and readability.

The editors thank the authors for their contributions and the referees, whose
comments improved the articles in a significant way. The editors also wish to
thank the conference organizers Benjamin McMahon, Paul Fenimore, and Pieter
Swart, as well as the conference coordinator Roderick Garcia.

Los Alamos, New Mexico, USA Eli Ben-Naim
February 2004 Hans Frauenfelder
Zoltan Toroczkai
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Tomography and Stability of Complex Networks

Tomer Kalisky!, Reuven Cohen'?, Daniel ben-Avraham?, and Shlomo Havlin!

! Minerva Center and Department of Physics, Bar-Ilan University, Ramat-Gan, Israel

2 Department of Computer Science and Applied Mathematics, Weizmann Institute of
Science, Rehovot, Israel

3 Department of Physics, Clarkson University, Potsdam, NY 13699, USA

Abstract. We study the structure of generalized random graphs with a given degree
distribution P(k), and review studies on their behavior under both random breakdown
of nodes and intentional attack on the most highly connected nodes. We focus on scale
free networks, where P(k) oc k™, for m < k < K. We first examine the “Tomography”
of these networks, i.e. the structure of layers around a network node. It is shown that the
distance distribution of all nodes from the maximally connected node of the network
consists of two regimes. The first is characterized by rapid growth in the number
of nodes, and the second decays exponentially. We also show analytically that the
nodes degree distribution at each layer is a power law with an exponential cut-off. We
then show that scale free networks with A < 3 are robust to random breakdown, but
vulnerable to intentional attack. We also describe the behavior of the network near
the phase transition and show that the critical exponents are influenced by the scale
free nature of the network. We show that the critical exponent for the infinite cluster
size behaves as 8 = 1/|X — 3|, and the exponent for the finite clusters size distribution
behaves as 7 = 2?_‘2:3, for 2 < A < 4. For A > 4 the exponents are § = 1 and 7 = 2.5
as in normal infinite dimensional percolation. It is also shown that for all A > 3 the
exponent for the correlation length is ¥ = 1 and formulas for the fractal dimensions
are obtained. The size of the largest cluster at the transition point, known to scale as
N?/% in regular random graphs, is shown to scale as NA=2/C0=D for 3 < X < 4 and
as N2/3 for A > 4.

1 Introduction

Much attention has been focused recently on the topic of complex network be-
havior [1-5]. Most of the interest has been on scale-free networks, which are
believed to represent many phenomena in nature. Scale-free degree distributions
have been observed in the Internet [6], World Wide Web (WWW) [7], metabolic
networks [8] and many others. For recent reviews see [9-13]. In this paper we
review the topics of structure [14] and percolation of such networks [1-4]. Under-
standing network structure can help devise better networks topologies. It may
also help design more efficient algorithms for routing and searching in commu-
nications networks by taking advantage of the network structure. Percolation is
especially important in forecasting and preventing network malfunctions in the
Internet, as well as other realistic networks, and may also be important in the
understanding of the stability of biological and chemical processes [15].
Percolation theory has been studied for some decades by physicists and math-
ematicians. In general it deals with the dilution of a fraction p (alternatively, the

T. Kalisky, R. Cohen, D. ben-Avraham, and S. Havlin, Tomography and Stability of Complex Net-
works, Lect. Notes Phys. 650, 3-34 (2004)
http://www.springerlink.com/ © Springer-Verlag Berlin Heidelberg 2004



4 T. Kalisky et al.

occupation with a density ¢ = 1 —p) of the sites or bonds in a graph [16,17]. It is
known that for many graphs a finite threshold p. exists, such that for dilution of
p < pe a spanning cluster (i.e. a cluster of size proportional to that of the entire
network) exists. While for p > p. the graph is fragmented into small clusters.
When a spanning cluster exists, its size relative to the graph is denoted P (p).
Near the transition point Py, ~ (p. — p)”, where 3 (as well as other “critical
exponents” such as v, 7 and o) is universal — that is, depends only on the dimen-
sion and large scale properties of the graph and not on the local structure. At
the transition point the clusters are fractals, while above and below that point
the clusters are fractals up to length scale £(p) (the correlation length) and have
the dimension of the graph above £. Near criticality, £ ~ |p. — p|™".
The number of clusters of size s near criticality also follows a scaling form:

ne~s Te /s (1)

At p = p., the exponential cutoff s* ~ |p — p.|~7 diverges and the tail of the
distribution behaves as a power law.

The structure of this paper is as follows: In Sect. 2 we discuss general results
applicable to generalized random graphs with an arbitrary degree distribution.
In Sect. 3 we discuss networks having a scale-free degree distribution, which
will be the main concern of this paper. In Sect. 4 we discuss the tomography of
scale-free networks, that is, their partition into layers surrounding the maximally
connected node at different distances. Section 5 presents the model of random
breakdown in scale-free networks and analytical and numerical results for this
kind of failure. Section 6 offers a similar approach for an intentional attack on
the most highly connected nodes. Section 7 presents an analytical derivation of
the critical exponents for the percolation transition on scale-free networks, and
finally Sect. 8 presents conclusions and prospects.

2 General Results

2.1 Condition for a Spanning Cluster

For a graph having degree distribution P(k) to have a spanning cluster, a site
which is reached by following a link from the giant cluster must have at least
one other link in average to allow the cluster to exist. For this to happen the
average degree of a site must be at least 2 (one incoming and one outgoing link)
given that the site 7 is connected to j:

(kili < ) = kiP(kili > j) = 2. (2)
ki

* If we dilute the graph up to near p., the remaining structure resembles a tree, or a
branching process. One can show that a branching process with an average branching
factor that is less than 1 will die out with probability 1 after a finite number of steps
[18].
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Using Bayes rule we get
P(kili < j) = P(kiyi ¢ )/ P(i ¢+ j) = P(i > jlki)P(k:)/P(i ¢ 5),  (3)

where P(k;,i <+ j) is the joint probability that node i has degree k; and that
it is connected to node j. For randomly connected networks (neglecting loops)
P(i + j) = (k)/(N — 1) and P(i <> j|k;) = ki/(N — 1), where N is the total
number of nodes in the network. Using the above criteria (2) reduces to [19,2]:

K= —- =2, (4)

at the critical point. A spanning cluster exists for graphs with x > 2, while
graphs with xk < 2 contain only small clusters whose size is not proportional to
that of the entire network. This criterion was derived earlier by Molloy and Reed
[19] using somewhat different arguments.

The neglecting of loops can be justified below the threshold since the prob-
ability for a bond to form a loop in an s-node cluster is proportional to (s/N)?
(i.e., proportional to the probability of choosing two sites in that cluster). Cal-
culating the fraction of loops Pjep in the system yields:

52 $;S S
-PloopO(ZFg < m:'ﬁv (5)
i 7

where the sum is over all clusters in the system and s; is the size of the ith cluster.
Therefore, the fraction of loops in the system is less than or proportional to S/N,
where S is the size of the largest cluster. Below the critical threshold there is no
spanning cluster in the system and therefore the fraction of loops is negligible.
Hence, until k = 2 loops can be neglected. At the threshold the structure of
the spanning cluster is almost a tree. Above the threshold loops can no longer
be neglected, but since this only happens when a spanning cluster exists the
criterion in (4) is valid as a criterion for finding the critical point. A derivation
of the exact conditions under which (4) is valid can be found in [19].

2.2 Critical Threshold for Percolation

The above reasoning can be applied to the problem of percolation on a general-
ized random network. If we randomly remove a fraction p of the sites (or bonds),
the degree distribution of the remaining sites will change. For instance, sites with
initial degree ko will have, after the random removal of nodes, a different number
a connections, depending on the number of removed neighbors. The new number
of connections will be binomially distributed. If we begin with a distribution of
degrees Py(kg), the new distribution of degrees of the network will be:

Po)= 3 Autin) () 1= ©)

ko=k
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Calculating the first moment for this distribution, given (ko) and (k3) for the
original distribution leads to:

o
(k) = > P(k)k = (1 —p){ko)- (7)
k=0
In the same manner we can calculate the second moment:
(k%) =Y P(k)k* = (1 — p)*(kg) + p(1 — p) (ko). (®)
k=0

Both quantities can be substituted into (4) to find the criterion for criticality.
This yields:

(k%) _ (1 —p)*(k§) +p(1 —p)(ko) _

= 9
" (- p) (ko) )
Reorganizing (9), one gets the critical threshold for percolation [2]:
1—pe=——, 10
Pe ko — 1 e}
where kg = (k3)/(ko) is calculated using the original distribution, before the

removal of sites.

Equations (4) and (10) are valid for a wide range of generalized random
graphs and distributions. For example for a Cayley tree — a graph with a fixed
degree z and no loops — the criterion from (10) can be used. This yields the
critical concentration g. = 1 — p. = 1/(z — 1), which is well known [16,17].
Another example is a random Erdos-Rényi (ER) graph. In those graphs edges
are distributed randomly and the resulting degree distribution is Poissonian [20].
Applying the criterion from (4) to a Poisson distribution yields:

N
=TT w2 ()

which reduces to (k) = 1 as known for ER graphs [20].

2.3 Generating Functions

A general method for studying the size of the infinite cluster and the residual
network for a graph with an arbitrary degree distribution was first developed
by Molloy and Reed [21]. They suggested viewing the infinite cluster as being
explored and used differential equations for the number of un-exposed links and
unvisited sites to find the size of the infinite cluster and the degree distribution
of the residual graph (the finite clusters).

An alternative and very powerful derivation was given by Newman, Strogatz
and Watts [5]. They have used the generating functions method to study the
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TV

Fig. 1. An illustration of equations 14 and 15 for the probability to reach a branch of
a given size by following a link. This is the sum of the probabilities to reach a vertex
with zero outgoing links, of reaching a vertex with a single outgoing link connected to
another such branch, of reaching a vertex with two outgoing links connected to two
such branches etc. After Newman et al. [5].

size of the infinite cluster as well as other quantities (such as the diameter and
cluster size distribution). They have also applied this method to other types of
graphs (directed and bipartite). Here we closely follow their derivation in order
to find the size of the infinite cluster and the critical exponents.

In [5] a generating function is built for the degree distribution:

Go(x) = ZP(L:):L"". (12)

k=0

If we start from a randomly chosen site and follow each of its links to its near-
est neighbors, the sites arrived will have a degree distribution kP (k)/(k) [19,
2,5,3]. The generating function describing the probability for k outgoing links
(excluding the link we arrived along) will be:

N m""_]
Gila) = s = £ Gola) (K (13)

Let H,(x) be the generating function for the probability of reaching a branch of
a given size by following a link®. If we denote the coefficients of G (z) by qx (i.e.
the probability for k& outgoing links from a site reached by following a random
link), then H;(z) must satisfy the self-consistent equation (see Fig. 1):

Hi(z) = xqy + zq1 Hi (2) + zq2[Hy (2)]* + -+ . (14)
Which can be written as:
Hy(z) =x2G{(H(z)) . (15)

If we start from a random site, we have one such branch at the end of each
neighboring link. Since Gy(z) is the generating function for the degree of the
site, the generating function for the probability of a site to belong to an n-site
cluster is:

5 We assume that the finite clusters have almost no loops and are therefore tree-like
structures.



