Bikigits _—
T HT B seom)

LR Y

Hinwih 5 ZEal
€229

[£] Anany Levitin 3

AEXRZ Rt
d w

English reprint edition copyright © 2003 by PEARSON EDUCATION ASIA
LIMITED and TSINGHUA UNIVERSITY PRESS.

Original English language title from Proprietor’s edition of the Work.

Original English language title: Introduction to The Design & Analysis of
Algorithms, 1st Edition, by Anany Levitin, Copyright © 2003

All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc.,
publishing as Pearson Education, Inc.

This edition is authorized for sale and distribution only in the People’s Republic of
China (excluding the Special Administrative Region of Hong Kong, Macao SAR and
Taiwan).

A BEENR H Pearson Education #4422 R AL B B R AT

For sale and distribution in the People’s Republic of China
exclusively (except Taiwan, Hong Kong SAR and Macao SAR).
RFHPEAREMEREA(FEFEPEESE. BITEFNTHREMF
EHATHX) HERLIT,

SRR EEREGRELS BT 01-2003-2170

ABHENMEFE Pearson Education (54 & AR E F) BB AIRE,
TIEETSBHE.

EHERRRE (CIP) HiE
Hi%%i 5 98 Al = Introdugtvon to The Design & Analysis of Algorithms /
[EVRBRITE —OR. b EEXPHERE, 2003
(Hizxgm M) -
ISBN 7-302-06796-1
LH TSR TLOF KR - @B T — 2L V. TP301.6
FERAEEE CIP RS (2003) % 054511 5

WO & HEREHEE i e bRERREEVRE
http://www. tup. com cn] #i . 100084
A . 010-62770175 EPIRE: 010-62776969
NEEE. BRS

HER . 2 B HRITA A

R . R RRENR)

T & FERE SN LA RAT A

. 148210 ED¥: 16.5

: 2003 4E 8 A 1RR 2003 4 8 A% 1 (REDRI
: ISBN 7-302-06796-1/TP « 5057

: 1~3000

: 39.00 7.

B3 H & H
=3 S

#HEPE

X305 W 7 e K S R AR AN R BV B R EUT RS, HE#E
R HIRHRITHBR, BERBEIEN 010-62786544 B, 62776969, HfwHihkh:
JEFEEKZZPRE (HB4% 100084)
LTEBHSEEERSMY, 1 A http/liwww.ePresscn 1
http://iwww.34.cn, 7F[EiL BT {54 book@21bj.com %if.

1. SEIEX#H-TiZAH
(bt E) (PUMEPRL) Watts S. Humphrey ¥, M 59 /59 L
(HAAREEY (FX/HYEPIR) Watts S. Humphrey F, & 4 49 5L/49 L
(A S 2R (F UMEPRR) Watts S. Humphrey 3, &4 29 /39 L
CRAMEREY (F IBER) Paul Clements % ¥, &4 39 7L/49 7L
CRERDEREY (PSUBEPRL) B. Craig Meyers ¥, 24 49 /59 /L

CRREE) (/YRR Elaine M. Hall &, 4 49 7L/49 7L
(ABkatmRRLE) (PP Kurt Wallnau FF, ZM: 49 L/59 A
CRBTA) (FIUR) George A. Hazelrigg ¥, & #: 59 T
CREERRE) (FK) Adedeji B. Badiru ¥ %, &£ 59 L
(HRAHRRRY (FUR) Len Bass %%, & 69 L

EPRRER (REFE) REFEIBEBAR
{CERT &448@) (F LK) Julia H. Allen ¥, £#:49 4
CH BASRA LAY (BEPIR) Watts S. Humphrey ¥, Z#: 49 7T
(CMMI £ A2 5 (HEPIR) Dennis M. Ahern ¥ 3, Z#:39 L

(R FHEAKGABFTEY (BPR) Daniel J. Paulish ¥, #3974
2. RYTERERAY

(B #I5T £ Java BAEEAR) Timothy Budd 3, &4 45 7L
(R P Red@ifit 5 7 KD R. J. Torres ¥, 24 49 &
CF RS (W) David C. Hay ¥ #, 39 7
b SR E) (BHIR) Elfriede Dustin ¥ ¥, Z#:39

AR FHER) Pankaj Jalote ¥, &4 36 T

3. Rt TRERH

A A BAKY (BEPR) Paul Bramble %%, #4:28 L

CHRAPIAEXY (F IR) Paul Bramble ¥ %, Bpi§ ik

CR B A (HPiR) Kurt Bittner 3, Z#:28 L

CABIRARY (FK) Kurt Bittner ¥ 3, Fri4ihig
4 JavaFi RAH

(oA X Java 2 BB E R G A KRB Stewart Bimam ¥, %4 36 7
CIAVA FEARFEY (HePis, $£1 %) Patrick Chan ¥, Z#": 68 7
CJAVA FFEAR S50 (Heprs, £2 %) Patrick Chan ¥, Z#: 68 7T

5. Hftt RFSHIEXES

{MySQL s HF2) Leon Atkinson #, & 69
{Windows .NET Server %&448d) Cyrus Peikari &, Z 39 &
6. Deitel/Riz &8
(CHSA24HY (£ 31%) Deitel &, 4 118 L
{Perl LAz & 3L) Deitel &, 24128
(CHBRBERF R H)D Deitel %, Z#: 118
VB .NET #4424 R 54D Deitel 3%, BPif i
{Python £ 4~) Deitel 53, Bpdf ik
7. WEBRMB
Qlava Ji&) (£ 358, # 1%, HPPIR) Robert Sedgewick ¥, ZM#: 68 T
Qava Ji&) (B30, £1 %) Robert Sedgewick &, BPi¥ ik
CCH+3k) (£ 3, F2%) Robert Sedgewick &, PP i
8. EZ
CBFHEFRALFLEH) Vivek Sharma ¥ &, ZH# 59 T
(BiEAEZARE) Greg Riccardi &, £#:55 &
CBLALEFREY (F21K) John R. Cogdell ¥, Z#: 88 7T
Q-2 D) Mani Subramanian &, Z4: 69 7
ok IR T AKX BMEEHY (F 20) Guillermo Gonzalez ¥,
ZAH: 59 AL

(CHAEMTEAR) Ira Pohl 3, &4 39 7L

Introduction to
The Design &
Analysis of
Algorithms

Introduction to

&% The Design &

0+ Analysis of
= Algorithms

ANANY LEVITIN

Villanova University

Boston San Francisco New York
Loadon Sydney Tokyo Singap Madrid
Mexico City Munich Paris Clpe'lbwn Hong Kong Montreal

Senior Acquisitions Editor Maite Suarez-Rivas
Executive Editor Susan Hartman Sullivan
Executive Marketing Manager Michael Hirsch
Production Supervisor Marilyn Lloyd
Project Manager Sandra Rigney
Composition Windfall Software, using Zz:TgX
Technical Art George Nichols
Copyeditor Penelope D. Hull
Proofreader Holly McLean-Aldis
Text Design Sandra Rigney
Cover Design Gina Hagen Kolenda
Cover llustration Jennifer M. Kohnke
Senior Manufacturing Buyer Evelyn Beaton

Access the latest information about Addison-Wesley titles from our World Wide Web site:
WWW.aw.com/cs

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Addison-

‘Wesley was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

The programs and applications presented in this book have been included for their
instructional value. They have been tested with care but are not guaranteed for any
purpose. The publisher does not offer any warranties or representations, nor does it accept
any liabilities with respect to the programs or applications.

Library of Congress Cataloging-in-Publication Data
Levitin, Anany.
Introduction to the design and analysis of algorithms / Anany Levitin.
p. cm.
Includes bibliographic references and index.
ISBN 0-201-74395-7
1. Computer algorithms. I Title.
QA76.9.A43 148 2003
005.1—dc21 2002027987

Copyright © 2003 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher. Printed in
the United States of America.

ISBN 0-201-74395-7
123456789 10—HAM—06 05 04 03 02

To Maria and Miriam,
with my deepest gratitude

Preface

The most valuable acquisitions in a scientific or technical education are the
general-purpose mental tools which remain serviceable for a life-time.

—George Forsythe, “What to do till the computer scientist comes” (1968)

Igorithms play the central role in both the science and the practice of

computing. Recognition of this fact has led to the appearance of a con-
siderable number of textbooks on the subject. By and large, they follow one of
two alternatives in presenting algorithms. One classifies algorithms according
to a problem type. Such a book would have separate chapters on algorithms for
sorting, searching, graphs, and so on. The advantage of this approach is that it
allows an immediate comparison of, say, the efficiency of different algorithms
for the same problem. The drawback of this approach is that it emphasizes
problem types at the expense of algorithm design techniques.

The second alternative organizes the presentation around algorithm de-
sign techniques. In this organization, algorithms from different areas of com-
puting are grouped together if they have the same design approach. I share
the belief of many (e.g., [BaY95]) that this organization is more appropri-
ate for the basic course on the design and analysis of algorithms. There are
three principal reasons for emphasis on algorithm design techniques. First,
these techniques provide a student with tools for designing algorithms for new
problems. This makes learning algorithm design technique a very valuable
endeavor from the practical standpoint. Second, they seek to classify multi-
tudes of known algorithms according to an underlying design idea. Learn-
ing to see such commonality among algorithms from different application
areas should be a major goal of computer science education. After all, ev-
ery science considers classification of its principal subject as a major if not

xix

Preface

the central point of its discipline. Third, in my opinion, algorithm design tech-
niques have considerable utility as general problem-solving strategies, applicable
to problems beyond computing.

Several textbooks exist that are organized around algorithm design tech-
niques (see [BB96], [HSR98], [NN98]). The problem with these books is that they
uncritically follow the same classification of design techniques. This classification
has several serious shortcomings from both theoretical and educational points of
view. The most significant of the shortcomings is failure to classify many impor-
tant algorithms. This limitation has forced the authors of existing textbooks to
depart from the design technique organization and to include chapters dealing
with specific problem types. Unfortunately, such a switch leads to a loss of course
coherence and almost unavoidably creates confusion in students’ minds.

New Taxonomy of Algorithm Design Techniques

My frustration with the shortcomings of the existing classification of algorithm
design techniques has motivated me to develop a new taxonomy of techniques
[Lev99], which is the basis of this book. Here are the principal advantages of the
new taxonomy:

® The new taxonomy is more comprehensive than the traditional one. It in-
cludes several strategies—brute force, decrease-and-conquer, transform-and-
conquer, and time and space tradeoffs—that are rarely if ever recognized as
important design paradigms.)

The new taxonomy covers naturally many classic algorithms (Euclid’s algo-
rithm, heapsort, search trees, hashing, topological sorting, Gaussian elimi-
nation, Horner’s rule, to name a few) that the traditional taxonomy cannot
classify. As a result, it makes it possible to present the standard body of classic
algorithms in a unified and coherent fashion.

8 It naturally accommodates the existence of important varieties of several
design techniques. (For example, it recognizes three variations of decrease-
and-conquer and three variations of transform-and-conquer.)

® It is better aligned with analytical methods for the efficiency analysis (see
Appendix B).

Design Techniques as General Problem-Solving Strategies

Most applications of the design techniques in the book are to classic problems
of computer science. The only innovation here is the inclusion of some material
on numerical algorithms, which are covered within the same general framework.
(Aninclusion of numerical algorithms is encouraged by Computing Curricula 2001
[CCO01]—a new model curriculum for computer science programs.) But the design
techniques can be considered general problem-solving tools, whose applications
are not limited to traditional computing and mathematical problems. Two factors

Preface xxi

make this point particularly important. First, more and more computing applica-
tions go beyond the traditional domain, and there are reasons 1o believe that this
trend will strengthen in the future. Second, developing students’ problem-solving
skills has come to be recognized as a major goal of college education. Among all
the courses in a computer science curriculum, a course on the design and analysis
of algorithms is uniquely suitable for this task because it can offer a student spe-
cific strategies for solving problems. I am not proposing that a course on the design
and analysis of algorithms should become a course on general problem solving.
But 1 do believe that the unique opportunity provided by studying the design and
analysis of algorithms should not be missed. Toward this goal, the book includes
applications to puzzles and puzzle-like games. Although using puzzles in teaching
algorithms is certainly not a new idea, the book tries to do so systematically by
going beyond a few standard examples.

Textbook Pedagogy

My goal was to write a text that would not trivialize the subject but still would be
readable by most students on their own. Here are some of the things done in the
book toward this objective.

B Sharing the opinion of George Forsythe (see the epigraph), I have sought
to stress major ideas underlying the design and analysis of algorithms. In
choosing specific algorithms to illustrate these ideas, I limited the number
of covered algorithms to those that most clearly demonstrate an underlying
design technique or analysis method. Fortunately, most classic algorithms
satisfy this criterion.

#® In Chapter 2, which is devoted to the efficiency analysis, the methods used for
analyzing nonrecursive algorithms are separated from those typically used for
analyzing recursive algorithms. The chapter also includes sections devoted to
empirical analysis and algorithm visualization.

@ The narrative is systematically interrupted by questions to the reader. Some
of them are asked rhetorically, in anticipation of a concern or doubt, and are
answered immediately. The goal of the others is to prevent the reader from
drifting through the text without a satisfactory level of comprehension.

® Each chapter ends with a summary recapping the most important concepts
and results discussed in the chapter.

The book contains about 600 exercises. Some of them are drills; others make
important points about the material covered in the body of the text or intro-
duce algorithms not covered there at all. A few exercises take advantage of
Internet resources. Several exercises are designed to prepare the reader for
material covered later in the book. More difficult problems—there are not
many of them—are marked with a special symbol in the Instructor’s Man-
ual. (Because designating problems as difficult may discourage some students
from trying to tackle them, problems are not marked in the book itself.)

Preface

Puzzles, games, and puzzle-like questions are marked in the exercises in the
textbook with a special icon.

¥ The book provides hints to all the exercises. Detailed solutions, except for
programming projects, are provided in the Instructor’s Manual available to
qualified adopters from the publisher. (Contact your Addison-Wesley repre-
sentative, or email aw.cse@aw.com.) The supplements available to all readers
of this book are at www.aw.com/cssupport.

Prerequisites

The book assumes that a reader has gone through an introductory programming
course and a standard course on discrete structures. With such a background,
he or she should be able to handle the book’s material without undue difficulty.
Still, fundamental data structures, necessary summation formulas, and recurrence
relations are reviewed in Section 1.4, Appendix A, and Appendix B, respectively.
Calculus is used in only three sections (Sections 2.2, 10.4, and 11.4) and to a very
limited degree; if students lack calculus as an assured part of their background,
the portions of these three sections that involve calculus can be omitted without
hindering their understanding of the rest of the material.

Use in the Curriculum

The book can serve as a textbook for the basic course on design and analysis of
algorithms that is organized around algorithm design techniques. It might contain
too much material for a typical one-semester course. By and large, portions of
Chapters 3 through 11 can be skipped without danger of making later parts of the
book incomprehensible to the reader. Any portion of the book can be assigned for
self-study. In particular, Sections 2.6 and 2.7 on empirical analysis and algorithm
visualization, respectively, can be assigned in conjunction with projects.

Here is a possible plan for a one-semester course; it assumes a 40-class meeting
format.

Lecture ‘Topic Sections
1,2 Introduction 1.1-1.3
3,4 Analysis framework; 0, ©, notations 21,22
5 Mathematical analysis of nonrecursive zi]gorithms 23
6,7 Mathematical analysis of recursive algorithms 2.4,2.5(+ App. B)
8 Brute-force algorithms 3.1,3.2(+3.3)
9 Exhaustive search 34
10-12 Divide-and-conquer: mergesort, quicksort, binary ~ 4.1-4.3
search

13 Other divide-and-conquer examples 440r450r4.6

Preface sxiti

14-16 Decrease-by-one: insertion sort, DFS & BFS, 5.1-53
topological sorting

17 Decrease-by-a-constant-factor algorithms 5.5

18 Variable-size-decrease algorithms 5.6

19-21 Instance simplification, presorting, Gaussian 6.1-6.3
elimination, balanced search trees

22 Representation change: heaps and heapsort 6.4

23 Representation change: Horner’s rule and binary 6.5
exponentiation

24 Problem reduction 6.6

25-27 Space-time tradeoffs: string matching, hashing, 72-74
B-trees

28-30 Dynamic programming algorithms 3from 8.1-84

31-33 Greedy algorithms: Prim's, Kruskal’s, Dijkstra’ 9.1-94
Huffman’s :

34 Lower-bound arguments 10.1

35 Decision trees 10.2

36 P, NP, and NP-complete problems 103

37 Numerical algorithms 104 (+ 114)

38 Backtracking 111

39 Branch-and-bound 112

40 Approximation algorithms for NP-hard problems 11.3

Acknowledgments

1 would like to start by acknowledging the authors of other algorithm textbooks
from whose insights and presentation ideas I have benefited both directly and indi-
rectly. The advice and criticism of the book’s reviewers have made the book better
than it would have been otherwise. I am thankful to Simon Berkovich (George
Washington University), Richard Borie (University of Alabama), Douglas M.
Campbell (Brigham Young University), Bin Cong (California State University,
Fullerton), Steve Homer (Boston University), Roland Hiibscher (Auburn Uni-
versity), Sukhamay Kundu (Louisiana State University), Sheau-Dong Lang (Uni-
versity of Central Florida), John C. Lusth (University of Arkansas), John F. Meyer
(University of Michigan), Steven R. Seidel (Michigan Technological University),
Ali Shokoufandeh (Drexel University), and George H. Williams (Union College).

I am grateful to my colleague Mary-Angela Papalaskari, who used the man-
uscript in teaching a course on algorithms at Villanova and suggested several
improvements to the text and the exercises. She also enthusiastically supported
the idea of systematic utilization of puzzles in the book. Another colleague, John
Matulis, used the manuscript in his sections, too, and provided me with useful
feedback. A former student, Andiswa Heinegg, helped to prepare the manuscript
and, through her critique, made it clearer in both content and style.

xxiv

Preface

Students at Villanova have suffered the inconvenience of using the manuscript
as their textbook over the past few semesters. I acknowledge their patience, useful
feedback, and corrections to the errors and typos they found. The remaining errors
are not, of course, their fault: I introduced them after they had taken the course.

I thank all the people at Addison-Wesley and its associates who worked on my
book. I am especially grateful to my editor, Maite Suarez-Rivas, and her former
assistant Lisa Hogue for sharing and supporting my enthusiasm for this project.

Finally, I am indebted to two members of my family. Living with a spouse who
is writing a book is probably more trying than doing the actual writing. My wife,
Maria, lived through two years of this, helping me any way she could. And help
she did: all 250 or so figures in the book are her creations. My daughter Miriam has
been my English prose guru over many years. Not only did she read large portions
of the book; she was instrumental in finding the chapter epigraphs.

Anany Levitin
anany.levitin@villanova.edu
August 2002

Brief Contents

Preface

1 Introduction
2 Fundamentals of the Analysis of Algorithm Efficiency
3 Brute Force
4 Divide-and-Conquer
5 Decrease-and-Conquer
6 Transform-and-Conquer
7 Space and Time Tradeoffs
8 Dynamic Programming
9 Greedy Technique ,
10 Limitations of Algorithm Power
11 Coping with the Limitations of Algorithm Power
Epilogue
APPENDIX A
Useful Formulas for the Analysis of Algorithms

APPENDIX B
Short Tutorial on Recurrence Relations

Bibliography
Hints to Exercises
Index

Xix

41

97
121
155
193
245
275
303
331
367

409

413

417

431
439
479

vii

1.2

1.3

Contents

Preface

Introduction

Notion of Algorithm
Exercises 1.1

Fundamentals of Aigorithmic Problem Solving

Understanding the Problem

Ascertaining the Capabilities of a Computational Device
Choosing between Exact and Approximate Probiem Solving
Deciding on Appropriate Data Structures

Algorithm Design Techniques
Methods of Specifying an Algorithm
Proving an Algorithm’s Correctness
Analyzing an Algorithm

Coding an Algorithm

Exercises 1.2

Important Problem Types
Sorting

Searching

String Processing

Graph Problems

Combinatorial Problems
Geometric Problems
Numerical Probiems
Exercises 1.3

Xix

-

ix

