26 Cambridge Computer Science Texts

Concurrent Programming:

Cambridge Computer Science Texts

Concurrent Programming

C. k. Snow

University of Newcastle upon Tyne

Cambridge University Press

Cambridge
New York Port Chester Melbourne Sydney

Published by the Press Syndicate of the University of Cambridge
The Pitt Building, Trumpington Street, Cambridge CB2 1RP

40 West 20th Street, New York, NY:10011-4211, USA

10 Stamford Road, Oakleigh, Victoria 3166, Australia

© Cambridge University Press 1992

First published 1992

Printed in Great Britain at the University Press, Cambridge
Library of Congress cataloguing in publication data available

British Library cataloguing in publication data available

ISBN 0 521 32796 2 hardback
ISBN 0 521 33993 6 paperback

—

N

0

=]

Also in this series

An Introduction to Logical Design of Digital Circuis
C. M. Reeves 1972

Information Representation and Manipulation noa I
E. S Page and L B. Wilson, Second Ediiton 127%
Computer Simelaiion of Continuous Sy s

R 1. Crd-Smith and J. Stephensor 1975

Macro Processors

4. 4. Cole, Second Edition 1981

Arn Introduction to the Uses of Computes

Murray Laver 1976

Computing Systems Hardware

M. Wells 1976

An Introduction to the Study ¢f Programming ianguages
D. W. Barron 1977

ALGOL 68 - A first and second course

A.D. McGet:rick 1978

An Introdachiorn to Computationa! Combiiione.

E. S. Page and L. B. Wilson 1979

Computers 2ad Social Change

Murray Laver 1980

The Definition of Programming Languages

A. D. McGerzrick 1980

Programming via Pascal

J. S. Rohl and H. 1. Burrett 980

Program Verification using Ada

A. D. McGettrick 1982

Simulation Techniquss for Discrete Event Systems

I Mitrani 1932

Information Representation and Manipulation uzing Pascal
E.S. Page and L. B. Wilson 1983

Writing Pascal Programs

J.S. Rohl 1983

An Introduciicn to APL

§. Pommier 1983

Computer Mathematics

D.J. Cooke and H. E. Bez 1934

Recursion via Pascal

J. S. Rohl 1984

Text Processing

A. Colin Day 1984

introduction to Computer Systems

Brian Molinari 1985

Program Construction

R G. Stone and D. J. Cocke 1937

A Practical Introduction to Denotationai Srmaniics
Lloyd Allison 1987

Modelling of Computer and Commmunication Systeras
1. Mitrani 1987

The principles of Computer Networking

D. Russel 1989.

Preface

For a number of years, Concurrent Programming was considered only
to arise as a component in the study of Operating Systems. To some
extent this attitude is understandable, in that matters concerning the
scheduling of concurrent activity on a limited number (often one!) of
processing units, and the detection/prevention of deadlock, are still
regarded as the responsibility of an operating system. Historically, it
is also the case that concurrent activity within a computing system
was provided exclusively by the operating system for its own purposes,
such as supporting multiple concurrent users.

It has become clear in recent years, however, that concurrent
programming is a subject of study in its own right, primarily because it
is now recognised that the use of parallelism can be beneficial as much
to the applications programmer as it is to the systems programmer. It
is also now clear that the principles governing the design, and the
techniques employed in the implementation of concurrent programs
belong more to the study of programming than to the management of
the resources of a computer system.

This book is based on a course of lectures given over a number
of years initially to third, and more recently to second year
undergraduates in Computing Science. True to the origins of the
subject, the course began as the first part of a course in operating
systems, but was later separated off and has now become part of a
course in advanced programming techniques.

We make the assumption that the reader is very familiar with
a high-level sequential programming language such as Pascal, and
that the examples given throughout the book can be read by a
reasonably comPetent programmer. Certainly, the students to whom
the course is given have received a thorough grounding in Pascal
programming prior to taking the course.

ix Preface

Sadly, it is still the case that there is very little uniformity
ahout the facilities available (if any) to students wishing to run
concurrent programs. It has therefore been rather difficult to provide
good programming exercises to accompany the text. Ideally, an
environment will be available in which a number of styles of
concurrent programming can be tried and compéred, but even now
such circumstances are rarely available to the average undergraduate
class. Encouraging signs are to be seen, however, and concurrency
facilities are likely to be available in the most of the next generation of
general purpose programming languages which will be candidates for
use as first programming languages for student teaching.

Where a systern is available which offers facilities for
concurrent programming, particularly one which supports the shared
memory model, a programming exercise has been suggested (in
chapter 3) which may be used to demonstrate the phenomenon of
interference (also discussed in chapter 3). A common difficulty in
locating bugs in concurrent programs is their reluctance to manifest
themselves. It is hoped that this exercise will help to demonstrate that
the problem of interference does exist, and that the proposed solutions
really do reduce or eliminate the problem.

On the subject of practical work in general, many of the
exercises have been constructed in such a way as to suggest that a
concurrent program should be written. It is strongly recommended
that, if the necessary facilities are available, the exercise solutions
should be coded and run, in order to reinforce the points made, and the
techniques described in the text. .

I have resisted the temptation to include a comprehensive
biltiography and have given instead a fairly brief set of references,
suitably annotated, which are intended to complement the specific
topics covered in the book. A number of these references themselves
contain bibliographies of the wider literature on the subject, to which
the interested reader is invited to refer.

It is with great pleasure that I acknowledge my gratitude to ali
those friends and colleagues who have encauraged me through the
lengthy gestation period of this book. It is surprising how the simple
question “How's the book coming along?” can be a spur to the author. :
am also happy to record my thanks to my faithful Xerox 608%
workstation “Brinkburn” running the Viewpoint software, upon whic!

the whole book has been typeset. Finslly, this prefacs would not be
complete without recording my enormous appreciation ¢f and thanks
to the numberless students who have acted as the scunding boardJdor
" the views expressed herein. Their reactions to the course, their
questions, and to some extent their answers to my questions, have
. influenced this book in more ways than they, or indeed I, could have
realised.

C.R.Snow
Newcastle upon Tyne, June 1591,

Contents

Preface

1 Introduction to Concurrency T 1
1.1 Reasons for Concurrencycovvvvvuunnnnnn 2
1.2 Examplesof Concurrencyc.unnn. <4
1.3 ConcurrencyinPrograms “................cccevvennnn- 6

1.4 An Informal DefinitionofaProcess 7':
1.5 Real Concurrency and Pseudo-Concurrency 9
1.6 A Short History of Concurrent Programming 10
1.7AMapoftheBookcoeinnn. 11
1.8EXercisesoooiiiiiiiiiinne i 13
2 Processes and the Specification of Concurrency 15
2.1 Specification of Concurrent Activity 15
2.2Threadsof Control 16
2.3 Statement-Level Concurrency e - 19
- 2.3.1 Concurrent Statements 19
2.3.2GuardedCommands 21
233CSPandOCCAM e 25
2.4 Procedure-Level Concurrencycovo.... 25
2.5 Program-Level Concurrency 30
2.6 The Formal Modelofa Process 34
2.7Examples of Process States 37
2.7.1 Motorola M68000 Processor 37
2.7.2 A Hypothetical Pascal Processor 38
2.8 Exercises eRE tEEBARERIEES 15 40
3 Communication between Processes AP ., 42
3.1 Interference,Co-operation and Arbitrary Interleaving 42
3.2 The Critical Section Problem P 46
3.3 Solutions to the Critical Section Problem 49
3.4 Dekker's/Peterson's Solution S E - 63

3.5 A Hardware-Assisted Solution SRR " 55

vi Contents

3.6 Mutual Exclusion using Semaphores 56
2 2.7 Semaphsores as Timing Signals 59
3.8 Senaphores for Exchanging Information 62
3.9 Non-Binary Semaphores 87
3.10 Exercises NP S g 71
4 High-Level Concurrency Constructs - Shared Data 78
4.1 CriticAl RegIONS ..cveinsosnvoisusumaiens sosenmone 81
4.2 Conditional Critical Regions 82
43 Monitorsoovviieii e 84
4.4 MonitorExamples i 90
4.4.1TheBoundedBuffer 90

4.4.2 The Readers and Writers Problem 93’
4.4.3 Disk-Head Scheduling 96
45 ACautionaryTale 100
4.6 PathExpressionscooiiiiiiniiennn. 103
4.7 EXErCiSesc.viiuemnirienniniinnannannnns 108
‘5. High-Level Concurrency Constructs - Message Passing .. 113
5.1 Simple Message Passing 114
5.2 The Client/Server Model 115
5.3 The Selectivereceive cccoeieiininnn. 117
5.4 Process Identities and the Name Server 118
5.5 Channels, Mailboxesand Pipes 121
5.5. 1 UNIXPIPES ...vuvniiiiiienaaaineenns 123
5.5.2NamedPipes, 125
5.5.3UNIXMeSSagesvveniniinieennananns 126

5.5.4.80cKets, o :vuni cncnisnnsossisnes sus s ey e 12

5.6 Channels and Guarded Commands BN S 128
5.7 On Message Passing and Shared Data 139
5.8EXercisesccciiiiiiiiiiiiiiiias e 136
6 Languages for Concurrencyc.oooivevaeon 139
6.1 ConcurrentPascal 140
6.2 ConcurrentEuclidl 147
8.3 MESA .ottt e e 148
6.4PathPascal i 153
0.5 ADA iiiususnessmmayssunitoasEasseeyeseessoens 160
B.6Pascal-mciiiniiiieinasiiiesesinesnnees 169
TBTOCCAM .ovvrnnmnncccnncinsibshsdbnssmnssnuasmssy . 187

B B EXCICISES .+ v v ve vttt ee ettt e 195

7 Implementation of a Concurrency Kernel

7.1 The “Good Citizen” Approach 200 -

72InterraptHandling i, 205
7.3 Undesirable Interference 207
7.4 The Ready Queue e O P 209
7.5 Co-operation between ProCesSes . ..vvvneeennneeen. 211
TEBMonitors e 216
TP Path EXPreSuions o sas siamasmme i4onins ahas suns i 221
TEMessage Passing oo i e 224
Gl OCDAM ; cms sume s snms tus LEEE. B8 FREDE DS ¢ 224

T 2 ADA e 225

7 e CISES . e i i e i i 227
LERTY FEsTen &4 ¢1 £SO 22¢

Todex

1
introduciion io Joncurrency

Concurrency nhas been witit us fer a iong time, The idea of different
tasi:s beinyg carried cu. at the s2me time, in order to achieve a
parcticular ena resuii mcre yuickly, hias been with us from time
Lamemoria,. Someuimes he tasss may be regarded as independent of
oite another. Twq gardeners, one planting potatoes and the other
cutiing tire lawn iprevided the potatoes are not to be planted on the
lawni; will compiete the twe wasks in the time it takes to do just one of
them. Sometimes the tasks are dependent upon each other, as in a
team activity such as is fcund in a well-run hospital operating theatre.
Here, each member of the team has to co-operate fully with the other
members, but each member has his/her own well-defined task to carry
out.

Concurrency has also been present in computers for almost as
long as computers themselves have existed. Early on in the
development of the electronic digital computer it was realised that
there was an enormous discrepancy in the speeds of operation of
electro-mechanical peripheral devices and the purely electronic
central processing unit. The logical resolution of this discrepancy was#
to allow the peripheral device to operate independently of the central
processor, making it feasible for the processor to make productive use
of the time that the peripheral device is operating, rather than have to
wait until a slow operation has been completed. Over the years, of'
course, this separation of tasks between different pieces of hardware
has been refined to the point where peripherals are sometimes
controlled by a dedicated processor which can have the same degree of
“intelligence” as the centra: processor itself.

Even in the case of the two gardeners, where the task that each
‘gardener was given could be considered to be independent of the other,
there must be some way in which the two tasks may be initiated. We

2 Introduction to Concurrency

may imagine that both of the gardeners were originally given their
respective tasks by the head gardener who. in consultation with the
owner of the garden, determines which tasks need to be done, and who
allocates tasks to his under-gardeners. Presumably also, each
gardener will report back to the head gardener when he has finished
his task, or maybe the head gardener has to enquire continually of his
underlings whether they have finished their assigned tasks.

Suppose, however, that our two gardeners were asked to carry
out tasks, both of which required the use of the same implement. We
could imagine that the lawn-mowing gardener requires a rake to clear
some debris from the lawn prior to mowing it, while the potato planter
also requires a rake to prepare the potato bed before planting. If the
household possessed only a single rake, then one or other gardener
might have to wait until the other had finished using it before being
able to complete his own task.

This analogy serves to illustrate the ways in which peripheral
devices may interact with central processors in computers. Clearly if
we are asking for a simple operation to take place, such as a line
printer skipping to the top of the next page, or a magnetic tape
rewinding, it suffices for the Central Processing Unit (c.p.u.) to initiate
the operation and then get on with its own work until the time when
either the peripheral device informs the c.p.u. that it has finished (i.e.
by ar interrupt), or the c.p.u. discovers by (possibly repeated)
inspection that the operation is complete (i.e. by polling).
Alternatively, the peripheral device may have been asked to read a
value from an external medium and place it in a particular memory
location. At the same time the processor, which is proceeding in its
own time with its own task, may also wish to access the same memory
location. Under these circumstances, we would hope that one of the
operations would be delayed until the memory location was no longer
being used by the other.

1.1 Reasons for Concurrency

Concurrent programming as a discipline has been stimulated
primarily by two developments. The first is the concurrency which had
been introduced in the hardware, and concurrent programming could
be seen as an attempt to generalise the notion of tasks being allowed to
proceed largely independently of each other, in order to mimic the

Introduction to Concurrency 3

relationship between the various hardware components. In particular,
the control of a spec’fic hardware component is often a complex task
requiring considerable ingenuity on the part of the programmer to
produce a software driver for that component. If a way could be found
by which those aspects of the driver which are concerned with the
concurrent activity of the device might be separated off from other
parts in the system, the task is eased tremendously. If concurrent
programming is employed, then the programmer can concern himself
with the sequential aspects of the device driver, and only later must he
face the problem of the interactions of the driver with other
components within the system. In addition, any such interactions will
be handled in a uniform and (hopefully) well-understood way, so that
(device-) specific concurrency problems are avoided.

The second development which leads directly to a
consideration of the use of concurrent programming is a
rationalisation and extension of the desire to provide an operating
system which would allow more than one user to make use of a
particular computer at a time. Early time-sharing systems which
permitted the simultaneous use of a computer by a number of users
often had no means whereby those users (or their programs) could
communicate with one another. Any communication which was
possible was done at the operating system kernel level, and this was
usually a single monolithic program which halted all the user tasks
while it was active. Users of such systems were not generally
concerned with communicating with each other, and the only form of
resource sharing that they required was in the form of competition for
resources owned by the operaiing system. Later systems which came
along began to require the poscibiiity of users sharing information
amongst themselves, where such information was not necessarily
under the coritrol of the operating system. Data could frequently be
passed from one user program to another much more conveniently
than using = cumbersome mechanism of asking one program to write
data into a file to be read by the other program.

The introduction of concurrent programming techniques was
alezo recognised to be a useful tool in providing additional structure to a
program. We remarked earlier that the task of constructing a device
driver is considerably simplified if the concurrency aspects can be set
asv'de, and ihen added in a controlled way. This is very similar in

4 Introductiosn to Concurrency

concept to some of the weil-established techriques of structured
programrming, in which the communication between the varioys parte
of a (sequential) program is strietly controlled, for sxample through™
the use of procedures and parameter lists. Structured programming
also leaves open the possiblity of delaying the coding of various parts of
the program untii a later, more convenient time, allowing the writer of”
the program to concentrate on the specific task on hand.

I a similar way, Lhe writer of a concurrent program may write
a sequential program, leaving aside the questions of the interaction
with other concurrently active components untii the sequential
prograrm is complete and, possihly, partially tested. We suspect that
unstructured parailelism in programming would be even more
difficult to manage than an unstructured sequential program unless
we were able to break down the concurrency into manageable sub-
units, Concurrant progremming may therefore be regarded 2s ansiher
construction. Such methodologies are also useflui as a way of making
programs more readable and therefore more maintainable.

1.2 Examples of Concurrency

There are many useful examples of concurrency in everyday
life, in addition to the example of the two gardeners mentioned above.
Any large project, such as the building of a house, will require some
work to go on in parallel with other work. In principle, a project like
building a house does not require any concurrent activity, but it is a
desirable feature of such a project in that the whole task can be
completed in a shorter time by allowing various sub-tasks to be carried
out concurrently. There is no reason why the painter cannot paint the
outside of the house (weather permitting!), while the plasterer is busy
in the upstairs rooms, and the joiner is fitting the kitchen units
downstairs. There are however some constraints on the concurrency
which is possible. The bricklayer would normally have to wait until
the foundations of the house had been laid before he could begin the
task of buiiding the walls. The varicus tasks involved in such a project
can usually be regarded as independent of one another, but the
scheduling of the tasks is constrained by notions of “task A must be
completed before task B can begin”.

Introduction to Concurrency 5

A second example is that of a railway network, & number of
traing may be meking journeys within the (stwors, and by conteast

with the previous example, whei they star’ srd when |
gensrally independent of most of the Clhov jo
Jjourneys do interact though, is at ploces whesre

common sections of track for parts ~f the jouw
example regard the movement of the t
and sections of track =5 the rescur
may not have to share with: cthee programs

In some cases, the concurrescy 3 inho
being considered. Any complex machine, or iy
station, chemical works nr otl (*‘M:'z"yt
compenents which have tc be continucusly interacting wi

th othes
components. In a quality-controiled environment. for cxample, the
product of the manufacturing component of the swstern iz subjected tc
certain test procedures, which in turn provide information which may
modify the way in which the manufaciuring woupenent behaves.
Clearly these two components need to oe ccnsmntly active and in

constant communication with each other for the wha'le system to work

properly.
An example of concurrency directiy related 1o computing and
programming can be seen by considerin hP evaluation of an

arithmetic expression. Suppose we wish i« ‘e».r;uuat,{r the expression:
(a*b + c*d**2)* (g + f*h)

We assume that the identifiers «, b, ¢, etc. have values associated with
them, and that the priority rules for evaluation of the expression are as
would be expected, i.e. exponentiation first, multiplication second and
addition last, modified in the usual way by the inclusion of
parentheses. A tree may be drawn {figure 1.1) showing the
interdependencies of the sub-expressions within the whole expression,

,and we may use this iree to identify possibie concurrency witiiin the
evaluation. Three concurrent evaluations of sub-expressions can begm
4t once, namely, a*b, d**2 and f*h. When the second and third of fthese
are finished, the multiplication by ¢, and the addition of g
(respectively) can take place, also in parallei. It is only after c*d**2

6 Introduction to Concurrency

Figure 1.1

NSNS NN

h

./

/
/ 7

. / /,/
S ‘
N4

has been evaluated that the sub-expression ¢*b can be added, and then
finally the evaluation of the whole expression can be completed.

It is in the field of operating systems where concurrent
programming has been most {ruitfully employed. A time-sharing
operating system, by its very nature, is required to manage several
different tasks in parallel, but even if the system is only providing
services to a single user it will be responsible for managing all the
peripheral devices as well as servicing the user(s). If the concurrent
programming facilities can also be offered to the user, then the
flexipility of concurrency as a program structuring technique is also
available to application programs. It is not our intention in this book to
deal with operating systems as a subject, but it will inevitably be the
case that operating systems will provide a fertile source of examples of
concurrent programs.

7/

1.3 Concurrency in Programs

Any sequential program is in all probability not necessarily
totally sequential. That is, it is often the case that the statements of
the program could be re-ordered to some extent without affecting the
behaviour of the program. It is usually possible, however, to identify
those parts of the program (it is useful to think in terms of program
statements in your favourite high-level programming language) which
do derenc on one another, in the sense that one statement must

Introduction to Concurrency 7

precede another. A simple example would be the case where a program
might include the statement

x:=x+1;

This statement should really only be used if there has been a previous
statement initialising the variable x, e.g.

x:=0;

We could examine any sequential program and identify all such
dependencies, and we would almost certainly find that there were
quite a number of pairs of statemer.ts for which no such dependencies
exist. In other words, it is possible) identify a partial ordering of
program statements which define the interdependencies within a
program.

Suppose, for example, that a program consisted of statements
denoted by the letters A, B, C,D,E, F, G, H, [and J. Suppose also that
we were able to write down the partial ordering as a set of relations:

A<B,A<C, A<D, C<ED<EBK<F,
D<FE<FF<GF<HG<ILH<J

where the relational operator < is meant to be interpreted as “must
precede in time”. The first property of this partial ordering we notice is
‘that the relation D < Fisin fact unnecessary, since it is a consequence
of the two relations D < E and E < F, this ordering relation having
the transitivity property. The partial ordering defined by these
relations may be illustrated by a directed graph as shown in figure 1.2.

1.4 An Informal Befinition of a Process

It is assumed that any programmer who attempts to write
concurrent programs will have had a reasonable amount of experience
of conventional sequential programming. With this in mind, we
attempt to decompose our concurrent programming problem into a set
of sequential programs together with some controlled interaction
between them. Thus we put forward as the basic building block of a
concurrent program the sequential process (where no confusion can

