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INTRODUCTION
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QUANTUM LANGEVIN EQUATION IN THE WEAK COUPLING LIMIT
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0. Introduction
This work is part of a series of papers [2,3,4] where, expanding
some heuristic ideas in [11]1, we develop the theory of the weak
coupling limit for open guantum systems. It has been known for fifteen
years that the reduced dynamics of an open quantum system converges
to a gquantum dynamical semigroup in the weak coupling limit (coupling
constant X — O , microscopic time s — <« , with macroscopic time
t = A?s held constant) [18,6]. We investigate whether and in which
sense the full time evolution of an open quantum system converges, in
the weak coupling limit, to an evolution driven by gquantum Brownian
motion [16,14,15]. In [2] we obtained rigorous results for the time
)
evolution operator U 3y in [3]1 we studied the time evolved
t/N?
x\) (A)+ (\) (A)
observables j (X) = U (X ® 1)U , and we proved that j
t/\? t/N? t/n? t/N?
converges to a quantum diffusion j [10] governed by a quantum
t

Langevin equation.

Here we wish to present the results of [3] in a self-contained way.

To this end we adopt a method of proof which is simpler than the one
of [3]1, by reducing the problem to a time-dependent generalization of

the derivation of a quantum dynamical semigroup in the weak coupling



limit [(18,6]1. However, the price to be paid for this simplification
is that the present method is specific for boson reservoirs with
linear coupling to the system of interest, whereas the method of [3]
is suitable for generalization to the fermion case [4]1, to more

general interactions, and to the low density limit [9,5].

1. Notations and Preliminaries

—--&;-;;;;;&é;_;_;;;;;;;_;;;;ém S, with associated Hilbert space H
and Hamiltonian H, coupled to another quantum system S, with
Hilbert space <H® and Hamiltonian H’, by an interaction AV, where
the coupling constant )M is assumed to be small”. All Hilbert
spaces in this paper will be understood to be separable. S is

spatially confined, meaning that the Hamiltonian H is self-adjoint

in H , bounded from below, and such that expl-BH] is trace class

for all positive . S’ is an infinitely extended quasi-free boson
system, meaning that H' = T(H ) 1is the symmetric Fock space over
1
the one-particle Hilbert space ‘H , and H’ = dI'(H ) 1is the
1 1

differential second gquantization of the one-particle Hamiltonian

H , a2 non-negative self-adjoint operator in ‘H with Lebesgue
1 1

spectrum. We shall also assume that there exists a nonzero (nonclosed)

linear subspace K of ‘H such that, for all f,g € K , we have
1 1 1

—co

+ o0
J [(f,exp[iH t]g>| dt < + o« | (1.1
1

The annihilation and creation operators in <H’ corresponding to the

+

test functions f in ‘H will be denoted by a(f), a (f); they
1

%.
satisfy the CCR [(a(f),a (g)] = <f,g> and a(f)® = 0, where ¢

3 3

is the Fock vacuum vector.



By doubling the space H to H @ ﬁ s ﬁ denoting the
1 1 1 1

conjugate space to H , this formalism allows us to consider also
1

a representation of the CCR algebra determined by a gauge-invariant

quasi-free state w which is stationary under the time evolution

Q
determined by H’. Specifically, let Q be a positive self-adjoint

operator in ‘H , commuting strongly with H and satisfying Q 2 1,
1 1
and let w be determined by

Q
+ +
w (a(fra (g)) = <f,hQ+tl)g> , w (a (gla(f)) = <f,%k(Q-1)g>
Q Q
+ e
Then a(f) is represented by n (a(f)) = a(Q f ® 0) + a (0 ®HQ f) ,
Q + =
where
% %
Q = [%(Q+1)] , Q = [KQ-1)] § (1.2)
+ -
+ +
we have indeed <® ,n (a(f)inm (a (g))o > = w (al(fla (g)) : f,g € H .
°Q Q 2 Q 1
We identify H and H as sets, assuming that H 1is mapped onto H
1 1 1 1
by a conjugation commuting with H and with Q , so that
1
Q expliH t1f ® Q expliH t1f = expliH t1Q f ® expl-iH t1Q f .
+ 1 = 1 1 + 1 =

The interaction V between S and S’ is assumed to be of the form

n + +
vV = i Z [B ®@a (g) -B ®a(g )l |, (1.3)
J=1 J J J J
where B ,...,B are bounded operators on H, g ,...,8 € K , and where
1 n 1 n 1
[H,LBl] =-w B , w >0 :J=1,...,n (1.4)
3 Jj 3 J
<g ,expliH tlg > = 0 for all t 1if J # k. (1.5)
J 1 k

Such interactions arise in the so-called rotating wave approximation.
In order to derive a reduced dynamics for the observables of Sy

we assume that the initial state of S’ is a gauge-invariant quasi-frce



state w . Again, by doubling H to H @ H and the set of
Q 1 1 1

indices (1,...,n} to (1,...,2n) , we can reduce this to the case
where the initial state of S’ is the Fock vacuum: the new expression

of the interaction V becomes

2n + - + -
v = i Z [B @a(g)-B @al(g )l , (1.6)
j=1 J J J J
- - +
where g = Qg @0, g =0®Qg , and where B = - B
J t 3 n+j -3 nt+j 3
J=1,...,n . In this and in the following two Sections, tildes will

be dropped and 2n will be called n again.

Let H =H+H + XV (=H@1+1@H + AV) be the total
A
Hamiltonian for the composite system S + S, and let H = H
° A=0
Let also
N
U = expliH t] expl-iH t] tt 20 1.7)
t ° N

be the time evolution operators, in the interaction picture, for
state vectors in H @ H' . Then it has been shown [18,61] that,

for all u, v in H and for all X in B(7H) , one has

(A + )
lim <u @ ¢ ,U (X @ 1)U veo > = <u, T Xw>, (1.8)
A—0 ° t/A2 t/ 2?2 ° t
where (T : t 2 0) 1is a quantum dynamical semigroup (in the sense

t
of [12,17], or a quantum Markovian semigroup in the sense of [11)

whose infinitesimal generator L 1is given by

n + +
LX) = (¢ Z c(w) B XB)>»> + K X + XK, (1.9)
j=1 Jj 3 J J
where
1 too
c (w) = - J <g ,expli(H - w)tlg > dt 2 0 ) (1.10)
Jj 3 e J 1 J J

and where



n 0] +
K = - = J <g ,expli(H - w )tlg >»dt B B . (1.11)
=1 - J 1 J J J 3

In our previous paper [2] we have shown that there is a precise
(X))

sense in which U (defined by (1.7)) converges as A —> O to
t/x?

the solution U(t) of a guantum stochastic differential equation

(QSDE; in the sense of [161) of the form

n + +
duct) = (X [B dA (t) - B dA (t)] + K dt) U(t) (2.1)
Jj=1 J J J J
+
with U(0O) =1, where (A (t), A (t) : t 20, J=1,...,n) are
J J

mutually independent Fock quantum Brownian motions satisfying

+
dA (t) dA (t) = & c (w ) dt (2.2)
J k Jk J J

and where K 1is given by (1.11) (actually, the proof in [2] is just
for the case n = 1 , but an extension to arbitrary n can be easily
given). In the present paper, like in [3], we shall prove that there
is a precise sense in which

N\ (N)+ x)

J (X) := U (X @ 1> U : X € BCH) (2.3)

t/N2 t/N2 t/n?
converges as X —> O to

+

J X)) := U (t) (X @ 1) UCt) : XeB (H) , (2.4)
t

where U(t) 1is the solution of the QSDE (2.1): J is a quantum
t

diffusion (in the sense of [10]1) satisfying the following gquantum

Langevin equation:



+ +
¢ J (B ,X1) dA (t) - j§ (I[B ,X1) dA (t) )
1 t J J t J J

dj X)
t J

[}
M3

+ J (L(X)) dt 2.5)
t

+
where dA (t), dA (t) are as in (2.1) and where L is given by (1.9).

J J
We introduce the same definitions as in [2,3]. Because of (1.5),
we can define a strongly continuous group (S : t € R) of unitary
t
operators on H such that
1
S g = expli(H - w)tl g : t€e€R, J=1,...,n . (2.6)
t J 1 J J
We introduce a scalar product ¢.].> on K by
1
+ o0
(f|g) = J <f,S g> dt : f , g€ K , 2.7)
- t 1
and we denote by K the completion of K /ker(.|.) with respect
1
to the norm got from (.|.). We also introduce collective Weyl
operators on H’ as W(h x f) : h € L2(R) , f € K , where,
A 1
+
as usual, W(g) = expla (g) - a(g)]l , and where
+ oo
h*x f = X\ J h(x?2t) S f dt : h € L2(R) , f € K (2.8)
A - t 1
(in [2,3], h has been always taken to be the indicator function of
an interval).
In addition to the Fock space H = T(H ) we shall also need
1
the Fock space H™ = [N'(L?*(R) @ K) over L2?(R) ® K . Weyl operators

on either Fock space will be always denoted by W(.), and the Fock
vacuum vector of either space will be always denoted by ¢ .

+
Let also (A (t), A (t) : t 20, j =1,...,n) be the annihilation

J J



and creation operators in H” corresponding to the test functions

X ®g :t20, 3 =1,...,n, g being regarded as elements
[o,tl J J

of K ; they are mutually independent Fock quantum Brownian motions
satisfying the quantum Ito table (2.2), as shown in [2].
With the use of all the definitions and notations given above,

the main result of this paper can be stated as follows:
Theorem 2.1. For all u , v in H, h in L2(R> , f in K ,

and for all X in B(H) we have
X))

lim <u @ Wch *x )0 , J (X) v @ Wch *x  f£)o >
A—0 A ® t/N? A °c He®

= WP Wh@F) , j (X) v@ Whe@ )0 > , (2.9
o t ° j“l@:}'{“

where, in the r.h.s. of (2.9), f 1is regarded as an element of K .

The proof will be given in the following Section, through a number
of Lemmas. It should be noted that the interest of a result like
Theorem 2.1 lies in the fact that, in general, linear combinations
of coherent states <W(f)¢ , . W(f)d» > are dense in the set of

° °

all normal states. So the result here is only slightly less general

than the one of [3], where it has been shown that, for all u , v
in H, h , h in L2(R), £ , f in K, X in B(H), one has
1 2 1 2 1
X))
lim <u ® Wth x f Jo , j (X) v @ Wh x f Ho >
X~0 1 A 1 - t/n2 2 AN 2 ° Hed#

= <ku@Wh @f ), j (XD vaWh @f )0 >
1 1 ° t 2 2 ° HeH”

3. Proofs

Lemma 3.1. The left-hand side of (2.9) can be rewritten as follows:



(N)
<u @ Wh *  f)lo , J (X) v @ Wh * )0 >
A ° t/a? A ° HeW
(X,h,£)
=<ku@®@o , J X)) veo>
o t/)\z ° :}_{ 83_[1
where
(Z,h,f) (AN,h,f)+ (N\,h,f)
J (X> = U X ®1) U
t/N? t/N2 t/N2
and where
(A\,h,f) -1 )
U = [1 @ Wh * f)] §) [1 @ Wh * f)]
t/N? A t/N2 A
Proof. A straightforward manipulation. [
From (1.3) -- (1.5) we have
d (N\) i (A\)
—= = - — V(t/A%?) U 5
dt t/N2 A t/N?
where
n + +
V(t/a2) = i T [B @ a (S g ) -B @a(s . gl
Jj=1 J t/A?2 3 J t/A?2 3
(A,h,£)
Now we derive a differential equation for U 3
t/N?
Lemma 3.2. We have
d (A,h,f) i (A,h,f) )
— U = - — Vv (t/x2) U ,
dt t/A? A t/A2
where
(A,h,f) =]
v (t/X2) = [1 ® Wh x f)] V(t/Xx?2) [1 ® W(h
A
= V(t/X2) + AH(\,h,f,t)
and where
n
AHAN,h,f,t) = 1 X [ <h * f,S g> B - <S g ,h *
j=1 P t/N2 J BINE 3

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

¥ f)]
A

(3.7)

+
f> B 1

A J

(3.8)



=
Proof. Note that the map X F— [1 @ W(h * f)] X [1 @ Wh *» f)]
----- A A
(X € BCH@ H ) is an automorphism; then use the commutation relations

la(f),W(g)l = <f,g> W(g) . ]

Lemma 3.3. The right-hand side of (2.9) can be rewritten as follows:

<u @ Wh @ £)0 , j (X)) v @ Wth ® £)0 >

o t o J.l a;}{li
(h,f)
= <u@o , J X)) v®o > 5 (3.9)
o t © j.{ ®}{$’
where
(h,f) (h,f)+ (h,f)
J (X> = U (t) X @ 1> U t) (3.10)
t
and where
(h,f) -1
U (t) = [1@® Wh @ £)] uct) [1 @ Wth @ £)1 . (3.11)
Proof. A straightforward manipulation. ]
(h,f) (h,f)

Lemma 3.4. U (t) satisfies the following QSDE (with U (0) = 1):
(h,f) n + + (h,f)
du (t) = (£ (B dA (t) - B dA (t)l + [K + AK(h,f,t)]ldt}IU (t)

Jj=1 J J J J

(3.12)
where, for each t such that h(.) is continuous at t,

-1r n + +
AK(Ch,f,t)dt = [1 @ W(h @ )] [Z[B dA (t) - B dA (t)],[l@W(h@f)]]
=1 3 J J 3

*
[ h(t) (f|g ) B - h(t) (g |f) B 1 dt . (3.13)
1 3 J J j

"
M3

J J

=]
Proof. Note that the map X +—— [1 @ W(h @ f)] X [1 @ Wh@f)l

(X € BCH® H”) is an automorphism; then use the commutation relations

la(f),W(g)]l = <f,g> W(g) , recalling that dA (t) = a(x g ). s
3 [t,t+dt] J

Note that NAK(h,f,t) is a bounded, skew-adjoint operator.



10

Lemma 3.5. Let h be a continuous function of compact support. Then

i

lim || - — MO ,h,f,t) - MK(h,f,t) || = © 5 (3.14)
>—0 A
uniformly on compact intervals in t
Proof. It suffices to prove that, for all f , g € K and
----- 1
for all continuous h of compact support, one has
1 —
lim — <h * f,S g> = h(t) (flg) (3.15)
A0 A N t/a2
uniformly on compact intervals in t . Indeed, we have
1 teo
~— <h ® f£,S g> = J h(x?s) <S f,5 g> ds
A A t/N? =90 t/A? s
oo
= J h(A2s) <f,S g> ds
g s-t/\2

(with the change of variable s-t/)X2 = u)

+o +o
= j h(t + A?u) <f,S g> du ——y h(t) j <f,S g> du
i u A—0 -0 u
by the dominated convergence theorem. Recalling the definition
(2.7) of (flg) and taking into account that a continuous function

of compact support is uniformly continuous, the claim follows. ]

Lemma 3.6. Let h be continuous of compact support, and let

“(N,h,£) “(A,h,f)+ “(A,h,f)
J (X> = U (X ®@ 1> U : X € BCHY , (3.16)
t/N2 t/N2 t/A2
“(A,h,f)
where U is the (unitary) solution of
t/A?
d "N, h,f) i “(\,h,f)
— U = [- — V(/X2) + AK(h,f,t)]1 U s (3.17)
dt t/N2 A t/A2
) “(N,h, )
with U =1 . Then, for all X € B(7H) , we have

0



11

(N, h,£) “(N\,h,f)
lim | |3 (X) - 3 xOo1] = o, (3.18)
A—0 t/A2 t/N?

uniformly on compact intervals in t

Proof. It is a consequence of Lemma 3.5. Indeed, we can write
(A,h,f) “(N,h,f) (A,h,f)  (A\,h,f)
U - u = U 4 5
t/N2? t/ 2 t/n? t/N?
(N, h,f) (\,h,f)+ “(N\,h,f) (\,h,f)
where 2 =1 -U 8) satisfies Z = 0 and
t/N? t/N? t/x? 0
d (N,h,f) (\,h,f)+ i “(A,h,f)
—Z = U (- — MHO),h,f,£) - AK(A,h,f,t))U .
dt t/N2 t/N? A t/N?
(N,h,f) “(A,h,f)
Since U and U are unitary, we have
t/\? t/n?
(A,h,f) i
|| 2 [ ¢ t |- — AH(,h,f,t) - DK, h 580,
t/N2 PN

which tends to O as A — 0, uniformly on compact intervals in t ,
by Lemma 3.5. The claim follows. .
Lemma 3.7. Let h be continuous of compact support, and let

(T : t 2 0) be the family of completely positive maps of B(H)

such that, for all X € BC(H) ,

d Ch,f) ¥
— F (X) = LX) + [K(h,f,t) X + X AK(h,f,t>, (3.19)
dt t
(h,f)
with T (X) = X . Then, for all u, v € H, X € BCH), we have
0
“(A,h,f) (h,£)
lim | <u ® o , J (X)) ve@o > = <uy T (X)Hv> | = 0, (3.20)
A—0 ° t/N2 CH t H

uniformly on compact intervals in t

Proof (Sketch). The same arguments as in [18,6]1 can be used, since

the time dependence of /AK(h,f,t) , being on the “macroscopic time

scale”, does not give particular problems (see instead [7]1 for the



