Pascal for the IBM PC

- IBM DOS Pascal
and

ucsp p-System Pascal

Kevin W, Bowyer
Sherryl }J. Tomboulian

Pascal for the IBM PC

IBM DOS Pascal
and

UCSD p-System Pascal

Kevin W, Bowyer
Sherryl). Tomboulian

Robert . Brady Co.
A Prentice-Hall Publishing and
Communications Company

Bowie, MD 20715

Pascal for the IBM PC: IBM DOS Pascal and UCSD p-System Pascal

Executive Editor: David T. Culverwell

Production Editor/Text Designer: Michael J. Rogers

Art Director/Cover Designer: Don Sellers

Assistant Art Director: Bernard Vervin

Cover photographv: George Dodson

Typefaces: Melior (text), Fritz Quadrata (display). Typewriter (computer
programs)

Typesetting: Creative Communications Corporation, Cockeysville. MD

Printed by: R.R. Donnellev & Sons Company, Harrisonburg, VA

Pascal portrait and Pascal computer courtesy of IBM Archives

Copvright. © 1983 by Robert . Brady Company

All rights reserved. No part of this publication may be reproduced or trans-
mitted in any form or by any means, electronic or mechanical, including
photocopving and recording, or by any information storage and retrieval
svstem, without permission in writing from the publisher. For information,
address Robert]. Bradv Co., Bowie, Maryland 20715

Library of Congress Cataloging in Publication Data

Bowyer, Kevin, 1955-
Pascal for the IBM Personal Computer.

Includes index.

I. IBM Personal Computer— Programming. 2. PASCAL
(Computer program language) (. Tomboulian, Sherryl.
1962- 1I. Title.

QA76.8.12594B68 1983 001.64°2 $3-3921
ISBN 0-89303-280-8

rrentice-1iai International. Inc., London
Prentice-Hall Canada. Inc.. Scarborough. Ontario
Prentice-Hall of-Australia, Pty Lid.. Svenev
Prentice-Hall of India Private Limited. New Delhi
Prentice-Hall of Japan, Inc., Tokvo

Prentice-Hall of Southeast Asia Pte. 1.td., Singapore
Whitehall Books, Limited, Petone, New Zealand
Editora Prentice-Hall Do Brasil LTDA.. Rio de Janeiro

Printed in the United States of America

873 84 85 86 87 88 89 90 91 92 43 12345678910

PREFACE

This book is an introductory text to Pascal programming on the IBM Personal
Computer. It is meant for people who want to learn Pascal from the ground
up. You should be able to use this book successfully even if you have never
written a program before. If you do have programming experience, the first
few chapters may seem to move slowly, but there is still much here for you.
Many features specific to Pascal on the IBM PC are illustrated here in com-
plete example programs. These features include graphics, sound, file han-
-dling, and other extensions to standard Pascal.

In addition to the numerous example programs, there are exercises and
problems in the text to aid self-study. The exercises are meant to reinforce
basic concepts, and the answers to the exercises follow them. The problems
are a bit more ambitious and do not have accompanying answers.

There are already several dialects of Pascal available for the PC. The most
popular is DOS Pascal, which runs under the IBM DOS operating system for
the PC. The second most popular is UCSD p-System Pascal, which runs
under the p-System. Neither of these is the same as what is called “‘standard”
Pascal. We have consciously decided to cover both DOS Pascal and p-System
Pascal in this text. There are several reasons for this. One is simply that it
makes the book useful to a wider audience than if only one dialect of Pascal is
covered. Another is that many of the most useful features of any Pascal are
“nonstandard.”” By discussing two different approaches to common exten-
sions of standard Pascal, we hope to make the reader aware of its limitations.
The areas where DOS Pascal and p-System Pascal differ are things that may
have to be relearned when switching to Pascal on any other operating system
or computer.

Chapter 1 should get you oriented to where you and your configuration of
‘the PC fit into the world of Pascal. Read this chapter carefully. Chapters 2 and
3 cover the very basic features of Pascal, including input and output. It is here
that you will run your first programs. Chapter 4 covers control structures for
selection and Chapter 5 covers looping constructs. Selection and looping are
the major methods for altering the flow of control in a program. Chapter 6
looks at arrays and Chapter 7 covers procedures and functions. At this point
all the fundamental features of Pascal have been discussed. Chapter 8 dis-
cusses program development. Chapters 1 through 8 should be covered in a
one-semester introductory course in programming. Chapter 9 covers an ad-
vanced topic in Pascal, user-defined types. This chapter should be read in
detail to truly appreciate the flavor of Pascal’s differences from other lan-
guages. Chapter 10 covers file-oriented I/O. Chapter 11 discusses the genera-
tion of sound and graphics. Both of these chapters introduce a variety of
nonstandard features that will be of more use as your programming ability
grows.

Trademarks of material mentioned in this text

IBM is a trademark of International Business Machines Corporation. UCSD
p-System PASCAL is a trademark of the regents of the University of Califor-
nia. CPM is a registered trademark of Digital Research, Inc.

Limits of Liability and Disclaimer of Warranty

The author and publisher of this book have used their best efforts in preparing -
this book and the programs contained in it. These efforts include the develop-
ment, research, and testing of the theories and prmgrams to determine their
effectiveness. The author and publisher make no warranty of any kind, ex-
pressed or implied, with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any
event for incidental or consequential damages in connection with, or arising
out of, the furnishing, performance, or use of these programs.

CONTENTS

Preface ix

1 About Your IBM PC 1
Operating Systems and Pascal Dialects 1
Display Devices 2
Sound and Graphics 2
Text Editing, Compiling, and Executing 3
Using This Book 3

2 Getting Started in Pascal 5

Program Form and Simple Output 5
More About Output 9
Numeric Values 11

DOS and p-System MOD Operations 14
Variables 15

Name Restrictions in DOS and p-System 16
Assignment Statements and Expressions 17
The Input Statements READLN and READ 21
Programming Style 24

Constants 25

3 More Data Types and More Output 29
Integers 30
Reals 31
Booleans 36
Characters 36
Strings 38
p-System Strings 39
DOS Strings 46
Format of Output Values 42
DOS Pascal’s WORD Data Type 48

4 Control Structures for Selection 53
Logical Expressions 53
The AND Operator 55
The OR Operator 56
The NOT Operator 56
IF Statements 6@
The Simple IF-THEN 61
IF-THEN with a Compound Statement 64
Nested IF-THEN 68
IF-THEN-ELSE 69
DOS Pascal’s AND THEN and OR ELSE 75
CASE Statement 76
p-System Pascal Example 77
DOS Pascal Example 77
The CASE and a Series of I[Fs 79

5 Loop Constructs 85
The WHILE Statement 85
The REPEAT-UNTIL Statement 9@
The FOR Statement 94 -
Using Loops for Input 108
DOS Pascal’s BREAK and CYCLE 162
Labels and the GOTO 165

6 Arrays 109 :
One-Dimensional Arrays 169
Arrays and Loops 112
Two-Dimensional Arrays 114
Multi-Dimensional Arrays 116

7 Procedures and Functions 123
Introduction to Procedures 123
Local and Global Variables 131
Parameters 138
Procedures Calling Other Procedures 150
Nested Procedures 154
Functions 164
DOS Pascal’'s RETURN and p-System’s EXIT 170

8 Program Development 173
An Example with Numeric Arrays 174
An Example with Strings 186
Debugging Hints and Suggestions 188

9 User-Defined and Higher Level Data Types 193
User-Defined Types 193
Using Types to Define Arrays 194
Subrange Types 196
Enumerated Types 197
Records 206
Pointers 224
Linked Lists 231
Sets 237
10 Files 245
What is a File? 245
Temporary Files 248
DOS Pascal’'s ASSIGN Procedure 249
Files Stored on Disk 252
Opening and Closing a File in DOS 252
Opening and Closing a File in p-System 253
Direct Access Files 258
The SEEK Procedure 258
Setting File Mode in DOS Pascal 259
Texttiles and Devices 263
Writing to the Printer Under Program Control 267

vi

11 Sound and Graphics 269
Generating Sound with the NOTE Procedure 269
Generating Pixel-Oriented Graphics 272
Setting Up to Draw 272
Drawing on the Display 274
Figure Operations 276
Alphabetized Reference Listing 284

Appendix A—Editing and Compiling Under DOS 295

Appendix B—Editing and Compiling Under the p-System 304
Appendix C—DOS Pascal Compiler Options (‘‘Metacommands’’) 309
Appendix D—p-System Pascal Compiler Options 314

Index 317

Diskette Options to Accompany PASCAL for the IBM PC 325

About Your IBM PC

Operating SystemS and Pascal Dialects

As this book is being written, IBM already markets three different operating
systems for the PC: DOS, the UCSD p-System, and CP/M-86. Also, other
vendors are marketing competing versions of the UCSD p-System and CPM,
as well as UNIX operating system look-alikes. The number of operating sys-
tems available for the PC is destined to grow, and most of them will likely
have their own individual dialect of Pascal. Of course there is a ‘‘standard”
Pascal, but it may be impossible to find a compiler that faithfully implements
it and only it.

In this book we are concerned only with the IBM DOS Pascal compiler and
the Pascal compiler that comes with the UCSD p-System. Sections of the book
that describe differences in the two Pascals are clearly marked in the Table of
Contents.

One fundamental difference between DOS and p-System Pascal is that p-
System Pascal is not fully compiled. A compiler translates programs in a high
level language such as Pascal into the acfual language used by the processor
inside the computer. The IBM PC is based on the INTEL 8088 microprocessor,
and the DOS Pascal compiler translates Pascal into machine code that can be
directly executed by the 8088. The p-System compiler translates Pascal into
something called ‘“P-code.”” P-code is a language closer to the machine level
than Pascal but more general than any particular processor. The P-code ver-
sion of a Pascal program is translated into the exact language of the INTEL
8088 at the time the program is executed. (This process is referred to as
“interpretive’”’ execution.) As a result, programs written under DOS Pascal

1

2 [0 PASCAL FOR THE IBM PC

will generally execute faster than those written under the p-System. However,
using the ‘“Native Code Generator” of the p-System will recover some of the
speed. This option to the p-System compiler is explained in the User’s Guide
for the p-System.

File formats on floppy disk are not compatible between DOS and the p-
System. That is, a file created under one of the operating systems is not
directly accessible by a program running under the other operating system.

Display Devices

The choice of a display device for your PC actually begins with choosing
between the monochrome monitor adapter and the color/graphics adapter.
Choo:1ng the monochrome monitor adapter automatically limits you ta the
IBM monochrome monitor for a display device. (It is called ‘“monochrome’
rather than “‘black and white”” because the phosphor in the display is green.)
The primary advantage of this option is the especially high quality text dis-
play of the IBM monochrome monitor. Its primary disadvantage is that it can
only do text, no graphics.

With a color/graphics adapter, your choices for a display device are more
numerous. You could use

1. a black-and-white home television

2. a color home television

3. a standard black-and-white monitor, or

4. a standard color monitor, either composite or RGB variety

Both choices 1 and 2 require that you purchase an RF modulator to go
between the color/graphics adapter and the TV set. Choice 4 may require a
cable to go with the monitor (at extra cost). You can do graphics with any of
choices 1 through 4. The ability to do graphics lies in the adapter, not the
munitor, but the display does dictate the visual quality of the graphics. Color
graphics can only be done with options 2 and 4, as the ability to generate
color is a property of the display device.

Sound and Graphics

If you are using p-System Pascal, then commands to generate sound and
graphics with the PC are available in the IBMSPECIAL and TURTLE-
GRAPHICS libraries. If you are using DCS Pascal, there is nothing standard
with the system to make it easy to use sound and graphics.

In Ch-pter 11, we describe a set of sound and graphics commands that are
detailed in a companion book, Games, Graphics, and Sound for the IBM PC.
Most of these commands are already available to p-System Pascal. The full set
of commands described in that book are detailed in its appendices, and
information is given on how to implement them for DOS Pascal. As an

ABOUT YOURIBMPC I 3

alternative to implementing the commands yourself from that book, you can
order a diskette of the prepared routines to link to your Pascal programs.

Text Editing, Compiling, and Executing

A text editor is a program used to enter text from the keyboard and save it in
a file on disk. The file of Pascal text entered through' the text editor is
translated by the compiler into a form the processor of the system can actually
use.

If you are using the UCSD p-System a fairly nice screen-oriented editor is a
standard part of the system. A ‘‘screen-oriented’ editor is distinct from a
“line-oriented”” editor. Screen editors allow you to make changes in the text
anywhere on the screen, whereas line editors require that you locate a particu-
lar line and give editing commands specific to that line. The trouble it would
take to replace the standard UCSD p-System screen editor with a nicer one is
probably not worth the effort.

If you are using DOS version 1.0 or 1.1, then the standard editor that comes
with the system is a relatively simple line editor (EDLIN). You may want to
seriously consider purchasing a screen editor, which would give you much
more power and flexibility in creating program text. It should show a notice-
able increase in your productivity. Literally dozens of screen editors are avail-
able. One entirely reasonable screen editor for DOS is the MINCE editor,
marketed by Mark of the Unicorn. At least make a trip to your local computer
store and see what is available in this area.

Appendices A and B detail the processes necessary to edit, compile, and
execute a program. The editors described there are the standard UCSD p-
System screen editor and the DOS EDLIN editor. If you have not prepared and
executed programs on the PC before, you should skip to the appropriate
appendix now; read it to get an idea of what is involved. You will also need
to refer back to the appendix as you work the first few example programs.
You should eventually refer to the documentation that came with your system
to learn the advanced features of the editor and compiler.

Using This Book

This book is built around several concepts:

e Start slowly.

e Learn by doing.

e The ‘“natural” sequence of topics is not the same to experts as it is to
novices.

The book develops topics relatively slowly. People who already consider
themselves experts in Pascal may not like the sequence of topics in the book.

4 [1 PASCAL FOR THE IBM PC

Some of Pascal’s most important rontributions, such as user-defined types,
are put off until late in the book because we believe novices are not ready to
appreciate things in the same way as expeits.

There are lots of examples that are complete working programs. RUN
THEM!! We believe in learning by running examples rather than by reading
abstract descriptions of the language. (If you don’t want to type in the pro-
grams yourself, order them on diskette. The listings of all the example pro-
grams are available on floppy disk.) Each example program illustrates a point
(or points), and you really should work through them all. Reading over
program text and understanding it intellectually is not at all the same level of
knowledge as running the program and “‘feeling” its operation.

Even though it is oriented to beginners in Pascal, this book contains mate-
rial that will be of use to seasoned Pascal veterans. Experts should be able to
find their way easily around the structure of the book and skip the parts they
don’t heed. Novices will need all the parts of the book, and its structure will
be vital to them.

Getting Started in Pascal

Program Form and Simple Output

The Concept of a Program

A program is a group of commands and associated information that can be
executed by the computer. A program can be thought of as being similar to a
recipe. You start off with some basic information—the ingredients and the
equipment needed; spoons, mixing bowls, measuring cups, etc.—and then
you follow the steps as they are listed to get the result. Note, however, that
there can be more than one way to achieve the final product; there are lots of
recipes to make chocolate chip cookies. Conversely, you need to have the
right recipe to do the job. If you want to make an angel food cake, you
wouldn’t use a recipe for cookies.

What is a Computer Language?

A computer language—in our case, Pascal—must be used to communicate
with the computer. To continue the cooking analogy, a recipe uses a special-
ized language—a combination of standard English language and terms and
abbreviations that are associated with cooking. Pascal works along the same
principles. It uses English-like phrases where practical and has additional
vocabulary that is specific to the computer environment.

A word of warning: Learning a language involves building a vocabulary
and set of rules and structures before it can be used in any real sense. In

5

6 [J ,PASCAL FOR THE IBM PC -

learning a foreign language, you start out with very simple phrases—like
““Good morning, sir, how are you?,” and “‘I am fine, thank you.” You don’t
start out reading classic literature. The same is true in learning a computer
- language. You have to start with the basics and build. Because of this, many
of the exercises and examples presented here may seem artificial. In fact, most
only serve to illustrate the use of a particular feature. Be patient. Once the
building blocks have been established vou will be able to charge ahead to
solve important and exciting problems that interest you.

The Structure of a Pascal Program

The structure of a pregram consists of a heading, which stdtes the name of the
program, the word BEGIN, which shows that the program is starting, the
commands that describe the actions to be taken, and a final END statement.
The heading consists of the word PROGRAM, the name of the program, and
a semicolon. The BEGIN and END mark the start and finish of the com-
mands. They are necessary because without them the computer would not
know where one program started and another began. Returning to the idea of
a recipe, without BEGIN/END it would be possible to combine a cake with a
souffle but you would end up with a terrible mess. For example:

PROGRAM name_you_give_it;
BEGIN

{ statements }
END.

Note the use of a semicolon after the program heading. Semicolons tell the
computer that a statement is finished. In the technical jargon of computer
people, semicolons are said to be “‘delimiters’” between statements. Delimiters
are just a way of separating things. Delimiters are not always semicolons, but
we’ll get to that later.

What is Syntax?

Syntax is a term that refers to the rules that define the structure of a language.
For instance, part of the syntax of an English sentence is that the first letter of
the first word is capitalized and that the sentence ends in a period. Pascal
syntax requires that a program be defined in the format described above.

So far, we only know the outline of a Pascal program. In order to write a
program we need some statements that actually do something. The WRITELN
statement will write messages on the display and then skip to the next line.
The syntax of a WRITELN statement is the word WRITELN followed by an
open parenthesis, a quote followed by as many characters as desired (as long
as it fits on one line), and a closing quote followed by a closing parenthesis.
For example: '

WRITELN(' any text you like ');

GETTING STARTED IN PASCAL [7

WRITELN statements are placed between the BEGIN and END of a pro-
gram. Type the following program (our first) into the editor. Refer to Appen-
dix A for DOS Pascal or Appendix B for p-Systern Pascal, if you are uncertain
how to proceed at this point.

program sample2_1;

BEGIN

WRITELN('This is an example.');

WRITELN('I am going to be a great programmer.');
END.

Program 2.1

Once the program has been entered, you’ll want to execute it, but this can’t
be done yet. First it is necessary to put the program into a different form,
through the use of a compiler. The compiler translates Pascal into a simpler
language that the machine can actually execute. (Use of the compiler is also
described in Appendices A and B.) Pascal is meant to be understood by
ptople, not by machines. Your Pascal program actually has to be translated
into a form the computer can use.

The compiler will go through each line of the program and try to translate
it. Unfortunately, the compiler is “stupid.”” It can only do exactly what you
tell it to, nothing more and nothing less. Because of this, it is common to get
syntax errors while compiling. A syntax error means that the compiler
doesn’t understand something in the program. For instance, if you omit the
period after END you will get a syntax error. When such an error occurs, you
must go back into the editor, fix the error, and try to compile again.

Two words of warning. One is that when you start cut you are going to get
a lot of syntax errors. Everybody does. It'll be a bit frustrating, but things will
impreve as you gain more experience. Second, the message you get concern-
ing the type of error and the line that the compiler says the error is on may
not in fact directly describe the error you made. For example, if you leave a
semicolon off a statement, it won't be discovered until the statement after-
ward. When an error is found, you know only that something is wrong in the
program somewhere up to the point where the compiler indicates a.1 error.

Once the program has been compiled it can be executed. The part of the
computer that executes the program is called the processor. The processor
takes each line of the program, in order, and carries out the specified task.
When Program 2.1 is run, the following lines will be displayed on the screen:

~This is an example.
I am going to be a great programmer.

Comment Statements

As mentioned, the compiler carefully checks each line to be sure that it
conforms with Pascal syntax, but there is an exception to this. Anything that

8 [J PASCAL FOR THE IBM PC

you place in curly brackets { } or in parentheses-asterisks (* *) will be ignored
by the compiler. This is a way of inserting ‘‘comments’ into the text of the
program. You can use comments to make notes to yourself or to provide
information to anyone who may read the program later. The following exam-
ple program produces the exact same result as Program 2.1.

program sample?_2;
{ this is a program that demonstrates the use of comments }
(* author: jane programmer written: feb 2, 1982 ¥)

BEGIN

WRITELN('This is an example.'); { comment after statement }
WRITELN('I am going to be a great programmer.');

END.
Program 2.2.

We use curly brackets because they involve fewer keystrokes than the
parentheses-asterisks. Either is legal in Pascal, but the parentheses/asterisk
version is primarily for computers that do not have curly brackets on the
keyboard. You should develop the habit of commenting all your programs in
the same general manner. Use comments to make the purpose and operation
of the program as obvious as possible to a reader. We have already introduced
the convention of documenting who wrote the program and when it was
written. Later we will introduce more standards for using comments to docu-

ment your program.
You can also put blank lines and blank spaces in your program to make it

easier to read. Notice that we indent all the statements grouped together in
the BEGIN/END block.

Overview
1. The syntax of a program is: PROGRAM name_you_make_up;
BEGIN
{ statements }
END

2. WRITELN is used to output messages to the display. Whatever is within
the quotes gets printed out, and further output statements will begin on
the next line. The syntax is:

WRITELN('Anything you like as long as it fits on one line.');

3. To run a program you need to compile it. A compiler translates the
Pascal statements into a form the computer can use. You can execute the
translated (compiled) version of the program.

4. A syntax error means a statement is not grammatically correct in the
Pascal language. Syntax errors are detected by the compiler. The most

GETTING STARTED IN PASCAL | 9

common errors you will encounter at this point are omitting semicolons
at the end of the line, leaving out the BEGIN or END, leaving out the
period after END, or leaving off one or both quotes in a WRITELN.

Exercises

1. Modify the example program of this section so that the first line of the
output is

"This is another example.'
2. Modify the example to write out a third line:
"This-is fun. RAH! RAH! RAH!"

3. Create a program that writes out the first line of the Pledge of Alle-
giance. Put a comment in the program that describes what it does.

Solutions

1. program solution;
BEGIN
WRITELN('This is another example.');
WRITELN('T am going to be a great programmer.');
END.
2. program solution;
BEGIN
WRITELN('This is an example.');
WRITELN('I am going to be a great programmer.');
WRITELN('This is fun. RAH! RAH! RAH!');
END.
3. program solution;

{ This program prints the first line of the pledge of
allegiance. }

BEGIN
WRITELN('I pledge allegiance to the flag');
WRITELN('of the United States of America.');
END.

More About Output

There are two very similar output statements in Pascal: the WRITELN and the
WRITE statements. We have already used the WRITELN statement to print
out messages from our programs. Our messages have all been strings of text
enclosed by single quotes. There has only been one string in each statement,
and the message from each statement has appeared on its own line. In this

