Transactions on

Aspect-Oriented
oftware

Development |

Awais Rashid - Mehmet Aksit
Editors-in-Chief

Awais Rashid Mehmet Aksit (Eds.)

Transactions on
Aspect-Oriented
Software Development I

@ Springer

Volume Editors

Awais Rashid

Lancaster University

Computing Department
Lancaster, LA1 4YR, UK
E-mail: awais @comp.lancs.ac.uk

Mehmet Aksit

University of Twente
Department of Computer Science
Enschede, The Netherlands
E-mail: aksit@ewi.utwente.nl

Library of Congress Control Number: 2006921902

CR Subject Classification (1998): D.2, D.3, 1.6, H4, K.6
LNCS Sublibrary: SL 2 — Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-32972-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-3297245 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11687061 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3880

Editorial

Welcome to the first volume of Transactions on Aspect-Oriented Software
Development. Aspect-oriented methods, tools and techniques are gaining in popularity
due to their systematic support for modularizing broadly scoped properties, the
so-called crosscutting concerns, in software systems. Such crosscutting concerns
include security, distribution, persistence, mobility, real-time constraints and so on.
As software systems become increasingly ubiquitous, mobile and distributed, the
modular treatment of such crosscutting concerns also becomes critical to ensure that
software artifacts pertaining to such concerns are reusable, evolvable and
maintainable. This modular treatment of crosscutting concerns by aspect-oriented
techniques is not limited to code level. In fact, aspect-oriented techniques cover the
software life cycle, handling crosscutting concerns in requirements, architecture,
design, code, test cases, system documentation, etc.

The aspect-oriented software development community is growing fast, with an
increasing number of researchers and practitioners across the world contributing to
the development and evolution of the field. The community launched its own
conference in 2002, which has since been held with great success on an annual basis.
Recent reports from Burton and Gartner groups have put aspect-orientation on the
plateau of productivity on the evolution cycle of new technologies. One of the key
indicators of the maturity of a field is the availability of high quality research
of an archival nature. The launch of Transactions on Aspect-Oriented Software
Development, therefore, signifies a key milestone for the maturity of work in this
area. The journal is committed to publishing work of the highest standard on all facets
of aspect-oriented software development techniques in the context of all phases of the
software life cycle, from requirements and design to implementation, maintenance
and evolution. The call for papers is open indefinitely and potential authors can
submit papers at any time to: taosd-submission@comp.lancs.ac.uk. Detailed
submission instructions are available at: http://www.springer.com/sgw/cda/frontpage/
0,,3-164-2-109318-0,00.html. A number of special issues on current important topics
in the community are already in preparation. These include special issues on AOP
systems, software and middleware; AOP and software evolution; dynamic AOP, and
Early Aspects. Calls for such special issues are publicized on relevant Internet mailing
lists, Web sites as well as conferences such as the Aspect-Oriented Software
Development conference.

The articles in this volume cover a wide range of topics from software design to
implementation of aspect-oriented languages. The first four articles address various
issues of aspect-oriented modeling at the design level. The first article, “Assessing
Aspect Modularizations Using Design Structure Matrix and Net Option Value”, by
Lopes and Bajracharya, proposes a methodology and a tool to show how aspects can
be beneficial as well as detrimental to a certain design. The second article,
“Modularizing Design Patterns with Aspects: A Quantitative Study”, by Garcia et al.,
analyzes and compares the aspect-oriented and object-oriented implementations of
design patterns with respect to quality values such as coupling and cohesion. The
article “Directives for Composing Aspect-Oriented Class Models”, by Reddy et al.,
proposes models for expressing aspect-oriented and non-aspect-oriented properties of

VI Editorial

systems and defines techniques to compose these models together. In the article
“Aspect Categories and Classes of Temporal Properties”, Shmuel Katz defines a
method for classifying aspects with respect to their temporal properties so that
application of aspects in a system can be better understood and analyzed.

The following four articles discuss various programming language issues. The
article “An Overview of Caesar]”, by Aracic et al., gives an overview of the Caesar]
programming language, which aims at integrating aspects, classes and packages so
that large-scale aspect components can be built. In the article “An Expressive Aspect
Language for System Applications with Arachne”, Douence et al. motivate the
applicability of the Arachne language in improving systems written in the C language,
where system dynamicity and performance play an important role. Monteiro and
Fernandes define in their article, “Towards a Catalogue of Refactorings and Code
Smells for Aspect)”, a catalogue that helps in detecting aspects in object-oriented
programs and in improving the structure of extracted aspects within the context of the
Aspect] language. The final paper in the language category is ‘“Design and
Implementation of An Aspect Instantiation Mechanism™ by Sakurai et al. It proposes
association aspects as an extension to Aspect] for flexible descriptions of aspects
whose instances are associated with more than one object.

The final article in this volume, “abc: An Extensible Aspect] Compiler”, by
Avgustinov et al., describes a workbench for implementing aspect-oriented languages,
so that easy experimentation with new language features and implementation
techniques are possible.

The inception and launch of Transactions on Aspect-Oriented Software
Development and publication of its first volume would not have been possible without
the guidance, commitment and input of the editorial board and the reviewers who
volunteered time from their busy schedules to help realize this publication. We thank
them greatly for their help and efforts. Most important, we wish to thank authors who
have submitted papers to the journal so far. The journal belongs to the community and
it is the submissions from the community that are at the heart of this first volume and
future volumes of Transactions on Aspect-QOriented Software Development.

Awais Rashid and Mehmet Aksit
Coeditors-in-chief

Organization

Editorial Board

Mehmet Aksit, University of Twente

Don Batory, University of Texas at Austin
Shigeru Chiba, Tokyo Institute of Technology
Siobhan Clarke, Trinity College Dublin

Theo D’Hondt, Vrije Universtiteit Brussel
Robert Filman, Google

Shmuel Katz, Technion-Israel Institute of Technology
Gregor Kiczales, University of British Columbia
Karl Lieberherr, Northeastern University

Mira Mezini, University of Darmstadt

Ana Moreira, New University of Lisbon

Linda Northrop, Software Engineering Institute
Harold Ossher, IBM Research

Awais Rashid, Lancaster University

Douglas Schmidt, Vanderbilt University

David Thomas, Bedarra Research Labs

List of Reviewers

Jonathan Aldrich Jean-Marc Jezequel
Joao Araujo Joerg Kienzle

Elisa Baniassad Micheal Kircher
Lodewijk Bergmans Barbara Kitchenham
Lynne Blair Shriram Krishnamurthi
Paulo Borba Ramnivas Laddad
Silvia Breu Karl Lieberherr

Johan Brichau Roberto Lopez-Herrejon
Shigeru Chiba David Lorenz
Ruzanna Chitchyan Hidehiko Masuhara
Siobhéan Clarke Marjan Mernik
Yvonne Coady Mattia Monga

Wesley Coelho Ana Moreira

Maja D’Hondt Juan Manuel Murillo
Theo D’Hondt Gail Murphy

Pascal Diirr Harold Ossher

Ulrich Eisenecker Klaus Ostermann
Tzilla Elrad Andres Diaz Pace

Eric Ernst Monica Pinto

Robert France
Alessandro Garcia
Andy Gokhale
Jeff Gray

Ragghu Reddy
Christa Schwanninger
Domink Stein

Stan Sutton

VIII Organization

John Grundy
Charles Haley
Stephan Hannenberg
Jan Hannemann
Wilke Havinga

Wim Vanderperren
Kris de Volder
Robert Walker
Nathan Weston
Jianjun Zhao

Lecture Notes in Computer Science

For information about Vols. 1-3802

please contact your bookseller or Springer

Vol. 3901: P.M. Hill (Ed.), Logic Based Program Synthesis
and Transformation. X, 179 pages. 2006.

Vol. 3899: S. Frintrop, VOCUS: A Visual Attention System
for Object Detection and Goal-Directed Search. X1V, 216
pages. 2006. (Sublibrary LNAI).

Vol. 3894: W. Grass, B. Sick, K. Waldschmidt (Eds.), Ar-
chitecture of Computing Systems - ARCS 2006. XII, 496
pages. 2006.

Vol. 3890: S.G. Thompson, R. Ghanea-Hercock (Eds.),
Defence Applications of Multi-Agent Systems. XII, 141
pages. 2006. (Sublibrary LNAI).

Vol. 3889:J. Rosca, D. Erdogmus, J.C. Principe, S. Haykin
(Eds.), Independent Component Analysis and Blind Sig-
nal Separation. XXI, 980 pages. 2006.

Vol. 3887: J. Correa, A. Hevia, M. Kiwi (Eds.), LATIN
2006: Theoretical Informatics. XVI, 814 pages. 2006.

Vol. 3886: E.G. Bremer, J. Hakenberg, E.-H.(S.) Han,
D. Berrar, W. Dubitzky (Eds.), Knowledge Discovery in
Life Science Literature. XIV, 147 pages. 2006. (Sublibrary
LNBI).

Vol. 3885: V. Torra, Y. Narukawa, A. Valls, J. Domingo-

Ferrer (Eds.), Modeling Decisions for Artificial Intelli-
gence. XII, 374 pages. 2006. (Sublibrary LNAI).

Vol. 3884: B. Durand, W. Thomas (Eds.), STACS 2006.
X1V, 714 pages. 2006.

Vol. 3881: S. Gibet, N. Courty, J.-F. Kamp (Eds.), Gesture
in Human-Computer Interaction and Simulation. XIII,
344 pages. 2006. (Sublibrary LNAI).

Vol. 3880: A. Rashid, M. Aksit (Eds.), Transactions on
Aspect-Oriented Software Development . IX, 335 pages.
2006.

Vol. 3879: T. Erlebach, G. Persinao (Eds.), Approximation
and Online Algorithms. X, 349 pages. 2006.

Vol. 3878: A. Gelbukh (Ed.), Computational Linguistics
and Intelligent Text Processing. XVII, 589 pages. 2006.
Vol. 3877: M. Detyniecki, J.M. Jose, A. Niirnberger, C. J.
‘. van Rijsbergen (Eds.), Adaptive Multimedia Retrieval:
User, Context, and Feedback. XI, 279 pages. 2006.

Vol. 3876: S. Halevi, T. Rabin (Eds.), Theory of Cryptog-
raphy. XI, 617 pages. 2006.

Vol. 3875: S. Ur, E. Bin, Y. Wolfsthal (Eds.), Haifa Verifi-
cation Conference. X, 265 pages. 2006.

Vol. 3874: R. Missaoui, J. Schmidt (Eds.), Formal Concept
Analysis. X, 309 pages. 2006. (Sublibrary LNAI).

Vol. 3873: L. Maicher, J. Park (Eds.), Charting the Topic
Maps Research and Applications Landscape. VIII, 281
pages. 2006. (Sublibrary LNAI).

Vol. 3872: H. Bunke, A. L. Spitz (Eds.), Document Anal-
ysis Systems VII. XIII, 630 pages. 2006.

Vol. 3870: S. Spaccapietra, P. Atzeni, WW. Chu, T.
Catarci, K.P. Sycara (Eds.), Journal on Data Semantics
V. XIII, 237 pages. 2006.

Vol. 3869: S. Renals, S. Bengio (Eds.), Machine Learning
for Multimodal Interaction. XIII, 490 pages. 2006.

Vol. 3868: K. Romer, H. Karl, F. Mattern (Eds.), Wireless
Sensor Networks. XI, 342 pages. 2006.

Vol. 3866: T. Dimitrakos, F. Martinelli, P.Y.A. Ryan, S.
Schneider (Eds.), Formal Aspects in Security and Trust.
X, 259 pages. 2006.

Vol. 3865: W. Shen, K.-M. Chao, Z. Lin, J.-P.A. Barthés
(Eds.), Computer Supported Cooperative Work in Design
II. XII, 359 pages. 2006.

Vol. 3863: M. Kohlhase (Ed.), Mathematical Knowledge
Management. XI, 405 pages. 2006. (Sublibrary LNAI).

Vol. 3862: R.H. Bordini, M. Dastani, J. Dix, A.E.E
Seghrouchni (Eds.), Programming Multi-Agent Systems.
X1V, 267 pages. 2006. (Sublibrary LNAI).

Vol. 3861: J. Dix, S.J. Hegner (Eds.), Foundations of In-
formation and Knowledge Systems. X, 331 pages. 2006.

Vol. 3860: D. Pointcheval (Ed.), Topics in Cryptology —
CT-RSA 2006. XI, 365 pages. 2006.

Vol. 3858: A. Valdes, D. Zamboni (Eds.), Recent Advances
in Intrusion Detection. X, 351 pages. 2006.

Vol. 3857: M.P.C. Fossorier, H. Imai, S. Lin, A. Poli
(Eds.), Applied Algebra, Algebraic Algorithms and Error-
Correcting Codes. XI, 350 pages. 2006.

Vol. 3855: E. A. Emerson, K.S. Namjoshi (Eds.), Verifi-
cation, Model Checking, and Abstract Interpretation. XI,
443 pages. 2005.

Vol. 3853: A.J. Ijspeert, T. Masuzawa, S. Kusumoto (Eds.),
Biologically Inspired Approaches to Advanced Informa-
tion Technology. XIV, 388 pages. 2006.

Vol. 3852: P.J. Narayanan, S.K. Nayar, H.-Y. Shum (Eds.),
Computer Vision—ACCV 2006, Part II. XXXI, 977 pages.
2006.

Vol. 3851: P.J. Narayanan, S.K. Nayar, H.-Y. Shum (Eds.),
Computer Vision — ACCV 2006, Part I. XXXI, 973 pages.
2006.

Vol. 3850: R. Freund, G. Pdun, G. Rozenberg, A. Salomaa
(Eds.), Membrane Computing. IX, 371 pages. 2006.

Vol. 3849: 1. Bloch, A. Petrosino, A.G.B. Tettamanzi
(Eds.), Fuzzy Logic and Applications. XIV, 438 pages.
2006. (Sublibrary LNAI).

Vol. 3848: J.-F. Boulicaut, L. De Raedt, H. Mannila (Eds.),
Constraint-Based Mining and Inductive Databases. X, 401
pages. 2006. (Sublibrary LNAI).

Vol. 3847: K.P. Jantke, A. Lunzer, N. Spyratos, Y. Tanaka
(Eds.), Federation over the Web. X, 215 pages. 2006. (Sub-
library LNAI).

Vol. 3846: H. J. van den Herik, Y. Bjornsson, N.S. Ne-
tanyahu (Eds.), Computers and Games. XIV, 333 pages.
2006.

Vol. 3845: J. Farré, I. Litovsky, S. Schmitz (Eds.), Imple-
mentation and Application of Automata. XIII, 360 pages.
2006.

Vol. 3844: J.-M. Bruel (Ed.), Satellite Events at the MoD-
ELS 2005 Conference. XIII, 360 pages. 2006.

Vol. 3843: P. Healy, N.S. Nikolov (Eds.), Graph Drawing.
XVII, 536 pages. 2006.

Vol. 3842: H.T. Shen, J. Li, M. Li, J. Ni, W. Wang (Eds.),
Advanced Web and Network Technologies, and Applica-
tions. XXVII, 1057 pages. 2006.

Vol. 3841: X. Zhou, J. Li, H.T. Shen, M. Kitsuregawa, Y.
Zhang (Eds.), Frontiers of WWW Research and Develop-
ment - APWeb 2006. XXIV, 1223 pages. 2006.

Vol. 3840: M. Li, B. Boehm, L.J. Osterweil (Eds.), Uni-
fying the Software Process Spectrum. XVI, 522 pages.
2006

Vol. 3839: J.-C. Filliatre, C. Paulin-Mohring, B. Werner
(Eds.), Types for Proofs and Programs. VIII, 275 pages.
2006.

Vol. 3838: A. Middeldorp, V. van Oostrom, F. van Raams-
donk, R. de Vrijer (Eds.), Processes, Terms and Cycles:
Steps on the Road to Infinity. XVIII, 639 pages. 2005.

Vol. 3837: K. Cho, P. Jacquet (Eds.), Technologies for
Advanced Heterogeneous Networks. IX, 307 pages. 2005.

Vol. 3836: J.-M. Pierson (Ed.), Data Management in Grids.
X, 143 pages. 2006.
Vol. 3835: G. Sutcliffe, A. Voronkov (Eds.), Logic for Pro-

gramming, Artificial Intelligence, and Reasoning. XIV,
744 pages. 2005. (Sublibrary LNAI).

Vol. 3834: D.G. Feitelson, E. Frachtenberg, L. Rudolph,
U. Schwiegelshohn (Eds.), Job Scheduling Strategies for
Parallel Processing. VIII, 283 pages. 2005.

Vol. 3833: K.-J. Li, C. Vangenot (Eds.), Web and Wireless
Geographical Information Systems. XI, 309 pages. 2005.

Vol. 3832: D. Zhang, A K. Jain (Eds.), Advances in Bio-
metrics. XX, 796 pages. 2005.

Vol. 3831: J. Wiedermann, G. Tel, J. Pokorny, M.

Bielikova, J. Stuller (Eds.), SOFSEM 2006: Theory and
Practice of Computer Science. XV, 576 pages. 2006.

Vol. 3830: D. Weyns, H. V.D. Parunak, F. Michel (Eds.),
Environments for Multi-Agent Systems II. VIII, 291
pages. 2006. (Sublibrary LNAI).

Vol. 3829: P. Pettersson, W. Yi (Eds.), Formal Modeling
and Analysis of Timed Systems. IX, 305 pages. 2005.

Vol. 3828: X. Deng, Y. Ye (Eds.), Internet and Network
Economics. XVII, 1106 pages. 2005.

Vol. 3827: X. Deng, D.-Z. Du (Eds.), Algorithms and
Computation. XX, 1190 pages. 2005.

Vol. 3826: B. Benatallah, F. Casati, P. Traverso (Eds.),
Service-Oriented Computing - ICSOC 2005. XVIII, 597
pages. 2005.

Vol. 3824: L.T. Yang, M. Amamiya, Z. Liu, M. Guo, F.J.
Rammig (Eds.), Embedded and Ubiquitous Computing —
EUC 2005. XXIII, 1204 pages. 2005.

Vol. 3823: T. Enokido, L. Yan, B. Xiao, D. Kim, Y. Dai,
L.T. Yang (Eds.), Embedded and Ubiquitous Computing
— EUC 2005 Workshops. XXXII, 1317 pages. 2005.

Vol. 3822: D. Feng, D. Lin, M. Yung (Eds.), Information
Security and Cryptology. XII, 420 pages. 2005.

Vol. 3821: R. Ramanujam, S. Sen (Eds.), FSTTCS 2005:
Foundations of Software Technology and Theoretical
Computer Science. XIV, 566 pages. 2005.

Vol. 3820: L.T. Yang, X.-s. Zhou, W. Zhao, Z. Wu, Y. Zhu,
M. Lin (Eds.), Embedded Software and Systems. XXVIII,
779 pages. 2005.

Vol. 3819: P. Van Hentenryck (Ed.), Practical Aspects of
Declarative Languages. X, 231 pages. 2005.

Vol. 3818: S. Grumbach, L. Sui, V. Vianu (Eds.), Advances
in Computer Science — ASIAN 2005. XIII, 294 pages.
2005.

Vol. 3817: M. Faundez-Zanuy, L. Janer, A. Esposito, A.
Satue-Villar, J. Roure, V. Espinosa-Duro (Eds.), Nonlinear
Analyses and Algorithms for Speech Processing. XII, 380
pages. 2006. (Sublibrary LNAI).

Vol. 3816: G. Chakraborty (Ed.), Distributed Computing
and Internet Technology. XXI, 606 pages. 2005.

Vol. 3815: E.A. Fox, E.J. Neuhold, P. Premsmit, V. Wu-
wongse (Eds.), Digital Libraries: Implementing Strategies
and Sharing Experiences. XVII, 529 pages. 2005.

Vol. 3814: M. Maybury, O. Stock, W. Wahlster (Eds.), In-
telligent Technologies for Interactive Entertainment. XV,
342 pages. 2005. (Sublibrary LNAI).

Vol. 3813: R. Molva, G. Tsudik, D. Westhoff (Eds.), Se-
curity and Privacy in Ad-hoc and Sensor Networks. VIII,
219 pages. 2005.

Vol. 3812: C. Bussler, A. Haller (Eds.), Business Process
Management Workshops. XIII, 520 pages. 2006.

Vol. 3811: C. Bussler, M.-C. Shan (Eds.), Technologies
for E-Services. VIII, 127 pages. 2006.

Vol. 3810: Y.G. Desmedt, H. Wang, Y. Mu, Y. Li (Eds.),
Cryptology and Network Security. XI, 349 pages. 2005.

Vol. 3809: S. Zhang, R. Jarvis (Eds.), AI 2005: Advances
in Artificial Intelligence. XX VII, 1344 pages. 2005. (Sub-
library LNAI).

Vol. 3808: C. Bento, A. Cardoso, G. Dias (Eds.), Progress
in Artificial Intelligence. XVIII, 704 pages. 2005. (Subli-
brary LNAI).

Vol. 3807: M. Dean, Y. Guo, W. Jun, R. Kaschek, S. Kr-
ishnaswamy, Z. Pan, Q.Z. Sheng (Eds.), Web Information
Systems Engineering — WISE 2005 Workshops. XV, 275
pages. 2005.

Vol. 3806: A.H. H. Ngu, M. Kitsuregawa, E.J. Neuhold,
J.-Y. Chung, Q.Z. Sheng (Eds.), Web Information Systems
Engineering — WISE 2005. XXI, 771 pages. 2005.

Vol. 3805: G. Subsol (Ed.), Virtual Storytelling. XII, 289
pages. 2005.

Vol. 3804: G. Bebis, R. Boyle, D. Koracin, B. Parvin
(Eds.), Advances in Visual Computing. XX, 755 pages.
2005.

Vol. 3803: S. Jajodia, C. Mazumdar (Eds.), Information
Systems Security. XI, 342 pages. 2005.

Farw?

Table of Contents

Assessing Aspect Modularizations Using Design Structure Matrix and

Net Option Value
Cristina Videira Lopes, Sushil Krishna Bajracharya 1

Modularizing Design Patterns with Aspects: A Quantitative Study
Alessandro Garcia, Cldudio Sant’Anna, Eduardo Figueiredo,
Uird Kulesza, Carlos Lucena, Arndt von Staa 36

Directives for Composing Aspect-Oriented Design Class Models
Y.R. Reddy, S. Ghosh, R.B. France, G. Straw, J.M. Bieman,
N. McEachen, E. Song, G. Georgccuouiuiiinineninnan. 75

Aspect Categories and Classes of Temporal Properties
Shmuel Katz 106

An Overview of CaesarJ
Ivica Aracic, Vaidas Gasiunas, Mira Mezini, Klaus Ostermann 135

An Expressive Aspect Language for System Applications with Arachne
Rémi Douence, Thomas Fritz, Nicolas Loriant, Jean-Marc Menaud,
Marc Ségura-Devillechaise, Mario Studholt 174

Towards a Catalogue of Refactorings and Code Smells for Aspect]
Miguel P. Monteiro, JoGo M. Fernandes 214

Design and Implementation of an Aspect Instantiation Mechanism
Kouhetr Sakurai, Hidehiko Masuhara, Naoyasu Ubayashi,
Saeko Matuura, Setichi Komiyaco.uiuiniuinannnn... 259

abc: An Extensible AspectJ Compiler
Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren,
Sascha Kuzins, Jennifer Lhotdk, Ondiej Lhotik, Oege de Moor,
Damien Sereni, Ganesh Sittampalam, Julian Tibble 293

Author Index 335

Assessing Aspect Modularizations Using
Design Structure Matrix and Net Option Value*

Cristina Videira Lopes and Sushil Krishna Bajracharya

Department of Informatics,
Donald Bren School of Information and Computer Sciences,
University of California, Irvine
{lopes, sbajrach}@ics.uci.edu

Abstract. The design structure matrix (DSM) methodology and the
net option value (NOV) model have been used before to show how as-
pects can add value to a design. Following an in-depth analysis of that
study, this paper demonstrates how aspects can be beneficial as well as
detrimental. The structural transformations involved in aspect modu-
larizations are carefully analyzed in the context of DSMs. This analysis
exposes the unique reversion effect on dependencies that aspect modules
are known for. To capture that effect within the NOV model, we extend
its original set of six modular operators with an additional reversion
operator. Using a design case study, its NOV worksheet and NOV ex-
periments’ curves are presented to show a simulation of the evolutionary
patterns of modules, including aspect modules. These patterns show how
subtle dependencies, or the lack of them, bring down, or up, the value
of an existing design. Based on the observations made in this case study,
preliminary design guidelines for aspects are formulated.

Keywords: Aspect-oriented programming and design, modularity,
design space matrix, net option value.

1 Introduction

Software design is a complicated process that tries to balance several factors,
some of them contradictory. Bad design decisions can have disastrous conse-
quences. Therefore, whenever new design concepts are proposed, they must be
carefully assessed, so that their scopes of appropriate applicability can be iden-
tified. Such is the case with aspect-oriented design. To do that, one needs to use
appropriate assessment methods. Conventional techniques for evaluating soft-
ware design are based on metrics, quality attributes and heuristics [14, 17, 35].
While they can be useful for a posteriori analyses, they are not thought of for
assessing the design options at certain decision points. But in the case of aspects,
one needs to be able to assess when an aspect modularization is more beneficial
than its nonaspectual alternatives.

* This work has been supported in part by the National Science Foundation’s grant
no. CCF-0347902.

A. Rashid and M. Aksit (Eds.): Transactions on AOSD I, LNCS 3880, pp. 1-35, 2006.
© Springer-Verlag Berlin Heidelberg 2006

2 C.V. Lopes and S.K. Bajracharya

This paper presents a case study where several object-oriented and aspect-
oriented design variants for a software application are compared and analyzed
in depth using a new methodology. This methodology uses the design structure
matrix (DSM) as a design representation and net option value (NOV) as an ana-
lytical model. The paper explores this new methodology for assessing design op-
tions, and at the same time, it demonstrates how aspect-oriented modularization
can cause beneficial as well as detrimental effects in an existing object-oriented
design.

DSM, also known as design space matrix or dependency structure matrix, is
an analysis and design tool used in various engineering disciplines (1,15, 38,40].
In its simplest form, a DSM is an adjacency matrix representation of the de-
pendencies between design elements. The idea of using DSMs to model complex
systems was first introduced by Steward [40]. DSMs are widely used in system
design, independent of NOV. Various analysis techniques, metrics and tools have
been developed that are based on DSMs. MacCormack et al. present an empir-
ical study that compares the structure of large-scale complex software (Linux
and Mozilla) using DSM-based metrics [28]. A commercial tool for analyzing
software architecture based on DSMs has been developed by Lattix [2]. These
related works demonstrate the applicability of DSMs in analyzing large software
systems.

NOV is a model for evaluating modular design structures based on the eco-
nomic theory of real options. Baldwin and Clark formulated NOV and first demon-
strated its usage in analyzing design options [13] in the computer hardware indus-
try. There are two fundamental components in Baldwin and Clark’s work: (a) a
general theory of modularity in design with six modular operators as sources of
design variation;! and (b) NOV as a mathematical model to quantify the value
of a modular design: the mathematical expressions for NOV tie together modular
dependencies, uncertainty and economic theory in a cohesive model.

Sullivan et al. first demonstrated how the methodology using DSMs and NOV
can be used in the analysis of software design [42]. Their work extends the DSM
structure by introducing environment parameters, and applies this extended
model to the design of KWIC (Keywords in Context), the program originally pre-
sented by Parnas [31]. Using NOV analysis they showed how information-hiding
design is superior to the protomodular one. Information hiding is achieved by
defining appropriate interfaces as design rules, which facilitate future changes in
the design by reducing intermodular dependencies.

DSMs and NOV have also been used in analyzing aspect-oriented modular-
ization [26]. This was the first work that looked into a new form of modu-
lar construct, Aspect [22], in addition to the conventional constructs for creat-
ing independent modules with representations for data structure, interface and
algorithm.

In the context of the prior work mentioned above, namely [26,42], the contri-
butions of this paper are as follows:

! The six modular operators are: (i) splitting, (ii) substitution, (iii) augmenting (aug-
mentation), (iv) exclusion, (v) inversion, and (vi) port(ing).

Assessing Aspect Modularizations Using DSM and NOV 3

— The paper provides examples that give insights on the correlation between
module dependencies and the benefits/disadvantages of aspects, using a re-
alistic case study.

— Based on the detailed analysis of the design evolution of the case study,
preliminary guidelines for aspect-oriented design are presented.

In addition, the work presented in this paper is one of the most detailed ap-
plications of NOV to software design to this date (late 2005). It explores the
applicability of NOV in evaluating software design options and exposes limita-
tions that need to be further resolved. In the context of NOV, a new modular
operator for aspects is defined that has been named reversion.

The paper is organized as follows. The software application used as the case
study is described in Sect. 2. Further detail on DSMs as applied to this paper
is given in Sect. 3. The process of exploring design variants for the case study is
detailed in Sect. 4. This starts with studying a third-party application to identify
the design parameters within it. These parameters are changed to obtain a design
for a new application which is further modified to obtain rest of the variants, the
last two being the results of aspect modularization (Sects. 4.3-4.7). Each of these
design changes is described in terms of one or more of the six modular operators
from the NOV model. A new modular operator called reversion is formulated in
Sect. 5 based on the structural changes that aspects bring in and the effect they
have on module dependencies. Section 6 summarizes the mathematical model of
NOV and details all the assumptions made about the NOV parameters for the
case study in this paper. Section 7 discusses the NOV analysis of the case study,
and, based on several observations, it formulates preliminary aspect-oriented
design guidelines. Section 8 describes the limitations of the analysis, the open
issues in using NOV to evaluate software design and further work we intend to
pursue. Section 9 concludes the paper.

2 Case Study

The case study used throughout the paper is a Web application that uses Web
services to meet most of its functional requirements. The application, WineryLo-
cator, uses Web services to locate wineries in California. This section describes
what the application is about and how is it structured.

A user can give a point of interest in California as a combination of street
address, city and zip code. The address need not be exactly accurate. Once
this information is given, the user is either presented with a list of matching
locations to his/her criteria or is forwarded to another page if the given address
uniquely maps to a valid location in California. Once the application gets a valid
starting point, the user then can select preferences for the wineries. Based on
the preferences and the starting point, the application generates a route for a
tour consisting of all the wineries that match the criteria. The result is a set of
stops in the route and a navigable map. From the result the user can also get
driving directions.

4 C.V. Lopes and S.K. Bajracharya

2.1 Functional Decomposition

With the functionality described above, the following types of services are needed:

Finding Accurate Locations (List). A service that takes an incomplete de-
scription of a location and returns exact/accurate locations that match the
description.

Getting List of Wineries. A service that returns a list of all the wineries
around the vicinity of the user’s starting point. The user must be able to filter
(her) his selection according to the different criteria (s)he wanted regarding
the wineries to be visited.

Getting Wineries Tour. Once an accurate starting point is obtained, we need
to get a set of wineries around that starting location. This further breaks
down as:

— Getting all the winery stops and information that form a tour

— Getting a map for the tour that constitutes the wineries

— Navigating the map that highlights the tour with appropriate marks and
supports basic operations like panning and zooming

Driving Directions. Given a route made up of locations, we need a set of
driving directions to visit all the destinations in the tour.

We use an existing application for MapPoint Web services [8] called Store-
Locator,? developed by SpatialPoint [9], as our starting design so that we can
make changes in it to get WineryLocator. StoreLocator is similar in many ways
to WineryLocator. Given a starting point of interest, StoreLocator displays sev-
eral matching locations. Once the user picks the starting location, it generates
a navigable map and a list of all coffee stores close to that starting location
within a radius specified by the user. The user then can click on each store to
get driving directions from the start location.

Hence, as far as the functionalities are concerned, only two changes need to be
made in StoreLocator to get WineryLocator: (i) replace the coffee store search
with winery search, and (ii) present the user with a tour including the start
location and all the wineries, unlike a list of directions from the start location
to a selected store in StoreLocator.

In order to locate points of interest, such as coffee stores or wineries, MapPoint
allows their service users to either use an already available datasource or upload
new geographic data as a custom datasource. To bring out more opportunities
for design changes, we substitute this functionality from MapPoint by our own
Web service WineryFind, which provides a list of wineries around a vicinity of an
exact start location. WineryFind also allows the users to set their search criteria
by giving different preferences related to wines and wineries.

Table 1 shows the mapping of core application functionalities to the available
Web services. The implementation was done in Java, using Apache AXIS [7] as
well as the SOAP [43] toolkit to access the Web services.

% Available online at http://demo.mappoint.net.

Assessing Aspect Modularizations Using DSM and NOV 5

Table 1. Mapping tasks to services

[Task [Services [Providers [Method Signatures *

Finding set of exact|FindService |MapPoint [FindResults findAddress
locations (FindAddressSpecification)
Getting wineries|WineryFind |Local ser-|Destination[]

matching criteria vice we de-|getLocationsByScore

veloped |(WinerySearchOption)
Generating route|RouteService [MapPoint [Route calculateSimpleRoute

from the tour given (Array0OfLatLong, String
set of destinations /*dataSourceNamex*/,
SegmentPreference)
Getting a map|RenderService MapPoint [ArrayOfMapImage
representing a getMap (MapSpecification)

route/tour. Also,
navigating the map
Getting driving di-|RouteService |MapPoint [can be obtained from a Route object

rections

* Showing only the most relevant methods in format - return_type
Web_service_function_name (input_parameter_type). The types shown in the
list represent the classes in Java that map to the types defined in the MapPoint object
model. These classes were autogenerated by the tool WSDL2Java, which is a part of
the Apache AXIS toolkit [7].

2.2 Subsidiary Functions

Besides the main functionalities that WineryLocator offers to its end users, we
consider two subsidiary functions the application needs to provide. These sub-
sidiary functions, which are not directly visible to the users, are as follows: (1)
Authentication: Before using any of the MapPoint services the application needs
to provide a valid credential (username and password) to it. This credential does
not come from an end user, but is managed by the application service provider.
MapPoint uses the HttpDigest authentication mechanism for this. (2) Logging:
A logging feature is introduced in the system as a nonfunctional (subsidiary)
requirement to trace all the calls made to the Web services. Such a feature is
useful in many scenarios that require maintaining statistics about the access to
the Web services within the application. This feature can simply be implemented
by tracing every call to a Web service in the system.

3 Representing Design Structures with DSM

Figure 1 depicts the design of StoreLocator in a DSM. Before presenting the de-
sign evolution from StoreLocator to WineryLocator in DSMs, we first describe
some fundamental design concepts presented by Baldwin and Clark in [13], fo-
cusing primarily on software.

6

3.1

C.V. Lopes and S.K. Bajracharya

1J2]3]a]s5]e6]7][8]9]10]11
< service > MapPoint 1 1" =l ! !
a |<API>Apache AXiS 2 | e ! !
4| <API> Serviet 3 ‘ ! !
G e rum it I I
HttpSessionBindingListener |4 | - SR S |
<DR> | MapPoint Design Rules 5§ | X X . 2]
4 | storeLocator 6 i G
¥ _| HttpSessionStoreLocator 7] X XX X
A < jsp > locate 8 | X 1 X X2 X
o | <ijsp > display 9 | X 1 X XXX
5 < jsp > directions 10 X X | x| x 4
< DD > web.xml 11X X X [X

Fig. 1. DSM for StoreLocator

Elements of Modular Design in Software

In this paper, interpretation of the terms like modularity, architecture and hier-
archy remains the same and as generic as that originally presented by Baldwin
and Clark [13]. Almost all of the constituents of design that make up their the-
ory can be seen in the designs for StoreLocator and WineryLocator. We briefly
summarize the definitions of the core elements from [13], as they are seen in the
examples presented in this paper. All the definitions and vocabulary borrowed
from [13] are shown in italics below.

1

Design: Design is defined as an abstract description of the functionality and
structure of an artifact. Representations such as software architectures [33,
39] design models in UML or source code fit this definition.

Hierarchies: The notion of hierarchy concurs with the one defined by Par-
nas [32]. A module A is dependent on module B if A needs to know about
B to achieve its function, i.e., if B is visible to A.

. Medium for expressing design: A designer expresses the basic structure and

configuration of design elements with a medium (s)he chooses to work with.
Examples are Architecture Description Languages (ADLs) for software archi-
tecture [30], UML for object-oriented modeling and Java for program design
(code). Media are among the highest parameters in the design hierarchy.
Design parameters—the elements of design: Parameters are the attributes
of the artifact that govern the variation in design. Choosing new values for
parameters gives new design options. Java is used as the primary medium to
express all the design variants presented in this paper, so the basic structural
constructs like classes, objects, attributes, methods and packages all could be
seen as the design parameters. In the examples, we remain at the granularity
of classes and interfaces.

Module: Structural elements that are strongly connected are grouped to-
gether as a module. Modules adhere to these three fundamental character-
istics [13]:

