-

CONVERSION
OF
COMPUTER SOFTWARE

John R.Wolberg

Technion-Israel Institute of Technology

Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632

v

Library of Congress Cataloging in Publication Data

Wolberg, John R.
Conversion of computer software.

Includes index.

1. Software compatibility. 1. Title.
QA76.6. W63 001.64'25 82-~-5253
ISBN 0-13-172148-8 AACR2

Editorial/production supervision and interior design
by Anne Simpson
Manufacturing buyer: Gordon Osbourne

©® 1983 by Prentice-Hall, Inc., Englewood Cliffs, N.J. 07632

All rights reserved. No part of this book
may be reproduced in any form or

by any means without permission in writing
from the publisher.

Printed in the United States of America

10 9 87 6 5 4 3 2 1

ISBN 0-13-172L48-8

Prentice-Hall International, Inc., London
Prentice-Hall of Australia Pty. Limited, Sydney
Editora Prentice-Hall do Brazil, Ltda., Rio de Janeiro
Prentice-Hall Canada Inc., Toronto

Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Prentice-Hall of Southeast Asia Pte. Litd., Singapore
Whitehall Books Limited, Wellington, New Zealand

To the men of Plugah Zayin.

oo £935 how mew) T oy 1 i Ky
s vap g 5 ol IS Ao nipsd

L(6 RY nwria)

Preface

The conversion of computer software is a task which most com-
puter industry professionals approach with a mixture of fear and
distaste. The decision to convert is usually the alternative of last resort,
taken only when all other alternatives have been rejected. Managers
hesitate to authorize conversions for fear of massive cost overruns and/
or failure to meet schedules and performance objectives. Analysts and
programmers usually approach conversion work with a clear lack of
enthusiasm, as the work is often boring and repetitive and sometimes
maddening.

Nevertheless, the need to convert software grows from year to
year. The U.S. General Accounting Office issued a report in September
1977 stating that the federal government was spending more than $450
million to convert programs. Estimates of the worldwide annual cost of
conversion is several billion dollars. Some surveys have estimated that
the cost of conversion may run as high as 10% of the computing budget.

The purpose of this book is to give the reader an insight into the
fundamental concepts of software conversion. The subject is considered
from several different points of view:

1. The manager faced with a decision to convert or not to convert

2. The project manager faced with the task of organizing and man-
aging a conversion project

3. The analyst and programmer involved in the details of conversion

4. The analyst and programmer assigned the task of developing con-
version aids and tools

xi

xii Preface

Not all subjects are of equal interest to all readers. For this reason
the book has been organized so that the various chapters can be read
independently. Each chapter includes an introduction and a summary
to help the reader decide if the material in the chapter is relevant to his
or her needs.

The first three chapters consider the subject from a broad point of
view. The conversion process is considered in general terms in Chapter
1. Chapter 2 is devoted to the economics of conversion. Although the
cost per line of a conversion varies considerably from case to case, there
are a number of general rules that are applicable for all conversions. The
management of a conversion project is discussed in Chapter 3. It should
be emphasized that many of the well-known concepts regarding the
management of software development projects are not completely
applicable to conversion projects.

Chapter 4 considers the subject of program enhancements. Port-
ability, performance, and maintainability are discussed in this chapter.
The importance of this subject is often overlooked. When the primary
objective of a conversion project is to move software from one system
to another, a secondary objective can be to improve the software.

The next two chapters are devoted to technical solutions and
strategies for conversion. Chapter 5 considers conversion software.
Chapter 6 discusses conversion algorithms. The subject of conversion
algorithms is really the technical cornerstone of a conversion project.
Decisions related to the mapping of programs from one dialect or
language to another have a profound influence on the performance of
the resulting software.

The final chapter (Chapter 7) presents elements required in a
language used for automatic converter development. The CONVERT
language is used to illustrate the concepts developed in this chapter.

Throughout the book an attempt is made to use examples from
real conversion projects. Examples have been taken from a variety of
languages, including COBOL, FORTRAN, PL/1, BASIC, RPG, and
Assembler languages. Other examples are related to data conversion
and conversion of job control language programs.

Acknowledgements

I have been involved with software conversions since 1975. During
this period my experiences with a number of people helped me for-
mulate the opinions and concepts expressed throughout the book.
Although I take full responsibility for the contents, I would like to
acknowledge the roles played by some of these individuals.

My introduction to conversions resulted from a project initiated
by Marshall Rafal of O.L.I. Systems and Kate Kalin of NCSS. We are
still working together on a number of interesting projects. I spent several
years involved in a variety of conversion projects with Ehud Huberman
and Avi Peled, formerly of Shahat Ltd. They both contributed to my
understanding of the conversion business.

My work with Alex Hill and Alan Reiter of Reiter Software
Systems gave me insight into a number of topics related to the world
of software. Through my contacts with Jeff Fenton, formerly of BSO
Minisystems, and Bram de Hond of ARA Automation, I have had the
opportunity to learn about the conversion marketplace in Europe. 1
would like to thank Jaap van der Korst of Philips for making it possible
for me to spend several weeks at Plan Q seeing how a really big conver-
sion project is managed.

I would like to acknowledge the useful material and insights I
received from Nahum Rand of Rand Information Systems and Bob
Dinkel of Dataware. Reference is made to this material in the book.

I have worked with a number of people developing conversion
software and have learned from their experiences. In particular I would

xiii

xiv Acknowledgements

like to acknowledge Eric Hulsbosch, Barbara Lasky, Bernie Roizen, and
Adam Rosenzweig.

Some of the material in this book is the result of my own research
in the area of software conversions. I would like to thank the Samual
Neeman Institute for Advanced Research in Science and Technology
for their support of this effort.

The typing of the manuscript was performed by Miriam Beatson,
Marion Gold, and Sheila Herskovits. I would like to acknowledge their
help and offer my thanks.

I would also like to thank the Technion for all the help I have
received throughout the period that I have been involved in this work.
A number of my fellow Technion staff members have read sections of
the book and have offered useful suggestions.

Finally, thanks to my family for their patience and understanding
throughout the duration of this project.

John Wolberg
Haifa, Israel

Contents

PREFACE

ACKNOWLEDGEMENTS

CHAPTER 1 THE CONVERSION PROCESS

1.1
1.2
1.3
1.4
1.5

Introduction 1

Software Portability 6

The Development of Programming Languages
Program Conversions 19

Complete System Conversions 29

CHAPTER 2 CONVERSION ECONOMICS

2.1
2.2
2.3

24

2.5
2.6

2.7
2.8

Introduction 39

Conversion Estimation Equations 40
Reprogramming and Redesign Estimation
Equations 42

Comparing Conversion, Redesign, and
Reprogramming 45

Optimizing a Conversion Project 47
A Mathematical Model for Conversion
Optimization 52

Conversion Cost per Line 56
Summary 58

xi

xiii

11

39

vii

viii

CHAPTER 3 MANAGEMENT OF A CONVERSION
PROJECT
3.1 Introduction 60
3.2 An Overview of Conversion Management 61
3.3 Preconversion Tasks 66
3.4 Management Alternatives 68
3.5 Conversion Planning 71
3.6 Estimation Techniques 75
3.7 Managing a Very Large Conversion: Plan Q
3.8 Summary 86

CHAPTER 4 PROGRAM ENHANCEMENTS: PORTABILITY,
PERFORMANCE, AND MAINTAINABILITY

4.1 Introduction 88

4.2 Enhancing Portability 89

4.3 Enhancing Performance 105
4.4 Enhancing Maintainability 133
4.5 Summary 146

CHAPTER 5 CONVERSION SOFTWARE

5.1 Introduction 149

5.2 Program Standardizers 151

5.3 Documentation Tools 157

5.4 Automatic Converters 161

5.5 Data Generators 169

5.6 Data Converters 171

5.7 Test Validation Software 172
5.8 Project Management Tools 173
5.9 Summary 174

CHAPTER 6 CONVERSION ALGORITHMS

6.1 Introduction 176

6.2 Defining Patterns 178

6.3 Some Simple Examples 185

6.4 Blank Removal 188

6.5 Identifier Names 193

6.6 Missing Features 197

6.7 Comparison of Character Type Items 201
6.8 Data Files and Access Methods 205

6.9 Summary 208

78

Contents

60

88

149

176

Contents

CHAPTER 7 A CONVERSION LANGUAGE

7.1 Introduction 210

7.2 Language Architecture 212

7.3 Pattern Recognition and Searching

7.4 Controlling Logical Flow 216

7.5 EXCLUDE: A Pattern Recognition
Feature 220

7.6 Changing a Line 221

7.7 Usage of Tables 223

7.8 Symbolic Parameters 225

7.9 Other Features 227

7.10 A Complete Conversion Rule

7.11 Summary 231

INDEX

228

210

215

233

4

The Conversion Process

1.1 INTRODUCTION
1.1.1 Terminology

The need or desire to move software from one environment to
another is fundamental to computer usage. The move might be triggered
by a new hardware configuration, a new operating system, or language
and compiler changes. Three basic alternatives are usually considered
whenever a move is contemplated:

1. Emulation is a process whereby the new environment is made
to directly execute software that was written for the original
environment.

2. Conversion is a process in which changes are made in the software
so that the original system will execute properly in the new
environment.

3. Replacement of software is the most radical choice. Alfernative
software is either developed or obtained for the new environment.

If emulation is possible, no software changes are required. If the
conversion option is selected, the original software is used as the start-
ing point from which the new software is developed. Replacement of
software implies that the original software is discarded entirely. Re-
placement can be accomplished by the purchase or leasing of standard

1

2 The Conversion Process Chap 1

software or by a new development effort. We thus see that conversion
is the middle ground between emulation and replacement.

When a decision has been made to convert the original software or
develop new software, there are four basic strategies for completing the
task:

1. Translation refers to the primarily automatic conversion of
software.

2. Recoding refers to the manual conversion of software.

3. Reprogramming implies a software development effort which
may include some system redesign but no significant functional
redesign.

4. Redesign implies a software development effort which includes a
functional redesign of the system.

Translation and recoding utilize the original software as the pri-
mary specification for the new system. Reprogramming and redesign
yield software that bears very little resemblance to the original system.
Reprogramming is usually a cheaper process than redesign because the
old system does not have to be redesigned from a functional point of
view,

Regarding terminology, in this book the conversion of software
implies an important degree of translation and/or recoding. Some
modules in the system might be reprogrammed and might even be rede-
signed; however, the bulk of the effort will be based on the original
source code. Thus a distinction is made between systems that are con-
verted, reprogrammed, or redesigned. In Chapter 2 we will see that this
distinction has important economic implications.

1.1.2 Changes in the Computer Environment

The incentive for changing a particular computer environment is
usually a combination of the following:

Reduced cost
Improved performance
Increased reliability
Increased capacity

Ll

In some situations the need for change can be caused by a problem such
as discontinuation of support for a specific piece of hardware or soft-

Sec 1.1 Introduction 3

ware. Whatever the reason for change, there is a price associated with
this line of action. A decision to change the existing environment (by
either hardware or software modifications) must include an analysis of
the impact the change will have on the existing application software
systems.

For some situations the impact on the applications software will
be nonexistent. For example, aquisition of additional disk drives rarely
affects the existing software. Alternatively, some changes will have a
major impact on the software. For example, replacement of one com-
puter by another computer from a different manufacturer might require
a major conversion, reprogramming, or redesign effort.

In analyses of the desirability of change, it is standard practice to
list the benefits and costs associated with the new environment. The
decision is then based on answers to several questions:

1. Will the new environment answer present and projected needs?

2. Are the estimated benefits associated with the change commensu-
rate with the estimated costs in both hardware and software?

3. If a conversion, reprogramming, or redesign effort is required:

Are suitable personnel available on an in-house basis?

Can the project (or projects) be subcontracted?

What are the estimated durations for the proposed projects?

What computer resources will be required for completing the

projects?

e. What are the cost estimates for the proposed project (or
projects)?

po o

There is a degree of risk associated with undertaking major config-
uration changes. In particular, if the applications software is to be al-
tered, estimates of effort, computer resource requirements, and project
duration are subject to error. Gross underestimates of required resources
to complete the software changes can result in large cost overruns and
delays. Clearly, as the size of the software system increases, the risk
associated with cost overruns and delays increases.

Another risk associated with changes in configuration is connected
with the predicted performance of the applications software on the new
system. If the old software is compatible with the new environment, a
benchmark can be run to measure performance on the new system [1].
However, if a conversion, reprogramming, or redesign effort is required,
the predicted performance cannot be totally verified as a phase of the
feasibility study. Nevertheless, if the major demands on computer re-
sources can be identified in the original software, some intelligent

4 The Conversion Process Chap 1

benchmarking can be used to reduce the probability of unpleasant
surprises.

1.1.3 Methodology for Software Modification

Software can be modified by conversion or reprogramming. Some
aspects of the methodology for affecting these types of changes are
similar. If the software is to be completely redesigned, the methodology
is similar to the well-known techniques for developing new software.
Clearly, for both alternatives the methodologies are dependent on the
system size.

Reasonable procedures for modifying small systems are not reason-
able for large systems. For larger systems the degree of planning and
coordination must be increased. The task of gathering, cataloging, and
controlling the large volume of required material (e.g., programs, files,
listings, flowcharts, manuals, etc.) becomes increasingly difficult. Test-
ing procedures for large systems with many alternative paths through
the system are clearly more complicated than the procedures required
for smaller (and usually simpler) systems.

The actual modification process often complicates normal opera-
tions of a computer center. If the demand on computer resources is
significant (when compared to total available resources), scheduling
problems are encountered. For modification of large systems, the need
for intensive testing can often significantly increase the normal work
load. For critical software systems (i.e., systems that must remain in
operation throughout the entire transition period), some degree of
parallel operation must be anticipated as a part of the acceptance pro-
cedure. As a result of delays in software modification, the original
budgeted time for parallel operation might be inadequate. If one is
forced into the need to run two parallel computer installations for an
extended period, large cost overruns are inevitable.

Many of the problems associated with software modification are
the result of a lack of experience. Modifying existing software can be
different from developing new software. Before undertaking a major
software modification effort, it is extremely important to plan the
effort intelligently and to be sure that the available personnel are cap-
able of completing the modification successfully. A feasible alternative
is to contract the work to a company specializing in the conversion,
migration, or transformation of software. (The major companies provid-
ing software modification services often use different terms to describe
their services. Conversion, migration, and transformation are probably
the three most popular terms in use.)

1.1.4 Conversion versus Reprogramming

It has been noted that both conversion and reprogramming are

methods for modifying software. There are similarities associated with
these methods of migration (i.e., moving applications from one environ-
ment to another):

Both methods start with the same functional description of the
application.

From the user’s point of view, the software appears to be essen-
tially the same before and after the migration. Whether the migra-
tion has been accomplished by conversion or reprogramming is of
no interest to the end user.

For both methods, operating procedures associated with the appli-
cation remain essentially the same before and after the migration.

. For both methods, reports generated as part of the application

remain essentially the same before and after the migration.

. Since the software is only a black box (from the user’s point of

view) with defined system inputs and outputs, the testing proce-
dures for conversion and reprogramming can be essentially the
same.

Nevertheless, a basic difference exists between these two methods

of software modification. Conversion technology utilizes the original
software as the primary system documentation and starting point.
Reprogramming is based only on the original functional description of
the application, and the original software is essentially discarded.

The methodology for affecting a particular conversion can be

described to a great extent algorithmically (e.g., when we see X, then do
Y). Thus conversions can to a large degree be automated. Automation
has several important effects on the conversion process:

1.

3.

The effort per line tends to decrease with an increasing number of
lines. Since cost is usually proportional to effort, the cost per line
also tends to decrease with an increasing number of lines.
Automation allows most of the conversion effort to be performed
by lower-level personnel than are required for a reprogramming
effort.

The conversion process is usually faster than comparable repro-
gramming efforts.

6 The Conversion Process Chap 1

These differences lead to important cost advantages for conver-
sions as compared to reprogramming as the size of the original system
increases (see Section 2.4). The tendency is thus to convert rather than
reprogram large systems when this option is possible. For some situations
the conversion alternative is simply not feasible. For example, sensitive
real-time applications programmed in an Assembler language and utiliz-
ing specific hardware features of the original system are usually repro-
grammed if the move is to an entirely new environment. However, for
most applications written in higher-level languages, the conversion op-
tion should be seriously considered before initiating a reprogramming
effort.

1.2 SOFTWARE PORTABILITY

If software was truly portable, the need for conversions would be con-
siderably reduced. The term portable software refers to software that
can be moved from one computer environment to another with a mini-
mum effort. Fenton defines portable software as software that can be
moved after transformation using automatic converters [2]. The com-
puter industry has long recognized the value of portable software; how-
ever, how one goes about achieving this goal is a debatable issue. An
in-depth review of this subject is included in a book edited by Brown,
Software Portability [3].

1.2.1 The Portability of Computer Programs

The most important step toward achieving portability of programs
is to develop a standard language definition. The first attempt at lan-
guage standardization was made by the American Standards Association
[4]. Their X3.4.3 Committee was formed in 1962 to develop an Ameri-
can Standard FORTRAN and succeeded in issuing two standards in
1966 [5,6]. The first COBOL language standard was completed in
1968 [7].

COBOL is by far the most popular business-oriented programming
language, and FORTRAN is the most popular scientific- and engineering-
oriented language. Since both languages have been ‘‘standardized” for
many years, it is useful to consider the impact of their standardization
on language portability.

The standardization processes resulted in compromises between
what the users wanted in the languages and what the manufacturers

