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Preface

The conversion of computer software is a task which most com-
puter industry professionals approach with a mixture of fear and
distaste. The decision to convert is usually the alternative of last resort,
taken only when all other alternatives have been rejected. Managers
hesitate to authorize conversions for fear of massive cost overruns and/
or failure to meet schedules and performance objectives. Analysts and
programmers usually approach conversion work with a clear lack of
enthusiasm, as the work is often boring and repetitive and sometimes
maddening.

Nevertheless, the need to convert software grows from year to
year. The U.S. General Accounting Office issued a report in September
1977 stating that the federal government was spending more than $450
million to convert programs. Estimates of the worldwide annual cost of
conversion is several billion dollars. Some surveys have estimated that
the cost of conversion may run as high as 10% of the computing budget.

The purpose of this book is to give the reader an insight into the
fundamental concepts of software conversion. The subject is considered
from several different points of view:

1. The manager faced with a decision to convert or not to convert

2. The project manager faced with the task of organizing and man-
aging a conversion project

3. The analyst and programmer involved in the details of conversion

4. The analyst and programmer assigned the task of developing con-
version aids and tools

xi



xii Preface

Not all subjects are of equal interest to all readers. For this reason
the book has been organized so that the various chapters can be read
independently. Each chapter includes an introduction and a summary
to help the reader decide if the material in the chapter is relevant to his
or her needs.

The first three chapters consider the subject from a broad point of
view. The conversion process is considered in general terms in Chapter
1. Chapter 2 is devoted to the economics of conversion. Although the
cost per line of a conversion varies considerably from case to case, there
are a number of general rules that are applicable for all conversions. The
management of a conversion project is discussed in Chapter 3. It should
be emphasized that many of the well-known concepts regarding the
management of software development projects are not completely
applicable to conversion projects.

Chapter 4 considers the subject of program enhancements. Port-
ability, performance, and maintainability are discussed in this chapter.
The importance of this subject is often overlooked. When the primary
objective of a conversion project is to move software from one system
to another, a secondary objective can be to improve the software.

The next two chapters are devoted to technical solutions and
strategies for conversion. Chapter 5 considers conversion software.
Chapter 6 discusses conversion algorithms. The subject of conversion
algorithms is really the technical cornerstone of a conversion project.
Decisions related to the mapping of programs from one dialect or
language to another have a profound influence on the performance of
the resulting software.

The final chapter (Chapter 7) presents elements required in a
language used for automatic converter development. The CONVERT
language is used to illustrate the concepts developed in this chapter.

Throughout the book an attempt is made to use examples from
real conversion projects. Examples have been taken from a variety of
languages, including COBOL, FORTRAN, PL/1, BASIC, RPG, and
Assembler languages. Other examples are related to data conversion
and conversion of job control language programs.
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4

The Conversion Process

1.1 INTRODUCTION
1.1.1 Terminology

The need or desire to move software from one environment to
another is fundamental to computer usage. The move might be triggered
by a new hardware configuration, a new operating system, or language
and compiler changes. Three basic alternatives are usually considered
whenever a move is contemplated:

1. Emulation is a process whereby the new environment is made
to directly execute software that was written for the original
environment.

2. Conversion is a process in which changes are made in the software
so that the original system will execute properly in the new
environment.

3. Replacement of software is the most radical choice. Alfernative
software is either developed or obtained for the new environment.

If emulation is possible, no software changes are required. If the
conversion option is selected, the original software is used as the start-
ing point from which the new software is developed. Replacement of
software implies that the original software is discarded entirely. Re-
placement can be accomplished by the purchase or leasing of standard

1



2 The Conversion Process Chap 1

software or by a new development effort. We thus see that conversion
is the middle ground between emulation and replacement.

When a decision has been made to convert the original software or
develop new software, there are four basic strategies for completing the
task:

1. Translation refers to the primarily automatic conversion of
software.

2. Recoding refers to the manual conversion of software.

3. Reprogramming implies a software development effort which
may include some system redesign but no significant functional
redesign.

4. Redesign implies a software development effort which includes a
functional redesign of the system.

Translation and recoding utilize the original software as the pri-
mary specification for the new system. Reprogramming and redesign
yield software that bears very little resemblance to the original system.
Reprogramming is usually a cheaper process than redesign because the
old system does not have to be redesigned from a functional point of
view,

Regarding terminology, in this book the conversion of software
implies an important degree of translation and/or recoding. Some
modules in the system might be reprogrammed and might even be rede-
signed; however, the bulk of the effort will be based on the original
source code. Thus a distinction is made between systems that are con-
verted, reprogrammed, or redesigned. In Chapter 2 we will see that this
distinction has important economic implications.

1.1.2 Changes in the Computer Environment

The incentive for changing a particular computer environment is
usually a combination of the following:

Reduced cost
Improved performance
Increased reliability
Increased capacity

Ll

In some situations the need for change can be caused by a problem such
as discontinuation of support for a specific piece of hardware or soft-
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ware. Whatever the reason for change, there is a price associated with
this line of action. A decision to change the existing environment (by
either hardware or software modifications) must include an analysis of
the impact the change will have on the existing application software
systems.

For some situations the impact on the applications software will
be nonexistent. For example, aquisition of additional disk drives rarely
affects the existing software. Alternatively, some changes will have a
major impact on the software. For example, replacement of one com-
puter by another computer from a different manufacturer might require
a major conversion, reprogramming, or redesign effort.

In analyses of the desirability of change, it is standard practice to
list the benefits and costs associated with the new environment. The
decision is then based on answers to several questions:

1. Will the new environment answer present and projected needs?

2. Are the estimated benefits associated with the change commensu-
rate with the estimated costs in both hardware and software?

3. If a conversion, reprogramming, or redesign effort is required:

Are suitable personnel available on an in-house basis?

Can the project (or projects) be subcontracted?

What are the estimated durations for the proposed projects?

What computer resources will be required for completing the

projects?

e. What are the cost estimates for the proposed project (or
projects)?

po o

There is a degree of risk associated with undertaking major config-
uration changes. In particular, if the applications software is to be al-
tered, estimates of effort, computer resource requirements, and project
duration are subject to error. Gross underestimates of required resources
to complete the software changes can result in large cost overruns and
delays. Clearly, as the size of the software system increases, the risk
associated with cost overruns and delays increases.

Another risk associated with changes in configuration is connected
with the predicted performance of the applications software on the new
system. If the old software is compatible with the new environment, a
benchmark can be run to measure performance on the new system [1].
However, if a conversion, reprogramming, or redesign effort is required,
the predicted performance cannot be totally verified as a phase of the
feasibility study. Nevertheless, if the major demands on computer re-
sources can be identified in the original software, some intelligent
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benchmarking can be used to reduce the probability of unpleasant
surprises.

1.1.3 Methodology for Software Modification

Software can be modified by conversion or reprogramming. Some
aspects of the methodology for affecting these types of changes are
similar. If the software is to be completely redesigned, the methodology
is similar to the well-known techniques for developing new software.
Clearly, for both alternatives the methodologies are dependent on the
system size.

Reasonable procedures for modifying small systems are not reason-
able for large systems. For larger systems the degree of planning and
coordination must be increased. The task of gathering, cataloging, and
controlling the large volume of required material (e.g., programs, files,
listings, flowcharts, manuals, etc.) becomes increasingly difficult. Test-
ing procedures for large systems with many alternative paths through
the system are clearly more complicated than the procedures required
for smaller (and usually simpler) systems.

The actual modification process often complicates normal opera-
tions of a computer center. If the demand on computer resources is
significant (when compared to total available resources), scheduling
problems are encountered. For modification of large systems, the need
for intensive testing can often significantly increase the normal work
load. For critical software systems (i.e., systems that must remain in
operation throughout the entire transition period), some degree of
parallel operation must be anticipated as a part of the acceptance pro-
cedure. As a result of delays in software modification, the original
budgeted time for parallel operation might be inadequate. If one is
forced into the need to run two parallel computer installations for an
extended period, large cost overruns are inevitable.

Many of the problems associated with software modification are
the result of a lack of experience. Modifying existing software can be
different from developing new software. Before undertaking a major
software modification effort, it is extremely important to plan the
effort intelligently and to be sure that the available personnel are cap-
able of completing the modification successfully. A feasible alternative
is to contract the work to a company specializing in the conversion,
migration, or transformation of software. (The major companies provid-
ing software modification services often use different terms to describe
their services. Conversion, migration, and transformation are probably
the three most popular terms in use.)



1.1.4 Conversion versus Reprogramming

It has been noted that both conversion and reprogramming are

methods for modifying software. There are similarities associated with
these methods of migration (i.e., moving applications from one environ-
ment to another):

Both methods start with the same functional description of the
application.

From the user’s point of view, the software appears to be essen-
tially the same before and after the migration. Whether the migra-
tion has been accomplished by conversion or reprogramming is of
no interest to the end user.

For both methods, operating procedures associated with the appli-
cation remain essentially the same before and after the migration.

. For both methods, reports generated as part of the application

remain essentially the same before and after the migration.

. Since the software is only a black box (from the user’s point of

view) with defined system inputs and outputs, the testing proce-
dures for conversion and reprogramming can be essentially the
same.

Nevertheless, a basic difference exists between these two methods

of software modification. Conversion technology utilizes the original
software as the primary system documentation and starting point.
Reprogramming is based only on the original functional description of
the application, and the original software is essentially discarded.

The methodology for affecting a particular conversion can be

described to a great extent algorithmically (e.g., when we see X, then do
Y). Thus conversions can to a large degree be automated. Automation
has several important effects on the conversion process:

1.

3.

The effort per line tends to decrease with an increasing number of
lines. Since cost is usually proportional to effort, the cost per line
also tends to decrease with an increasing number of lines.
Automation allows most of the conversion effort to be performed
by lower-level personnel than are required for a reprogramming
effort.

The conversion process is usually faster than comparable repro-
gramming efforts.
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These differences lead to important cost advantages for conver-
sions as compared to reprogramming as the size of the original system
increases (see Section 2.4). The tendency is thus to convert rather than
reprogram large systems when this option is possible. For some situations
the conversion alternative is simply not feasible. For example, sensitive
real-time applications programmed in an Assembler language and utiliz-
ing specific hardware features of the original system are usually repro-
grammed if the move is to an entirely new environment. However, for
most applications written in higher-level languages, the conversion op-
tion should be seriously considered before initiating a reprogramming
effort.

1.2 SOFTWARE PORTABILITY

If software was truly portable, the need for conversions would be con-
siderably reduced. The term portable software refers to software that
can be moved from one computer environment to another with a mini-
mum effort. Fenton defines portable software as software that can be
moved after transformation using automatic converters [2]. The com-
puter industry has long recognized the value of portable software; how-
ever, how one goes about achieving this goal is a debatable issue. An
in-depth review of this subject is included in a book edited by Brown,
Software Portability [3].

1.2.1 The Portability of Computer Programs

The most important step toward achieving portability of programs
is to develop a standard language definition. The first attempt at lan-
guage standardization was made by the American Standards Association
[4]. Their X3.4.3 Committee was formed in 1962 to develop an Ameri-
can Standard FORTRAN and succeeded in issuing two standards in
1966 [5,6]. The first COBOL language standard was completed in
1968 [7].

COBOL is by far the most popular business-oriented programming
language, and FORTRAN is the most popular scientific- and engineering-
oriented language. Since both languages have been ‘‘standardized” for
many years, it is useful to consider the impact of their standardization
on language portability.

The standardization processes resulted in compromises between
what the users wanted in the languages and what the manufacturers



