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Vector definitions, identities, and theorems
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V'(1/r) = #/r*. This is the gradient calculated at (x', y’, z’), and 7 is the

vector r pointing from (x’, y', z°) to (x, y, 2).

16. V(1/r) = ~#/r*. This is the gradient calculated at (x, y, z) with the same
vector r.
17. of =} §.rx dl, where the surface of area o is planc The vector r extends

from an arbitrary origin to a point on the curve C that bounds .
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20.
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Theorems

1. The divergence theorem. [, A -dsf = j' V - A dv where o is the arca of
the closed surface that bounds the volume v.
2. Stokes’s theorem: $.A -dl = [ (VX A) -doA.



PREFACE

‘Like the previous editions, this book is intended primarily for students of physics
or electrical engineering at the junior and senior levels. The previous editions
have also proved useful for practicing scientists and engineers.

Our aim is to impart to the reader a working knowledge of the basic concepts
of electromagnetism. That is why it contains 135 examples and 423 problems. As
Alfred North Whitehead stated, over half a century ago, “Education is the
acquisition of the art of the utilization of knowledge.” -

This third edition is basically similar to the second, despite many changes.
First, we have included four chapters on electric circuits: Chapter 7 on RC
circuits, Chapter 8 on circuit theorems, Chapter 24 on inductance, and Chapter
25 on alternating-current circuits. We have included two chapters on optical
waveguides, Chapters 35 and 36. This subject ties in well with Chapter 31 on total
reflection and with Chapter 34 on hollow rectangular metallic waveguides.
Wherever possible, we have simplified the notation and provided simpler proofs.
Finally, we have subdivided the material into shorter chapters, 39 in all, versus 14
in the previous editions. This will make the book more palatable for readers,
more flexible for teachers, and more convenient as a reference.

Not all readers or teachers will wish to go through this book from cover to
cover. Asterisks indicate those chapters or sections that can be omitted without
losing continuity. They bear no relation to the relative importance of the topic.

The first two chapters on vectors and phasors offer a concise mathematical
introduction. There follows a series of 10 short chapters on electric fields,
including two on electric circuits Chapters 7 and 8.

The next five chapters on relativity can be omitted if necessary. They cover the
essentials of special relativity as applied to electromagnetic fields. They are
somewhat more thorough than the corresponding chapters of the second edition.

There follow 10 chapters on magnetic fields, including another two on electric
circuits, Chapters 24 and 25. By the end of Chapter 26, we have deduced,
discussed, and applied Maxwell’s equations extensively. Chapter 27 groups these
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equations and provides a general discussion. This is followed by five chapters on
the propagation of plane electromagnetic waves in various media and across
interfaces. Then there are four chapters on guided electromagnetic waves, two of
which concern planar optical waveguides. The final three chapters discuss the
radiation of electromagnetic waves.

As previously, the problems form an essential part of the book. Many are new.
Their function is not only to illustrate the basic principles but also to show a
variety of applications. For convenience, the problems are now classified by
section, approximately in order of increasing difficulty. They proceed in short
steps. This makes them more instructive and permits the reader, to accomplish
more. .

Teachers will find further, and easier, problems in the companion book
Electromagnetism: Principles and Applications by the first two authors and by the
same publisher.

I am particularly grateful to Frangois Lorrain, who revised most of the text and
who rewrote portions of it during the carly stages. Joseph Miskin ably revised the
final text and most of the problems.

Over the years I have worked on this book, not only -at the Umversnty of
Montréal, but also in several other universities in various countries. I am deeply
indebted to the following persons for their hospitalits Prof. Louis Néel of the
Université de Grenoble, France; Prof. Maxin.no Rodriguez-Vidal, of the
Universidad de Madrid, Spain; Prof.- E. W. J. Mitchell and Dr. F. N. H.
Robinson of the Clarendon Laboratory of Oxford University, Great Britain;
Prof. Gaston Pouliot of the Ecole Polytechnique, Montréal, Canada; Prof. John
Gruzleski of McGill University in Montréal; Prof Liu Qi Yi of Nankai University
in Tianjin and Prof. Zhang of Qing Hu. University in Beijing, People’s Republic
of China; and finally Profs. Robert Mu; iiu, Oliver Jensen, and David Crossley for
their hospitalicy at this time in the Geophysics Laboratory of McGill University.

I also owe special thanks to Allen D. Christensen for a Visiting Fellowship at
Saint Catherine’s College during my sabbatical leave at Oxford in 1981.

I owe thanks to the many people who wrote to me, offering comments and
suggestions, particularly to S. Baldursson and S. S. Kristjansdottir, University of
Iceland; N. Gauthier, Royal Military College at Kingston, Canada; R. H. Good,"
California State University at Hayward; R. D. Meyers, University of Maryland;
F. Murray, University of Scranton; H. A. Pohl, Okiahama State University; E.
H. Rhoderick, University of Manchester; J. R. Ridge, Moravian College; W. M.
Saslow, University of Pittsburgh; R. Sevenich, Wisconsin State University; M. S.
Tiersen, The City University of New York; and Harold A. Wheeler, Hazeltine
Corporation.

Dr. Barry Taylor, of the Natlonal Bureau of Standards, Gaithersburg, kindly
supplied a list of fundamental constants.

The Computing Science Department of McGill University made one of its
computers available for processing the entire text. Charles Snow, of that
department, was most helipful throughout this long operation.
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Finally, I wish to thank Clairc Samson, Ronald Hall, Marjoric Raynor, and
Michele Maschtall for keyboarding the text, for preparing sketches for the
figures, and for plotting curves.

! shall be most grateful to those readers lnnd enough to bring to my attentlon
any misprint or error that may remain, so that further pnntmgs can be corrested.

BTN

Paul Lorrain

wodhirfarirog et
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CHAPTER 1

VECTOR OPERATORS

11~ VECTOR ALGEBRA

1.1.1 INVARIANCE

.12 THE GRADIENT ¥f
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1.12 SUMMARY
PROBLEMS
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This introd{xctory chapter is meant to help those readers who are not yet

proficient in the use of vector operators.

We shall frequently refer to the fields of electric charges and currents.
For examp!e we shall consider the force between two electric charges to
arise from an interaction between either one of the charges and the field

of the other.



Fig. 1-1." A vector A and its three
component vectors A, £, A §, A,2
which, when they are placed end to
] end, are equivalent to A. The unit
x vectors £, y, Z point in the positive
: g directions of the coordinate axes
Z Az and are of unit magnitude.

Mathematically, a field is a function that describes a physical quantity -
at all points in space. In scalar fields this quantity is specified by a single
number for each point. Temperature, density, and electric potential are
examples of scalar quantities that can vary from one point to another in
space. In vector fields the physical quantity is a vector, specified by both a
number and a direction. Wind velocity and gravitational force are
examples of such vector fields. e

Vector quantities will be designated by boldface italic type, and unit
vectors will carry a circumflex: £, j, z.

Scalar quantities will be designated by lightface italic type.

We shall follow the usual custom of using right-hand Cartesian
coordinate systems as in Fig. 1-1: the positive z-direction is the direction
of advance of a right-hand screw rotated in the sense that turns the
positive x-axis into the positive y-axis through the 90° angle.

i

1.1 VECTOR ALGEBRA

Figure 1-1 shows a vector A and its three components A,, A,, A,. If we
define two vectors

A = Axf + AyyA + Azi: B = Bxi A B)’ﬁ + Bzi, . (1-1)

where £, §,% are the unit vectors along the x-, y-, and z-axes,
respectively, then

A+B=(A,+B)s + (A, +B,)j + (A, + B,)3, (1-2)
A-B= (Ax T Bx)'e -+ (Ay E By)y - (Az = Bl)ii (1'3)
A-B=A,B. +A,B,+A,B, = AB cos ¢, (1-4)



Fig. 1-2. Two vectors A and B and
the unit vector ¢, normal to the
plane containing A and B. The
positive directions for ¢ and ¢
follow the right-hand screw rule.
The vector product A X B is equal
to ABsin¢ ¢, and BXA =—-A X
B.

- sl SN 4 !
AXB=|A, A, A,|=ABsin¢c=C, (1-5)
B, -¢B, “B;
as in Fig. 1-2, where
A=(AZ+Al+AH"” (1-6)

is the magnitude of A, and similarly for B.

The quantity A - B, which is read “A dot B,” is the scalar, or dot
prdduct of A and B, while A X B, read ‘““A cross B,” is their vector, or
cross product.

1.1.1 Invariance

The quantities A, B, and ¢ are independent of the choice of coordinate
system. Such quantities are said to be invariant. A vector, say the
gravitational force on a brick, is invariant, but its components are not;
they depend on the coordinate sytem. .

Both the dot and cross products are functions of only A, B, and ¢ and
are thus also invariant.

The sum and the difference, A + B and A — B, are themselves vectors
and invariant.

1.2 THE GRADIENT Vf

A scalar point-function is a scalar quantity, swy temperature, that is a
function of the coordinates. Consider a scalar point-function f that is



