


DESIGN THEORY AND COMPUTER
SCIENCE

Processes and Methodology of Computer Systems Design

SUBRATA DASGUPTA

Computer Science Trust Fund Eminent Scholar & Director
Institute of Cognitive Science

University of Louisiana at Lafayette

I‘afﬁ

: Y h
The right of the
University of Cambridge
to print and sell
all manner of books
was granted by

« Henry VIII in 1534.
\\The University has printed
and published continuously
since 1584.

2 E2010000999

CAMBRIDGE UNIVERSITY PRESS
Cambridge
New York Port Chester Melbourne Sydney



CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sdo Paulo, Delhi

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521118156

© Cambridge University Press 1991

This publication is in copyright. Subject to statutory exception
and to the provisions of relevant collective licensing agreements,
no reproduction of any part may take place without the written
permission of Cambridge University Press.

First published 1991
This digitally printed version 2009

A catalogue record for this publication is available from the British Library

ISBN 978-0-521-39021-7 hardback
ISBN 978-0-521-11815-6 paperback



DESIGN THEORY AND COMPUTER SCIENCE



Cambridge Tracts in Theoretical
Computer Science

Managing Editor Professor C.J. van Rijsbergen, Department of Computing Science,
University of Glasgow

Editorial Board

S. Abramsky, Department of Computing Science, Imperial College of Science
and Technology

P.H. Aczel, Department of Computer Science, University of Manchester

J.W. de Bakker, Centrum voor Wiskunde en Informatica, Amsterdam

J.A. Goguen, Programming Research Group, University of Oxford

J.V. Tucker, Department of Mathematics and Computer Science, University
College of Swansea

Titles in the series

G. Chaitin Algorithmic Information Theory

L.C. Paulson Logic and Computation

M. Spivey Understanding Z

G. Revesz Lambda Calculus, Combinators and Logic Programming
A.Ramsay Formal Methods in Artificial Intelligence

S. Vickers Topology via Logic

J-Y. Girard, Y. Lafont & P. Taylor Proofs and Types

J. Clifford Formal Semantics & Pragmatics for Natural Language Processing
M. Winslett Updating Logical Databases

10. K. McEvoy & J.V. Tucker (eds) Theoretical Foundations of VLSI Design
11. T.H. Tse A Unifying Framework for Structured Systems and Development
Models

12. G. Brewka Nonmonotonic Reasoning

13. G. Smolka Logic Programming over Polymorphically Order-Sorted Types
15. S. Dasgupta Design Theory and Computer Science

17. J.C.M. Baeten (ed) Applications of Process Algebra

18. J.C.M. Baeten & W.P. Weijland Process Algebra

SCIO0p) OGN Te



To my mother

Protima Dasgupta



When we mean to build,
We first survey the plot, then draw the model;
And when we see the figure of the house,
Then we must rate the cost of the erection;
Which if we find outweighs ability,
What do we then but draw anew the model
In fewer offices or at last desist
To build at all?

Henry IV, Part 2, I, 1

Though this be madness, yet there is method in 't
Hamlet, 11, i1



Preface

In this book I intend to examine the logic and methodology of design from the
perspective of computer science. Computers provide the context in two ways. Firstly,
I shall be discussing the structure of design processes whereby computer systems are,
or can be, designed. Secondly, there is the question of the role that computers can
play in the design of artifacts in general — including other computer systems.

The aim of any systematic enquiry into a phenomenon is to uncover some intelligible
structure or pattern underlying the phenomenon. It is precisely such patterns that
we call theories. A theory that claims to explain must exhibit two vital properties.
It must be simpler — in some well defined sense — than the phenomenon it purports
to explain; and it must be consistent with whatever else we know or believe to be
true about the universe in which the phenomenon is observed.

The phenomenon of interest in this book is such that it cannot be adequately de-
scribed by a single sentence. That itself is an indicator of its inherent complexity —
and therefore of its intrinsic interest. It is, perhaps, best described in terms of the
following entities:

(a) Computer systems. I include in this term all nontrivial discrete computational
devices (e.g., algorithms, logic circuits, computer architectures, operating sys-
tems, user-interfaces, formal languages and computer programs). Computer sys-
tems are characterized by the fact that they are artifacts; that they may be
physical or abstract in form; and that, in general, they are complex entities.

(b) Design processes. These are characterized by the fact that they are cognitive
and intellectual in nature. Design as an activity is, thus, psycho-biological in
origin. It is a human activity.

(c) Computer-aided design (CAD) systems. These are also computer systems to
which are assigned some of the tasks encountered during design. CAD systems
are, thus, artifacts that either augment the cognitive/intellectual processes in
design or, more ambitiously, attempt to mimic these same processes.

xiii



Preface

The central topic of this book — the phenomenon of interest — is the relationship
among these entities. More specifically the question addressed here is the following:

Can we construct a theory of the design process — an explanatory model — that (a)
can serve to clarify and enhance our understanding of how computer systems are,
or can be, designed; and (b) consequently, provides a theoretical basis for building
methods and computer-aided tools for the design of such systems?

Let us label this question ‘Q’. There are at least two important issues that pertain

to Q.

Firstly, it has been observed by many that the cognitive/intellectual activity we
call design has a significant component that is domain-independent. Whether we
are designing buildings, organizations, chemical plants or computers there are some
principles or ‘laws’ that are common to all. Thus, quite independent of the specific
design domain, it makes sense to talk of general theories of design — that is general,
domain-independent explanatory models of the design process. The theoretical and
intellectual value of any theory that we may propose in response to Q will, to a
great extent, be determined by its generality — its domain-independence. A theory
of design that is applicable to computer architecture, software and VLSI circuits is
clearly preferable to one that is only applicable to VLSI circuits. A theory that is
applicable to both computer systems and buildings is clearly more valuable than one
that is only valid for buildings.

At the same time a theory of design is of heuristic value only when it provides advice
on how to design specific systems within a specific domain. A grand theory of design
is pointless if it is so general that no one knows how to relate it to specific problems.
Thus, our search for a design theory must attend to both the theoretical need for
generality and the practical quest for domain-specificity.

The second major issue relevant to Q is the debate on whether a theory of design is
to be descriptive or prescriptive. A descriptive theory is an explanation of a given
phenomenon as we observe it. All theories in the natural sciences are, of course,
descriptive. When we enter the realm of artifacts — the realm of what Herbert Simon
memorably termed the ‘Sciences of the Artificial’ - the issue becomes somewhat more
problematic. For, given that design is a cognitive/intellectual process, it is clear that
no design theory can afford to ignore or bypass the constraints imposed by human
nature and intellect. To this extent, a theory of design must in part be descriptive.
It must explain how design is conventionally carried out by humans.

xiv



Preface

In contrast, a prescriptive (or normative) theory is one that prescribes how something
should be. Design is concerned with the making of artifacts — that is, entities that
are in some well defined sense not natural; design is concerned with the purposive
effecting of change. Thus, it is clear that a theory of design must have the capability
of specifying how such change is best effected.

We can conclude that anyone embarking on constructing a theory of the design process
must navigate cautiously between the Scylla of description and the Charybdis of
prescription.

The urge to construct theories of design — to construct a logic of design — is neither
new nor specific to the computer system domain. In particular, architectural design
theory has a lineage that can at least be traced back to the Roman writer Vitruvius.
One of the most celebrated treatises on the principles of architecture was by the
15th century Renaissance writer Leoni Alberti. In our own times, many architectural
theorists and practitioners, including such pioneers such as Christopher Alexander
and Christopher Jones, have pondered and written on the methodology and logic of
their discipline, and I shall have occasion to refer to some of their ideas in this book.

In computer science! one of the earliest discussions of what we now call program
correctness (an important aspect of computer systems design) is a relatively little
known paper by Alan Turing published in 1949. Soon after, Maurice Wilkes’s inven-
tion (circa 1951) of microprogramming must surely count as an important event in
the methodology of computer design. In hardware logic design (or what is also called
‘gate level’ design) one of the debates of the late 1950s (as has been traced by Glen
Langdon (1974) in his historical study of the discipline) was on a methodological
issue. The so called ‘Eastern School’ favored the use of block diagrams in designing
logic circuits while the ‘Western School’ advocated the use of boolean algebra. This
is, in fact, a classic instance of the ever recurring debate between what might be
called the ‘naturalistic’ and ‘formalistic’ schools of design methodology.

In computer science, design methodology really came of age in the mid 1960s when
the problems of constructing and managing large scale software began to be openly
and widely discussed. Perhaps the most influential figure from these times is Edsgar
Dijkstra who in an important series of publications between 1965 and 1969 brought to
our attention the intrinsic complexities attending programming and who prescribed

! In this book, I shall use the term ‘computer science’ to encompass all disciplines pertaining to
computers and computing — including algorithms, languages, computer architecture, software, arti-
ficial intelligence, computer-aided design, VLSI design, etc. Similarly the term ‘computer scientist’
will refer to practitioners of any of these disciplines. I shall thereby avoid the tiresome distinction
sometimes made between ‘computer science’ and ‘computer engineering’.

Xv



Preface

techniques that were to crystallize into the, now well established, principles of struc-
tured programming. In this same period Robert Floyd and Tony Hoare published
papers as a result of which the idea of programs as formally provable theorems in an
axiomatized system was born. Contemporaneously, Herbert Simons’s highly influen-
tial book The Sciences of the Artificial appeared in which the author presented the
outline of what he termed a ‘science of design’.

Since that very fruitful period the design process has become a subject of interest in all
those areas of computer science where one has to come to terms with the problems of
large scale complexity. These areas range from such relatively ‘soft’ areas as computer
architecture and the design of human—computer interfaces to the relatively ‘hard’
domains such as microprogramming and VLSI circuit design. Finally, interest in
design theory amongst computer scientists and amongst engineers and architects has
been further sharpened by two computer related advances: computer-aided design
and applied artificial intelligence.

If one examines the literature on design theory — both inside computer science and
outside it — one encounters a small number of recurrent and closely intertwined
themes. Is design art or science? Can we construct a genuine logic of design? Should
we try to formalize the design process? What is the relationship between design
and mathematics? What is the connection between design and science? Are designs
computable? What is the nature of design knowledge?

These themes form, so to speak, the very stuff of this book. By addressing these and
other questions I hope to draw the reader’s attention to the enormously complicated
phenomena surrounding the design act and their implications for design methodology
and design automation. At the same time by attempting to respond to these issues
within the framework of a systematic and coherent set of ideas I hope to shed some
further light on the structure of design processes. This, as previously noted, is the
primary aim of any theory of design.

This book consists of three parts. In Part I the fundamental characteristics of the
design process are identified, discussed and analyzed. In the context of the descrip-
tion/prescription duality, Part I is descriptive in spirit and intent. I shall examine
design as an activity that is ‘out there’ in the ‘real’ world — an activity that can be
empirically studied and analyzed just as one studies any other empirical phenomenon.
In the course of this discussion examples and illustrations will be drawn from various
types of computer systems, notably computer architectures, operating systems, logic
and VLSI circuits and user-interfaces. However, since many of the ideas discussed
in Part I also apply to other ‘Sciences of the Artificial’ — specially engineering and

xvi



Preface

architecture — I shall also have occasion to refer to the work of design theorists in
these other disciplines.

Part II is wholly prescriptive in spirit and intent. It is concerned with design
paradigms — that is, specific philosophies of, or approaches to, design (with or without
the assistance of computers). Obviously, any prescription that one may make about
what the design process should be — that is, any design paradigm that one may invent}
— is severely constrained by what is possible. Thus, the characteristics discussed in
Part I establish the framework within which the various paradigms appearing in Part
IT are analyzed, criticized or recommended.

To this writer, the most interesting question in design theory is the relationship
between design and those two great intellectual enterprises, mathematics and science.
A substantial portion of Part II is devoted to design paradigms that are explicitly
or implicitly modeled on the relationship between design, mathematics and science.
However, if there is a single thesis that this book may claim to advocate, it is that
from the perspective of methodology, one may actually conduct design in a manner
that makes it indistinguishable from the activity we call science. Part III is concerned
entirely with arguments and evidence in support of this thesis and its consequences,
especially in the realm of computer-aided design.

Xvil



Acknowledgements

Quite apart from the hundreds of authors cited in the text, I owe a massive debt of
gratitude to many individuals and organizations who, in one way or another, have
influenced the final shape of this work. In particular, I thank the following:

e Tony Hoare (Oxford University), Werner Damm (University of Oldenberg, Ger-
many) and B. Chandrasekaran (Ohio State University) for their various and very
individualistic insights into the design process.

e Bimal Matilal (Oxford University) and James Fetzer (University of Minnesota)
— two philosophers — for discussions or correspondences regarding matters philo-
sophical.

e Karl Klingsheim (University of Trondheim and Elektroniklaboratoriet ved NTH,
Norway) — engineer turned design philosopher — who suffered my theorizing with
patience and good humour.

e Sukesh Patel, Ulises Aguero, Alan Hooton and Philip Wilsey — wonderful col-
laborators and former students.

e N.A. Ramakrishna — my research assistant without whose heroic help the manu-
script would never have been finished.

The book was conceived during a summer spent at the University of Oldenberg, Ger-
many in 1988. I am deeply grateful to the German Science Foundation for supporting
me with a Guest Professorship and to Werner Damm and members of his ‘group’ for
their intellectual, social and logistical support.

I thank the US National Science Foundation for their award of a grant for the period
1988-9 and the University of Southwestern Louisiana (USL) for a Summer faculty
award in 1989. As ever, I am grateful to USL and, in particular, the Center for
Advanced Computer Studies for the unusual, flexible and collegial atmosphere that
is so conducive to projects such as this.

I thank Keith van Rijsbergen (Glasgow University) — the editor of the series in which
this book is being published — and David Tranah (Cambridge University Press) for

X1X



Acknowledgements

their initial, warm support of this project. And, of course, my editor at Cambridge
University Press, Alan Harvey, for his continuing, friendly and patient help through-
out the production process.

I thank the following for granting me permission to use material from their publica-
tions:

e Harvard University Press, for the quote from C. Alexander, Notes on the Synthesis
of Form (1964), p. 1, appearing on page 3.

e John Wiley and Sons, for the excerpts from J.C. Jones, Design Methods: Seeds
of Human Future (1980), p. 64 appearing on page 145, and from Y.E. Kalay
(Ed), Computability of Design (1987), p. xi, appearing on page 2.

e Springer-Verlag, for adaptation of material from S. Alagic and M.A. Arbib, The
Design of Well-Structured and Correct Programs, pp. 124-7, appearing on pages
83-91.

e The Institute of Electrical and Electronic Engineers, for material from the pa-
pers: (a) ‘Domain Specific Automatic Programming’ by D.R. Barstow, I[EEE
Transactions on Software Engineering, Vol. SE-11, #11, Nov. 1985, pp. 1321-
36. (b) ‘Understanding and Automating Algorithm Design’ by E. Kant, IEEF
Transactions on Software Engineering, Vol. SE-11, #11, Nov. 1985, pp. 1361—
74. (c) ‘Automatic Data Path Synthesis’, by D.E. Thomas et al., Computer, Vol.
16, #12, Dec. 1983, pp. 59-70.

e Lissa Pollacia and Lisa Levy for excerpts from their project report ‘PDI Con-
straints’ (USL Center for Advanced Computer Studies, April 1988).

Finally, my thanks to my wife Sarmistha and sons Jaideep and Monish. As always,
they suffered the domestic consequences of this enterprise with phlegmatic forbear-
ance.



Contents

Preface

Acknowledgements

Part I The Architectonics of Design
1 The Inadequacy of Definitions

2 Design as the Initiation of Change
2.1 Demarcating engineering from science
2.2 The matter of values

3 The Nature of Design Problems
3.1 Empirical requirements
3.2 Conceptual requirements
3.3 The impreciseness of design problems
3.4 Bounded rationality and the incompleteness of design problems
3.5 Summary

4 The Form of Design Solutions
4.1 Designs as blueprints
4.2 Designs as user guides
4.3 Designs as media for criticism and change
4.4 Summary

5 The Evolutionary Structure of Design Processes
5.1 The satisficing nature of design decisions
5.2 The intractability of design optimization problems
5.3 Design as an evolutionary process
5.4 Empirical evidence of evolution in design
5.5 Ontogenic and phylogenic design evolution
5.6 Empirical evidence of evolution in phylogenic design

Part IT Design Paradigms

6 The Concept of a Design Paradigm
6.1 Introduction
6.2 Kuhnian paradigms

X

xiil

Xix

(=]

13
14
28
30
32
35

36
36
49
55
58

62
62
66
77
81
113
115

131
133

133
134



Contents

6.3 Defining the design paradigm concept 141
6.4 Design paradigms in computer science 142
7 The Analysis—Synthesis—Evaluation Paradigm 145
7.1 Characteristics 145
7.2 Some instances of ASE-based design methods 147
7.3 Inductivism as the logical foundation for ASE 158
7.4 Limitations of the ASE paradigm 160
7.5 Remarks on requirements engineering 169
7.6 The use of conceptual models 170
7.7 Summary 180
8 The Formal Design Paradigm 182
8.1 Designs as formal entities 182
8.2 The formal approach in programming 183
8.3 Hoare logic 184
8.4 The formal development of programs 193
8.5 The FD paradigm in computer architecture 200
8.6 The formal design of microprograms 210
8.7 The formal design of hardware structures 217
8.8 Limits to the universality of formal design 226
8.9 On the distinction between proofs of design correctness and
mathematical proofs 228
9 The Theory of Plausible Designs 233
9.1 Introduction 233
9.2 Constraints 234
9.3 The plausibility of a constraint 238
9.4 Plausibility states 239
9.5 The nature of evidence in TPD 240
9.6 Plausibility statements 241
9.7 The logic of plausibility states 244
9.8 The structure of plausibility-driven design 249
9.9 Justification constraints 252
9.10 Exercises in plausibility-driven design 253
9.11 Discussion, contrasts and comparisons 272
10 Design and Artificial Intelligence 27T
10.1 The automation of design 277
10.2 General structure of the AI design paradigm 278

X



Contents

10.3 Representing knowledge using production rules
10.4 Thought experiments in rule-based design

10.5 Weak methods revisited

10.6 Multiple goal resolution

10.7 The notion of style as a knowledge type

10.8 The TPD paradigm revisited

11 Algorithms for Design
11.1 Introduction
11.2 Compiling as an algorithmic style
11.3 Knowledge representation in the algorithmic paradigm
11.4 Algorithmic translation
11.5 Algorithmic transformation
11.6 The issue of ‘real’ optimization
11.7 Conclusions

Part III Design and Science

12 Design as Scientific Discovery
12.1 Introduction
12.2 A reference model of science
12.3 Two examples of scientific discoveries from physics
12.4 The DSD model
12.5 Two thought experiments
12.6 On the richness of designs-as-theories
12.7 Conclusions

References

Index

xi

280
285
298
307
310
322

324
324
324
331
335
342
349
350

351

353
353
354
360
365
371
375
379

381

000



