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PREFACE

This is the second volume of the two-volume book on constitutive equations for
engineering materials. Volume 1 deals with the development of stress-strain models
for metals, concrete, and soils based on the principles of elasticity and shows how
these models can be applied to engineering practice. This volume extends the
elasticity-based stress-strain models to the plastic range and develops plasticity-
based models for engineering applications. Here, as in Volume 1. it provides the
necessary foundations of the theory of plasticity for civil engineers, develops the
constitutive models for metals, concrete, and soils; shows the necessary numerical
procedures for computer solutions, and presents extensive finite element results for
typical problems in structural and geotechnical engineering applications.

The book is intended as a text as well as a reference book for self-study. It is
aimed squarely for civil engineers who do not specialize in this field; yet there is
a great demand on them to apply these mathematical models to obtain computer-
based solutions of their fast-changing engineering tasks. The two-volume book has
been planned to serve such a need. It has been planned as a textbook for the
student, as a tool for the practitioner, and as a reference book for the research
worker.

Here, as in writing Volume 1, we have endeavored to present the available
information on the plasticity and modeling of engineering materials in as
elementary a form as possible. For this reason, the book is divided into four parts:
Part [ on basic concepts in plasticity and Part 1T on meral plasticity and
implementation contain a reasonably comprehensive treatment of the classical
theory of plasticity and its application to metal structures. These two parts can be
reasonably covered in a three-hour one-semester course, because it is assumed that
the reader has had some contact with the basic stress analysis described in Part 1
on basic concepts in elasticity in Volume 1. The first five chapters in Parts [ and
II serve as a transition to the more complicated problems of Parts IIl and IV
involving concrete and soil materials.

Part LI is primarily concerned with concrete plasticiry, while Part 1V deals with
soil plasticity. Enough is now known about these topics so that a reasonably
complete state-of-the-art coverage can be given. such that the reader can tollow
without difficulty through most of the derivations and implementation. Only in a
few cases are some final results given without complete derivations. In these cases,
the necessary references to the papers and theses in which the derivations can be
found are always given. Thus. the amount of time devoted to Part Tl or 1V can be
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very flexible, depending upon the background and interest of the reader in which
various topics are considered. In the last four chapters, we have also included
additional references to relevant topics which were either omitted or only covered
very briefly.

As mentioned previously in Volume 1, much of the materials presented in the
book is of fairly recent origin and therefore not found in the standard reference
works of the field. In fact, much of the research on the constitutive modeling of
engineering materials conducted at Purdue University in the last 12 years provided
a background for the book and has been drawn on extensively from those
Technical Reports and Ph.D. theses, prepared under various phases of research
projects on this subject. Those sponsoring this work includes the National Science
Foundation, the Exxon Production Research Company, the Purdue Research
Foundation, the Federal Highway Administration, and the Defense Nuclear Agency.

In the preparation of this book the contents of many of my former Ph.D.
students’ theses were used to a large extent. These include: S.S. Hsieh (81), D.J.
Han (84), Y. Ohtani (87), E. Yamaguchi (87) and M. Aboussalah (89) in the area
of concrete plasticity, and A F. Saleeb (81), E. Mizuno (81), C.J. Chang (81), M.F.
Chang (81), W.0O. McCarron (85), and T.K. Huang (90) in the area of soil
plasticity. Their contributions to this work is gratefully acknowledged.

W.F. CHEN

Julv, 1993
West Lafayette, IN



NOTATION

Given below is a list of the principal symbols and notations used in the
book. All notations and symbols are defined in the text when they first appear.
Symbols which have more than one meaning are defined clearly when used to
avoid confusion, and usually the correct meaning will be obvious from the
context.

Stresses and Strains

0y, 0y, 0y Principal stresses
g Stress tensor
y Stress deviator tensor
o Normal stress
T Shear stress
Oy = 31, Octahedral normal stress

T =V3Jys  Octahedral shear stress
Mean normal (hydrostatic) stress

T, =V35J,  Mean shear stress

511855, Principal stress deviators
)L Eq. &y Principal strains
g, Strain tensor
i Strain deviator tensor
& Normal strain
Y Engineering shear strain
e, =1, Volunjetric strain
Eoe =31 Octahedral normal strain

Yoo =2y 1J5 Octahedral engineering shear strain
€, e,.€, Principal strain deviators

Invariants

{,=0,+0,+ 0;=0, =first invariant of stress tensor

J,= %s,jsu
=¢l(o, — 0, + (0, —0.) +(0. —0 )|+ 11 + 11+ 712
=second invariant of stress deviator tensor

Jy=1s,,5,,5,, = third invariant of stress deviator tensor
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33

cos 30 = S T
J;

I} =¢, +¢&, + &5 =¢, =first invariant of strain tensor

p =2J, =deviatoric length defined in Figure 5.12

where 6 is the angle of similarity defined in Figure 5.13

&= 713_—11 =hydrostatic length defined in Figure 5.12
J?: = %eij el_/

_ 2 2 2 2
=i(e, — ) (e, — ) H(e, —e,) ]+ el, tel, el
=second invariant of strain deviator tensor

Material Parameters

1 Uniaxial compressive cylinder strength ( f/>0)
A Uniaxial tensile strength
fie Equal biaxial compressive strength ( f; >0)
E Young's modulus
v Poisson’s ratio
K= _£ = Bulk modulus
3(1-2»)
G= m = Shear modulus
c, ¢ Cohesion and friction angle in Mohr—Coulomb criterion
a, k Constants in Drucker—Prager criterion
k Yield (failure) stress in pure shear
Miscellaneous
{1 Vector
[ ] Matrix
Cini Material stiffness tensor
D, Material comhpliance tensor
fC ) Failure criterion or yield function
X, y.zor
X, X5, X, Cartesian coordinates
0, Kronecker delta

W( g;) Strain energy density

(o) Complementary energy density

l.= cos(x;/, x,)=The cosines of the angles between x; and x, axes (see
Section 1.11)

Alternating tensor defined in Section 1.10
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1.1 INTRODUCTION
1.1.1 Plasticity and Modeling

The failure process or failure mechanism of metal plasticity has been well
identified as the slip or dislocation of crystals. As a result, the plastic deformation
is closely associated with shear deformation, no volume change occurs due to
plastic deformation, and plastic behaviors in tension and compression are almost
identical. All these characteristic behaviors are common to various metals, Historic-
ally, the plasticity theory has been developed in conjunction with these metal
behaviors. Thus, the stress—strain relationships of an elastic-plastic material to be
described in this chapter represent an idealization of the behavior of these metals.

The internal events taking place in other engineering materials such as concrete,
rock and soil are quite different from the microscopic event in metals. For
example, the nonlinear behavior of concrete materials is attributed to the
development of microcracks. The difference is manifest in the experimental facts
that their plastic behaviors involve volume change and that their tensile and
compressive behaviors are much different from each other. However, the typical
stress—strain curves of these materials under compressive loading exhibit similar
characteristics to those of a typical elastic-plastic material. With some modificat-
ions, therefore, the concept of the metal plasticity theory is still applicable to this
class of materials, and many plasticity-based constitutive models have been
proposed for these materials (Chen, 1982; Chen and Mizuno, 1990). A significant
advantage of applying the plasticity theory to these materials is that modeling
would be logical and concise without loss of mathematical rigorousness.

Microscopically, engineering materials are inhomogeneous, and not all elements
yield at the same time. The transition from elasticity to plasticity thus takes place
in an homogeneous fashion, and this is why we observe a smooth transition in an
overall stress—strain curve obtained in the experiments. However, macroscopically,
we may consider these materials homogeneous, whose element yields at the elastic
limit and deforms in the way an overall stress—strain response indicates. Most of
the plasticity-based constitutive models including those presented in this book have
been constructed based on this concept of homogeneous response,

1.1.2 Scope

Most of the characteristic behaviors of elastic-plastic materials can be seen in
uniaxial material behavior. Therefore, we begin with a discussion of uniaxial
behavior; we first describe the essential characteristics of uniaxial elastic-plastic
material behavior and against this background, we proceed to describe some
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material models for elastic-plastic behavior. To this end, this chapter provides the
fundamentals of the theory of plasticity, which could directly lead to general
formulations of the plasticity theory.

1.2 UNIAXIAL STRESS-STRAIN BEHAVIOR
1.2.1 Monotonic Loading

Figure 1.1(a) shows a typical stress—strain relationship of an elastic-plastic material
under uniaxial loading. Initially, up to a certain stress level G, at Point P, the strain
£ is proportional to the stress &, and the deformation is fully reversible. On further
straining beyond Point P, the relationship between stress and strain becomes
nonlinear. Point P is therefore called the proportional limit.

At Point Q, the material begins to accumulate permanent strain that will not
vanish even upon the complete removal of load. This permanent strain is called
plastic strain in contrast to elastic strain which is recoverable and completely
vanishes with the removal of load. Beyond Point Q, the deformation involves both
elastic and plastic strains; this process is called either elastic-plastic deformation,
plastic deformation or plastic flow. Point Q is therefore termed the elastic limit or
the yield point. The discrepancy between Points P and Q is ysually small and the
precise determination of the elastic limit is difficult. Therefore, although various
ways of defining the elastic limit have been proposed, the difference is often
neglected in particular applications and the proportional limit is generally regarded
also as the elastic limit in the construction of constitutive models. In metals, the
strain at the elastic limit usually lies between 0.1 and 0.2%.

Beyond the yield point, the slope of the stress—strain curve decreases steadily
and monotonically with the load and eventually becomes negative. The nonlinear
material behavior in the range with the positive slope (do/de > 0), i.e. before peak

o g
A 4

G~ ———

(a) (b)

FIGURE 1.1 Stress—strain behavior in monotonic loading. (¢) General material. (b) Elastic-perfectly
plastic material.
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load, is called hardening, whereas the behavior is called softening when the further
deformation requires a decrease in load. However, it is often observed in the
experiments that the softening behavior is associated with localized and non-
homogeneous deformation such as necking in metals. Thus, the softening branch
of the stress—strain curve does not always represent a true material response; since
it also includes the effect of structural geometrical changes. No considerations will
be given to this branch of the stress—strain curve in Part One of this book.

Some class of material such as structural steel possesses an important and unique
property called ductility. Its stress—strain curve may be represented in an idealized
form by two straight lines, as shown in Fig. 1.1(b): up to the yield point the
material is elastic; after the yield point has been reached, plastic flow occurs and
the strain can increase greatly without any further increase of the stress. This type
of behavior is called elastic-perfectly plastic and is important in engineering
practice. For example, plastic design in steel has been well developed based on this
material behavior and there has been a significant application of the method to
building frame design (ASCE-WRC, 1971).

In Part One of this book, we shall deal with both hardening and perfectly plastic
behaviors. Since perfectly plastic behavior may be considered as the limiting case
of hardening behavior, we shall focus our discussion mainly on the hardening
response and mention the perfectly plastic response only briefly.

1.2.2 Unloading and Reloading

The idealized unloading and reloading behavior of an elastic-plastic material is
shown in Fig. 1.2. If the load is reduced during an elastic-plastic process, the strain
decreases only elastically with the slope equal to that of the initial elastic response.
Even when the load is removed completely, there remains plastic strain €°, while
elastic strain €° vanishes. Subsequent reloading proceeds along the same linear
elastic relation as that in the unloading process up to Point R where unloading
started. Further deformation after Point R produces both elastic and plastic strains,

N SN .

FIGURE 1.2 Stress-strain behavior in unloading and reloading processes.
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and the stress—strain relationship traces the monotonic-loading path as if unloading
and reloading had never taken place. Point R thus serves as another yield point. For
clarity, the stress at Point R is called the subsequent vield stress while the stress
at Point P, ©,, is called the initial yield stress; Point P is the initial vyield point
whereas Point R is the subsequent yield point. Description here and Fig. 1.2 clearly
indicate that there is no one-to-one correspondence between stress and strain in a
plastically deformed solid. The same observations are made in elastic-perfectly
plastic materials. However, obviously for this class of materials, the initial yield
stress and the subsequent yield stress are both equal to o,

1.2.3 Reversed Loading

As far as monotonic loading is concerned, the initial loading direction makes little
difference in the behavior of metal; the behavior of metal in compression is almost
the same as that in tension. However, when a hardening type of metal is subjected
to loading in tension beyond the initial yield point, it behaves differently in the
subsequent reversed loading of compression.

Let the initial yield stresses in tension and compression be G, and O,
respectively. Thus, in its initial state, the material behaves elastically provided that
the stress © lies in the range between 6, and o,7. The absolute values of the two
yield stresses are the same for metals, although they are not necessarily so in other
engineering materials.

Consider now a loading program in which the stress is increased monotonically
from zero to the stress in the tensile plastic region, 6(= Gyy), and then decreased
into compression, as shown in Fig. 1.3. During unloading from Point T, linear
elastic behavior will persist until some stress O is reached, where plastic strain in
the opposite direction begins to occur. Point C is thus defined as the subsequent
yield point in compression. Subsequent tensile and compressive yield stresses, O
and O, are the upper and lower boundaries or limits of the subsequent elastic
range, respectively.

The subsequent yield stress in compression, G, will generally be different from
the initial value ©yc. In particular, 6. is numerically smaller than the initial
compressive yield stress Gye; i.e. |Ggo| > |O¢|. This lowering of the compres-
sive yield stress following a plastic preloading in tension is called the Bauschinger
effect.

By its very nature, plastic deformation is an anisotropic process. The Bausch-
inger effect is one particular type of directional anisotropy induced by plastic
straining, since an initial plastic deformation in one direction reduces the yield
stress in the opposite direction during a subsequent reversed loading. This
phenomenon has its counterpart in interaction and cross effects between yield
stresses in different directions in the case of multiaxial stress; prestraining into the
plastic region in any one direction will alter the yield stress values in all directions
under multiaxial stress. The Bauschinger effect is thus even more crucial in multi-
dimensional problems involving complex stress histories with significant changes
in loading directions, such as stress reversals and cyclic loading conditions.



