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* PREFACE

The primary purpose of this book is to develop the theory of systems of
partial differential equations and that of pfaffian systems so as to exhibit clearly
the relation between the two theories. The questions treated concern almost
exclusively the existence of solutions and methods of approximating them
rather than their properties, whose study seems to belong to the theory of
functions. . .

In writing the book' the author has been guided by a desire for generality
in results and conciseness in subject matter and proofs. As a consequence,
the postulational method seemed to force itself upon him. Roughly, the plan
has been to take a few existence theorems as postulates and construct the
theory upon them. A consistency proof is included by proving the postulates
in particular cases. The original plan included extensions of the consistency
proofs, but the pressure of other duties prevented carrying this out.

The ideas and nomenclature of modern algebra, as developed, for instance,
in van der Waerden’s admirable treatise, have been freely used. Some modifi-
cations of certain topics, essential for our purposes, have been included, but
no systematic development of the theory of commutative polynomial rings
has been made. On the other hand, the theory of a certain non-commutative
polynomisl ring, called here a Grassmann ring, is developed in detail from the
postulates in Chapter III, which together with Chapter IV develops ideas
introduced by Grassmann and brought to such a high degree of perfection by
Cartan. A combination of Cartan’s notation, the tensor calculus, and modern
algebraic concepts seems very effective. Incidentally, the results about de-
terminants and linear dependence, which are needed, can be proved directly
" from the postulates as readily as the manner of stating them in the literature
can be modified to fit the case in hand.

The treatment of the algebraic case is the author’s. Although it has close
connection through the highest common factor with Ritt’s excellent discussion,
which is based on the division algorithm, it differs radically in several respects
from that work because of a difference in purpose and- viewpoint. In the first
place, the basis of our method is algebra, rather than analysis. Secondly,
reducibility, which plays such a prominent réle in Ritt’s developments, is of
little importance in ours. With existence theorems as our chief objective, the
important thing for us is to eliminate multiple roots. = A polynomial’s having
two factors, for example, does not prevent the application of the implicit func-
tion theorem, if the factors are distinct, and making that theorem applicable
1is the chief purpose of the reduction process. Incidentally, it might be well
to point out that the term “reducible’” has slightly different meanings in the
two theories. The system 32, which Ritt classes as irreducible, is reducible in

ours.
v



vi PREFACE

Anather feature of our treatment, which assumes its most elegant and satis-
factory form in the algebraic case, although employed in the whole work, is
the admission of the inequation on an equal footing with the equation. This,
together with the use of resultants of all orders (subresultants), obviates the
necessity of making the preliminary linear transformation of the indeterminates,
which is an essential step in Kronecker’s method of solution of algebraic systems.

Finally, the algebraic case furnishes the model for treating the elimination
problem for systems of functions. This is done in Chapter VIII. The method
is subject to certain limitations. First, there is no algorithm for determining
the zeros of an analytic function in a given region. The difficulty of removing
this restriction can be appreciated if the zeros of the Riemann ¢-function are
cited. Second, there may exist zeros which are not the centers of regions where
assumption W is true. These zeros may be termed singular. Their determina-
tion and study seem destined to remain for some time a highly complex problem,
only to be solved in special cases by special methods. In this respect they
resemble the solutions of a system of partial differential equations in the
neighborhood of a singular point. In spite of these limitations, the general
method of elimination given-here seems to furnish a definite result, which is
perhaps as satisfactory as can be obtained at present.

In addition to bringing Cartan’s existence theorem for pfaffian systems into
the scheme, Chapter IX shows clearly that it has limitations because it does
not give the singular integral varieties unless substantially modified. The
same chapter also gives what is believed to be the only method yet, developed
for finding and making a partial classification of the singular integral varieties.
The method ultimately—and it seems essentially—depends on Riquier’s funda-
mental researches. )

In order not to interrupt the continuity of the development, the illustrative
examples have been segregated in Chapter XI. The reader may find it con-
venient to study them at the appropriate place in the text. :

The author has drawn freely from the work of Cartan, Goursat, and Janet,
but he is particularly indebted to Riquier’s treatise. The book also incorporates
many suggestions made by students in his courses during the past nine years;
the present neat statement of the rule of signs in Theorem 9.1, for example,
was suggested by Mr. Alexander Makarov. The author is even more indebted
to all those who have listened to his lectures for sustaining his interest in the
subject by their sympathetic attention. .

J. M. TaoMAS

July, 1936



COLLOQUIUM PUBLICATIONS

1. H. 8. White, Linear Systems of Curves on Algebraic Surfaces; F. 8. Woods,
Forms of Non-Euclidean Space; E. B. Van Vleck, Selected Topics in the
Theory of Divergent Series and of Continued Fractions. 1905. 12 4+
187 pp. $2.75. :
2. E. H. Moore, Introduction to a Form of General Analysis; E. J. Wilczynsksi,
Projective Differential Geometry; Maz Mason, Selected Topics in the
Theory of Boundary Value Problems of Differential Equations. 1910.
10 4- 222 pp. (Published by the Yale University Press.) Out of print.
31. G. A. Bliss, Fundamental Existence Theorems. 1913. Reprinted 1934.
2 + 107 pp. $2.00.
3II. Edward Kasner, Differential-Geometric Aspects of Dynamics. 1913.
- Reprinted 1934. 2 + 117 pp. $2.00. ~
4. L. E. Dickson, On Invariants and the Theory of Numbers; W. F. Osgood,
Topics in the Theory of Functions of Several Complex Variables. 1914.
12 + 230 pp. Out of print.
5. G. C. Hvans, Functionals and their Applications. Selected Topics, In-
cluding Integral Equations. 1918. 12 4 136 pp. Out of print.
5IT. OmgaldOVeblen, Analysis Situs. Second edition. 1931. 10 4 194 pp.
2.00. :
6. G. C. Evans, The Logarithmic Potential. Discontinuous Dirichlet and
Neumann Problems. 1927. 8 4 150 pp. $2.00.
7. E.T. Bell, Algebraic Arithmetic. 1927. 4 4+ 180pp. $2.50.
8. L. P. Eisenhart, Non-Riemannian Geometry. 1927. 8 4+ 184pp. $2.50.
. 9. G. D. Birkhoff, Dynamical Systems. 1927. 8 -4 295 pp. $3.00.
10. A. B. Coble, Algebraic Geometry and Theta Functions. 1929. 8 4 282
pp. $3.00. .
11. Dunham Jackson, The Theory of Approximation. 1930. 8 4+ 178 pp.
$2.50.
12.  Solomon Lefschetz, Topology. 1930. 10 + 410 pp. $4.50.
13. R.L.Moore, Foundations of Point Set Theory. 1932. 84486 pp. $5.00.
14, J. F. Ritt, Differential Equations from the Algebraic Standpoint. 1932.
: 10 + 172 pp. $2.50.
15. M. H. Stone, Linear Transformations in Hilbert Space and their Applica-~
tions to Analysis. 1932. 8 4- 622pp. $6.50.
16. G@. A. Bliss, Algebraic Functions. 1933. 9 4 218 pp. $3.00.
17. J.H. M. Wedderburn, Lectures on Matrices. 1934. 8 - 200 pp. $3.00.
18. Marston Morse, The Calculus of Variations in the Large. 1934. 10 +
368 pp. $4.50. ’
19. R. E. A. C. Paley and Norbert Wiener, Fourier Transforms in the Complex
"Domain. 1934. 8 4 183 pp. $3.00.
20. J. L. Walsh, Interpolation and Approximation by Rational Functions in
the Complex Domain. 1935. 9 + 382 pp. $5.00. _
21. J. M. Thomas, Differential Systems. 1937. 9 4- 118 pp. $2.00.

AMERICAN MATHEMATICAL SOCIETY

New York, N. Y,, 531 West 116th Street
Mensasha, Wis., 450 Ahnaip Street
Cambridge, England, 1 Trinity Street, Bowes and Bowes
Berlin, Germany, Unter den Linden 68, Hirschwaldsche Buchhandlung



BECTION PAGE
PREFACE................................ P v

CuaprtER I
INTRODUCTION 1

CHAPTER 11

GENERALITIES ON SYMBOLS AND SYSTEMS

1. Functions of n variables. ... ... ... ... . . . . . i 3
2, BB OIS, .. e 4
8. Ordering SymbBolB. ..o on e 5
4. Reduection algorithm for systems............ ... ..o 6
B. Ordering by Cotes. .. ..ot 7

CuarreEr 111

GRASSMANN ALGEBRA

6. The fundamental TIng. . .......coiiiiii e 10
7. Standard forma. ... o e 12
LT e 4V VS O 13
9. Products of forms.......... R 14
10, Differentiation. . ... ...t i 15
11, Sets of linear fOrmMS. .. ...outre et e e PN 17
12. Associates and adjoints............... ... .. ..o e e 22
13. Generalization of linear dependence............... ... ... ... . i 24
14. The associated Bet. . ... ottt i e 25
15, FaCtOrization . . ...ttt t ittt e e e 27
16. Systems of linear homogeneous equations.................... ... 28
17. A quadratic form in the presence of linear forms............................. ... 29
18. The canonical form of a quadratic form............. ... ... ... ... .o 31
19. Applications to matrices and determinants................. ... ..o 32

CuaPTER IV

DIFFERENTIAL RINGS

20. The differential assumptions.............c.oiiuiin i 34
21. The first and second integral assumptions.............. ... 36
22. Differential coefficients of higher order.............. ... .. .. .ot 37
93. Indirect differentiation. ... ..ottt i i e e 38
24. Transformation of the Marks. ... s 38
25. The third integral assumption............. o i 40
268. The characteristic system ............... ... it e 41
97. The canonical form of a pfaffian.......... ... ... ... i 44

CHAPTER V

COMMUTATIVE MONOMIALS AND POLYNOMIALS

28, Factorization................... PSP 47
20, MODOMIIALS . . .+ . v v ettt ettt e e e e e 48

TABLE OF CONTENTS



viii

30.
31.
32.
33.
34.
35.
36.
37.

SERS

. Generalities
39.
. Existence theorem for simple systems
41.
42,

CONTENTS

Polynomialg. ... ... . e
Resultants....... e e e e e e
Determination of a common
DSCrImMINANtS. ... oottt e e e
The zeros.of a polynomial
Exclusion of finite rings
Sets of unit monomials
Relative complete sets

S T I

CuAPTER VI

ALGEBRAIC SYSTEMS

Shoanle avmten. . T

Equivalence of simple systems. ...ttt
Equivalence of general systems

CuaPTER VII

ALGEBRAIC DIFFERENTIAL SYSTEMS

. Generalities...............cciiiiiiiiii PN e
. Prolonged systems
. Standard and normal systems. ............... ... ... ..o e
L PaBBIVE BYBLOINB. .. ...ttt e e .
. Determined systems and the existence assumption...................... ... o0
. Identities satisfied by equations of a passive system............................
. Decomposition of a standard system into normal systems.......................
. The uniqueness theorem. ... ... ...t i e e
. The fundamental existence theorem............... ... it iiiiiiiiiiiiieeene,
. Equivalence to Cauchy systems......... ... ... ... ... i,

CuaPTER VIII

FUNCTION SYSTEMS AND DIFFERENTIAL SYSTEMS

. Definition of the systems.......... ..o e
. The Weierstrass assumpPtion. . ... ... ..cueeneetenneen it eiearanneens
. The reduction PrOCEBS. .. ... ....uutouit ittt ettt iran et
. Differential systems. ... ... ... i e

CuapTER IX

PFAFFIAN SYSTEMS

. Integral varieties of a pfaffian system.................... B
. Fundamental formulas and identities. .............cooiiiriiiiniiiiaiirienen.
. The auxiliary differential system............ ... ..o,
. Numerical determinations. .. .........coviiiiirerr ittt
. Non-singular integral varieties...... S e e
. Function systems as pfaffian systems...................ooiiiiiiiiiiiiieiiaian.
. Inequalities satisfied by the genus and characters......................oivntn.

. Calculation of the characters. . ....... ... ...l eiiiieaaee s
. Systems comprising a single linear equation.............. ... ...
. Passive linear systems........ A e



CONTENTS . ix

CHAPTER X

CONSISTENCY EXAMPLES

67. The differentiation Process.......... ...ttt 91
68. The integration Process. ............vuiviiime i iiiiieeeann. e 92
69. The analytic case..........oou it iiiiiiie i, . 94
70. Proof of E for the analyticcase.......... ... i i 95
CuaPTER XI
ILLUSTRATIVE EXAMPLES
71. Non-commutative multiplication in integrals......................... e 101
72. Reduction of quadratic forms in a Gragssmann ring.........................oaee, 103
73. Reduction of pfaffian form of even class or of pfaffian equation to canonical form. 104
74. Reduction of pfaffian form ofoddelass................. ... ... .. ool 105
75. An absolute complete set of monomials................ ... .. ool 106
76. A corresponding relative complete set........... ... oo 107
T7. SIMPle BYBLEINE. . ..o vt e it e ettt e e e 108
78. Ordinary algebraic differential systems......................... e 110
79. Partial algebraic differential systems..... e e e 110
80. Decomposition into normal systems. ...l i i 112
81. Singular integral varieties of a linear pfaffian equation....................... ... 113



CHAPTER 1
INTRODUCTION

The developments in this book are founded upon two types of algebra which
we shall in general regard as having a purely formal nature. Each of them is
concerned with a set of given symbols, which it combines by four processes
called addition, multiplication, identification, and substitution. ‘The following
significance, and nothing further, is to be attached to these names. The addi-
tion of two symbols 4, B in the order indicated means writing them thus:
A + B. Their multiplication in the order 4, B means writing them thus:
AB, or when desired, A-B. By these two processes compound symbols, such
as the AB, for example, are formed.

At the basis of either type of algebra is a set of symbols denoted by ®. Two
symbols of &, such as 4 and B, which have different appearance are not neces-
sarily distinct. Every symbol of % belongs to one and only one of two im-
portant subsets of % which will be denoted by © and 2. All symbols in
are to be regarded as identical with the particular symbol 0. Those in N are
distinct from 0.

The set O in particular acquires some of its members when the operations
of addition and multiplication are subjected to assumptions, sometimes called
laws, which are essentially conventions to the effect that certain compound
symbols will be regarded as identical. Identity is denoted by the sign = which
will be read “equals” or “is.” The assumptions have as logical consequences
other statements of identity which they do not formulate explicitly. It is,
moreover, often convenient to introduce a new symbol B for a given (com-
pound) symbol A and augment the set of identities O by A — B. Identification
is the process of replacing a symbol (in general, occurring in a compound symbol)
by another symbol known to be identical with it; applied to a symbol it gives
an equal symbol. Substitution is the replacement of a symbol by an arbitrarily
chosen symbol; it will be applied in particular to the indices on symbols as well
as to the symbols themselves. The study of algebra to be made consists in
manufacturing compound symbols by the four processes just described and in
proving identities among them.

It will be unnecessary to formulate explicitly the assumptions about addition
and multiplication of symbols in § because that has been done elsewhere in a
form which is both elegant and suited to our purpose. We can specify R by
saying that it is an integrity domain [23, I, 39]' containing an identity symbol
with respect to multiplication. Such an R can always be imbedded [23, I, 47]

1 The first number in square brackets refers to the bibliography at the end of the book;
the roman number to the volume; and the second arabic number to the page.

1



2 , INTRODUCTION [1]

in a commutative field R*, called its quotient field. It may happen that R = R*.
This may also be arranged by choosing for i a commutative field at the outset.

At times, we shall also regard ® (or R*) as imbedded in another ring RNe
or R, which in addition to all the properties possessed by R have certain
others to be specified at the appropriate place. These larger rings are divided
into sets O¢, N¢, ete. )

A symbol y which does not belong to ® but which behaves in the formal
processes of addition and multiplication as if it did will be called an indeter-
minate. '

The adjunction of a finite number of indeterminates y to % gives a polynomial
ring Ry, --- , ). The algebra of such a ring is the first type of algebra to
be considered. The properties of polynomial rings are discussed at length
in treatises on modern algebra. Only those results which need to be presented
in a special form for our purposes will be developed here and no systematic
treatment of the subject will be made. '

The adjunction of a finite number of non-commutative marks u, which are
to be defined later, gives a Grassmann ring R[uy, - - - , u.], whose algebra consti-
tutes the second type and will be developed systematically from a set of assump-
tions. ,

The sum, difference, and product of any two symbols of a ring belong to
the ring, which accordingly is said to be closed under addition, subtraction,
and multiplication, called the ring operations. ‘



CHAPTER 11
GENERALITIES ON SYMBOLS AND SYSTEMS

It seems desirable to give in the present chapter certain definitions and
theorems in sufficiently general form to answer all our purposes. The chapter
. can be omitted on a first reading, and the definitions of the terms can be con-
sulted with the aid of the index as they are encountered in subsequent chapters.

1. Functions of n variables. Let g1, 12, --- , y. be a finite set of symbols,
which will be called variables. The scope of the variables is a set ¥ of symbols
each of which has the form (a,, ... , a.), where each a; belongs to R .

" If with the equations
(1.1) A Y = Qg
is associated the equation
(1.2) f = any symbol of B,

where the set 8 is determined when a’s belonging to ¥ are given, and B is a
‘subset of R ¢ for all such a’s, the symbol f is called a function of the variables y.
The set B is called the value of the function.

If there is exactly one symbol on the right of (1.2) for every member of ¥,
that is, if B reduces to a single symbol, so that (1.2) becomes

(1.3) f=hb,

where b is a unique symbol of R¢, then f is a single-valued function of the y’s.
The word ‘‘function” used alone will usually mean “‘single-valued function.”
More generally, if the set B contains only a finite number k of symbols, the
function is said to have type k. Similarly, a set of functions f; has type k if
the .symbol (f1, f2, --- , f-) has associated with it for every (@1, az, --- , a,)
from 9 a symbol (¢1, 2, - -, ¢) from a set B of k such symbols. '

TrEorREM 1.1. If f; form a set of r functions of y1, --- , y. whose type is k
and g; form a set of 8 functions of y1, --- , ynand f1, - - - , f whose type is 1, then g;
Jorm a set of s functions of Y1, - - - , Y. whose type is kl.

The proof consists simply in the remark that the set B for ¢; as functions of ,
Y1, -+ , Yo 18 obtained by combining with an arbitrary member of the 6 for
the f’s an arbitrary member of that for the g’s as functions of both the y’s
and f’s. - There are kl such symbols.

The set of all symbols in R which are not in B is called the complement
of B (in R¢) and is denoted by B. Likewise, the function whose value is B
is called the complement of f (in R¢) and is denoted by f.

3



4 GENERALITIES ON SYMBOLS AND SYSTEMS [IT .]

Formulas (1.1) define a substitution, which replaces each y by the a having
the same subscript. _

The notation f(y1, - - -, y») for the function f defined above puts in evidence
the variables y. Letf(a:, - -, ax) be used to denote the right member of (1.2). .
The latter symbol arises from the former by the substitution (1.1).

2. Systems. A finite set S of functions each of which has attached to it
the name equation® or inequation is called a system. Two functions which are
both equations or both inequations are said to have the same nature.

The inequations are designated by placing bars over them. Thus if S
comprises two equations f, g and one inequation k, we write

(2.1) S=f+g+h

Strictly speaking, we should employ a new symbol rather than the + in 2.1),
for § may contain a compound symbol in which the + has already been em-
ployed in another sense. We shall avoid this difficulty by enclosing any com-
pound symbol in non-removable parentheses. Thus S = (f + g) will denote
a system with the single function f + g and 8 = f 4 ¢ will consist of the two
functions f, g. More generally, if S and T are two systems, 8 4 T is the
system which contains all the equations of S and T as equations and all their
inequations ‘as inequations. Likewise, if 7 is a subsystem of S, then S — T
denotes the system obtained by omitting from S the functions of 7.

Let a substitution replace the variables in a function f by symbols from their
scope. The substitution is called a zero or non-zero of f according as the result
belongs to O¢ or Ne. \

A substitution is a root of S if it is a zero of every equation and a non-zero
of every inequation in S. The totality of the roots of S is its content. A
system S, ¢émplies S, and we write 8; = Sz, if every root of §; is a root of Sz .
Two systems S; and 8: are equivalent and we write 8; = 8., if each implies
the other, that is, if they have the same content. If S; implies S. but is not
equivalent to it, we write S; > 8,

The system S is said to be facfored into the two systems S, Sz according
to the equation ’

2.2) 8 = 88,

if every root of S is a root of at least one of the factors, and every root of S;
and every root of S; are roots of 8. If no sum is involved, it is unnecessary
to distinguish between (fg) and fg.

If f is a function, it is clear that f + f has no zero and ff has no non-zero.
Hence we write

@3) - f+i=1 f=0

2 This terminology will save the introduction of additional names, and will lead to no
confusion, although ‘““‘equation’ in the ordinary sense means the result of equating the
function to zero and not the function itself.
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for purposes of manipulation. The equivalences expressed by the following
identities are also useful: :

(2.4) 8" =8 ' (n>1),
(2.5) S+ 8T = §,
(2.6) S+HES+H =8

In these, S, T represent any systems and f any funetion.

A system is consistent or inconsistent according as it has a root or not. In
harmony with (2.3) we write § = 1, if 8 is inconsistent. This symbol 1 may
be suppressed if it occurs in a produet with other factors. It has the further
property that § + 1 = 1.

A system s inconsistent if it contains a symbol from N as equation or a symbol
Jrom O as tnequation.

As will be seen later, a symbol y may have associated with it certain other
symbols called its derivatives. If each member of a substitution (1.1) is re-
placed by its derivative of a given type and the result is adjoined to the original
substitution, an exrfended substitution results.

If some of the variables are selected and called unknowns and the others
are interpreted as definite derivatives of those unknowns, a system S becomes
a differential system. A solution of 8 is a substitution on the unknowns which
when properly extended becomes a root of 8. The definitions of content,
equivalence, etc. given above apply to differential systems if the word “root”
is replaced by ‘“‘solution.” Thus the (differential) content of a differential
system is the totality of its solutions, etc.

3. Ordering symbols. When clarity will not be impaired, we shall often
refer to the symbol 7172 - - - 7, as 2. The equality ¢ = j will mean

3.1) W=J1, =7Jo, -+, ta=]Ju.

Likewise, the inequality ¢ > j (to be read ‘i is greater than j” or s follows ;)
will mean the existence of a positive integer A < 7n such that

(3.2) fi=J1, -+, Ba=j1, B> h,
and the inequality ¢ < j (read ‘¢ is less than j’ or ‘4 precedes 7”’) will mean
(33) ":1 = jl ’ ter ’1:)\—1 = jx_1 s 1:)‘ < j)\ .

If the letters in (3.1), (3.2), and (3.3) represent certain of the rational integers
and the signs =, >, < are given their usual meaning, one and only one of
the relations (3.1), (3.2), and (3.3) is verified by any pair ¢, j. Hence in this
case the symbols 7, j are said to be ordered [23, 1, 192].

The above definition can be applied inductively to order complex symbols
p = py -+ pm, where each p, is taken from a previously ordered set ¥, , which
may vary with o. In the case that interests us, the symbols 4; - -. 2., where

~ each 9, is a non-negative rational integer, are ordered first; the symbols py - - - pm .
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where each p is a non-negative complex integer 4; - - - 4, , next; and so on. The

ordering is called lexicographical because it is used to order the words. in dic-
tionaries.

Important properties are glven in the following easily proved theorems

Taeorem 3.1. Lexicographical ordering is transitive: if ¢ > j and j > k,
then 1 > k.

THEOREM 3.2. Every decreasing -sequence of lexicographically ordered symbols
18 finite.

TaeoREM 3.3. If (41 -+ %m) > (f1 -+ jm), then (4 --- Tmmgl + =+ o) >

(jl e jmjm+1 e j,,) fOT a,rbitrary 7:m+1, Ty 7:1:,; jm+1y Tty jn'
At times, it is better to use the parentheses around the symbol 7; - - - ,.
The sum of the symbols ¢, j is defined to be (¢ + j1, -+ , tn + ju). Their

difference is similarly defined.

4. Reduction algorithm for systems. With each symbol of a system S let
us associate one of the above symbols ¢, . - . 4;, which we shall for convenience
temporarily call its rank because it becomes the rank in an important special
case (§30). Likewise we shall say that a symbol of S has ordinal’ k if its rank
is0 ... 0% ... 4, with 4., which will be called the grade, not equal to zero.
Let the symbols of ordinal k form the subset Sy of S.

An operation P; is called a reduction algorithm for systems if it has the fol-
lowing properties:

@) It is applicable to S so long as Sy contains at least two symbols.

(ii) It leaves unaltered every S;forl > k. '

(iii) Each symbol of S is omitted or replaced by a symbol not exceedmg it
in grade. A symbol of ordinal k may be added to S; provided such symbols
added by successive applications of P have decreasing rank.

(iv) 8;forl < k is replaced by a finite set of symbols of ordinal .

(v) There exists a non-negative rational integer a such that P (i.e., P applied
o times) replaces at least one symbol of S by one with smaller 4 .

(vi) S; is made to contain at most one inequation by replacing two or more
inequations by their product.

We shall next prove: If P;’P;'y' ... Pi', where Py is a reduction algorithm
and the c’s are appropriately chosen non-negative rational integers, is applied to S,
there results a system for which each S; contains at most one function.

As P, is successively applied, the number of symbols in S, ultimately ceases
to increase because by (iii) the additional symbols introduced have decreasing
rank and hence by Theorem 3.2 are finite in number. Suppose that, no matter
how often P, is applied, the S, contains an equation and m other symbols.
The grades of these functions form m + 1 non-increasing sequences. If only
distinct terms are retained, these sequences become decreasing and by Theorem

2 We do not follow Ritt in attaching the name ““class’ to this notion because it is neces-
sary to use ‘‘class’ in a different sense in Chapter IV.
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- 3.2 are finite. Let their minimum members be do,dr, -+ ,dm. There exists

an e such that P; gives an 8, with m + 1 ‘members having these grades. On

the other hand, there exists by (v) an f such that P/ decreases at least one d.

This contradiction gives the desired result for S:. The same argument can

be successively applied to each of the other 8’s, and the statement is proved.
We have also proved the useful result contained in ‘

THEOREM 4.1. A given reduction algorithm can be applied only a finite number
of times to a system.

5. Ordering by cotes. The lexicographical ordering has to be modified in
order to meet all our needs. Although this modification can be made from a
purely abstract viewpoint, we shall develop it in connection with the deriva-
tives

ai‘1+' . '+|'nza

&.1) _ oxs' . .. azir
. because the phraseology will be simpler.

The derivatives (5.1) can be given the same order as the complex integers
ai, -+ 1. In particular, when derivatives of a single unknown z are-being
considered, the symbol 4,6, - - - 4 will be found very useful and will be called
the rank. This type of ordering will not serve all purposes, however, because
a given derivative may have an infinite number of predecessors: thus

az 8’z
0xs axi

for all values of i. '
The difficulty may be avoided as follows. Let complex integers,! called
coles,

(5.2) ' 0 v, A, e 6l

be associated with z, and z;, respectively, the v's and ¢’s being non-negative
. rational integers. The cote of a derivative is defined as the sum of the cotes
of the unknown and the independent variables, each of the latter being added
as many times as differentiation occurs with respect to that variable. Aec-
cordingly, the cote of (5.1) is

o +at -t vt and - Eha, e,
Ye 4 i A e ).

The derivative with greater cote is defined to be the follower. Two. dif-
ferent derivatives may, however, have the same cote according to the above

(63) -

4 Riquier, who introduced cotes, applied the name to the component rather than to the
complex number as we prefer to do. .




