Application and Implementation
of Finite Element Methods

J. E. AKIN

Application and Implementation
of Finite Element Methods

J. E. AKIN

Department of Engineering Science and Mechanics,
The University of Tennessee,
Knoxville, Tennessee, USA

1982

®

ACADEMIC PRESS
A Subsidiary of Harcourt Brace Jovanovich, Publishers

London New York
Paris San Diego San Francisco Séao Paulo
Sydney Tokyo Toronto

ACADEMIC PRESS INC. (LONDON) LTD
24-28 Oval Road
London NW1

US edition published by
ACADEMIC PRESS INC.
111 Fifth Avenue
New York, New York 10003

Copyright © 1982 by
ACADEMIC PRESS INC. (LONDON) LTD

All Rights Reserved
No part of this book may be reproduced in any form, by photostat, microfilm or
any other means, without written permission from the publishers

British Library Cataloguing in Publication Data

Akin, J. E.
Application and implementation of finite
element methods.
1. Finite element method—Data processing
L. Title)
515:3'53 ‘TA347.F5

ISBN 0-12-047650-9
LCCCN 81-69597

Printed in Great Britain by Page Bros (Norwich) Ltd

Preface

The finite element method has now become a well-established branch of
computational mathematics and the theoretical foundations have been
presented in several texts. However, the actual application of finite element
procedures requires extensive programming effort. The present text has
been developed to illustrate typical computational alogrithms and their
applications. Whilst the theoretical discussions have been limited to the
minimum required to introduce the topic, most of the computaiional
procedures are discussed in detail. Many universities follow an introductory
finite element course, with a course on the related computational pro-
cedures. This text should be well suited for such a course.

Numerous programs are presented and discussed. A particular control-
ling program and data structure have been included for completeness so
that specific applications can be examined in detail. Emphasis has been
placed on the use of isoparametric elements and numerical integration.
The discussion of the programs for isoparametric elements, Chapter.5, and
their example applications, Chapter 11, should clarify this important topic.
Since practical problems often involve a large amount of data the subject
of mesh generation is also examined. A very limited discussion of time
integration procedures has been included. Also included is an Appendix
which describes some subroutines of secondary interest, which are men-
tioned in Chapters 2 and 6, together with various sample applications and -
the input formats for MODEL. :

Figures referred to in each Section are included at the end of the Section,
followed by the Tables.

The text reflects the many studies and conversations on finite elements
in which I was able to participate during a period in which I was on leave
gom the University of Tennessee. These studies were conducted at the
University of Texas at Austin, Brunel University, and the California Insti-
stute of Technology. The support of a UK SRC Senior Visiting Fellow
Grant and a US NSF Professional Development Grant is gratefully acknowl-
edged. I would also like to acknowledge the support and encouragement
of J. T. Oden, J. R. Whiteman, T. J. R. Hughes, E. B. Becker, and W.
C. T. Stoddart.

Copies of the MODEL software are available either from the author,
or from the Institute of Computational Mathematics at Brunel University.

University of Tennessee J. E. Akin
January 1982

J

/

Program Notation

Al = VECTOR CONTAINING FLOATING FOINT VARIABLES
AJ = JACOEIAN MATRIX
AJINQ = INVERSE JACORIAN MATRIX

C = ELEMENT COLUMN MATRIX

CE = HOUNDARY SEGMENT COLUMN MATRIX

CC = COLUMN MATRIX OF SYSTEM EQUATIONS :

CEQ = CONSTRAINT EQS COEFFS ARRAY 9
COORD = SPATIAL COORDINATES OF A SELECTED SET OF NOLES
CF = FENALTY CONSTRAINT COLUMN MATRIX

CUTOFF IS SFECIFIED NUMBER FOR CUTT!NG“OFF ITERATIONS

I = NODAL FARAMETERS ASSOCIﬁTéU WITH A/BIUEN EﬁEHENT

Do = SYSTEM LIST OF NODAL PQKAHETERS

DDOLDn = SYSTEM LIST OF NODAK DOF FROH’LQST ITERATION

DELTA = LOCAL DERIUQTIVES F INTERFOUATION FUNCTIONS H
‘ / / y /

ELFROF = ELEMENT ARRAY OF FLOATING FOINT FROFERTIES

FLTEL = SYSTEM STORAGE .OF FLOATING FT ELEMENT FRCF
FLTMIS = SYSTEM STORAGE OF FLOATING FT MISC. FROF
FLTNF = SYSTEM STORAGE OF FLOATING FT NODAL FROF
FLUX = SFATIAL COMPONENTS OF SFECIFIED ROUNDARY FLUX

GLOEBAL = GLOBAL DERIV.S OF INTERFOLATION FUNCTIONS H
H = INTERFOLATION FUNCTIONS FOR AN ELEMENT

Il = VECTOR CONTAINING FIXED FOINT ARRAYS

IEC = NODAL FOINT BOUNDARY RESTRAINT INLICATOR ARRAY
INDEX = SYSTEM DEGREE OF FREEDOM NUMBERS ARRAY

IF INRHS.NE.O INITIAL VALUES OF CC ARE INFUT

IF IFTEST.GT.0 SOME FPROPERTIES ARE DEFINED

IF1 = NUMRER OF ROWS IN ARRAY FLTNF
IF2 = NUMBER OF ROWS IN ARRAY NFFIX
IF3 = NUMEER OF ROWS IN ARRAY FLTEL
IF4 = NUMEBER OF ROWS IN ARRAY LFFIX
IFS = NUMBRER OF ROWS IN ARRAY - FRTLFT

ISAY = NO. OF USER REMARKS TO BE I/0

JF1 = NUMBER OF COLUMNS IN ARRAYS NFFIX AN NFROF
JF2 = NUMBER OF COLUMNS IN ARRAYS LFFIX AND LFROF
JF3 = NUMBER OF COLUMNS IN ARRAY MISFIX

KFIXED ALLOCATED' SIZE OF ARRAY ID

KFLOAT = ALLOCATED' SIZE OF ARRAY AD
KODES = LIST OF DOF RESTRAINT INDICATORS AT A NODE
KF1 = NUMBER OF COL IN ARRAYS FLTNF & FRTLFT & FTFROF

KF2 = NUMBER OF COLUMNS IN ARRAYS FLTEL AND ELFROF
KF3 = NUMEER OF COLUMNS IN ARKAY FLTMIS
K1-KS = NO. OF COLUMNS OF FLOATING FT CONSTRAINT DATA

LEN = NUMEER OF NODES ON AN ELEMENT BOUNDARY SEGMENT
IFf LEMWRT = 0 LIST NODAL FARAMETERS RY ELEMENTS

IF LHOMO=1 ELEMENT FROFERTIES ARE HOMOGENEOUS

LNODE = THE N ELEMENT INCIDENCES OF THE ELEMENT

LFFIX = SYSTEM STORAGE ARRAY FOR FIXED FT ELEMENT FROF
LPROF = ARRAY OF FIXED POINT ELEMENT FROFERTIES

IF LFTEST.GT.0 ELEMENT PROFERTIES ARE DEFINED

M = NU. UF SYSTEM NODES
MAXHAN = MAX. HALF HRANDWIDTH OF SYSTEM EQUATIONS
IF MAXTIM.GT.0 CALCULATE CFU TIMES OF HMAJOR SEGMENTS

MAXACT = NO ACTIVE CONSTRAINT TYFES (<=MAXTYF)

MAXTYF = MAX NODAL CONSTRAINT TYFE (=3 NOW)

MISCFL = NO. MISC. FLOATING FOINT SYSTEM FROFERTIES
MISCFX = NO. MISC. FIXED POINT SYSTEM FROFERTIES
MISFIX = SYSTEM ARRAY OF MISC. FIXED FOINT FROFERTIES

MTOTAL = REQUIRED SIZE OF ARRAY Al
M1 TO MNEXT = FOINTERS FOR FLOATING FOINT ARKRAYS,

N = NUMBER OF NODES FER ELEMENT
NCURVE = NO. CONTOUR CURVES CALCULATED FER FARAMETER
NOFREE = TOIAL NUMBER OF SYSTEM DEGREES OF FREELOM
NDXC = CONSTRAINT EQS DOF NUMRERS ARRAY
NE = NUMBER OF ELEMENTS IN SYSTEM
NELFRE = NUMBER OF DEGREES OF FREEDNOM- FER ELEMENT
NG = NUMBER OF NODAL FARAMETERS (DOF) FER NODE
IF NHOMO=1 NODAL SYSTEM FROFERTIES ARE HOMOGENEOUS
NITER = NO. OF ITERATIONS TO RE RUN

NLFFIX = NO. FIXED FOINT ELEMENT FROFERTIES -
NLFFLO = NO. FLOATING FOINT ELEMENT FROFERTIES

NNFFIX = NO. FIXED FOINT NODAL FROFERTIES

NNFFLO = NO., FLOATING FPOINT NODAL FROFERTIES

NOCOEF = NO COEFF IN SYSTEM SQ MATRIX

NODES = ELEMENT INCIDENCES OF ALL ELEMENTS

NOTHER = TOTAL NO. OF BOUNDARY RESTRAINTS .GT. TYFE1
NFROF = NODAL ARRAY OF FIXED POINT FROFERTIES

IF NFTWRT = O LIST NODAL FARAMETERS EY NODES

NRANGE = ARRAY CONTAINING NODE NO.S OF EXTREME VALUES
NREQ = NO. OF CONSTRAINT EQ@S. OF EACH TYFE

NREE = NO. OF CONSTRAINT FLAGS OF EACH TYFE

NSEG = NO OF ELEM ROUNDARY SEGMENTS WITH GIVEN FLUX
NSHACE = DIMENSION OF SFACE

NTAFE1 = UNIT FOR PCST SOLUTION MATRICES STORAGE
NTAFEZ2»3+4 = OFTIONAL UNITS FOR USER (USED WHEN - 0)
NTOTAL = REQUIKRED SIZE OF ARRAY ID 4

IF NULCOL.NE.O ELEMENT COLUMN MATRIX IS ALWAYS ZERO
NUMCE = NUMEER OF CONSTRAINT EQS

N1 TO NNEXT = FOINTERS FOR FIXEL' FOINT ARRAYS

FRTLFT = FLOATING FT FROF ARRAY OF ELEMENT’S NODES
FTFROF = NODAL ARRAY OF FLOATING FT FROFERTIES

RANGE: 1-MAXIMUM VALUE, 2-MINIHUM VALUE OF DOF’
S = ELEMENT SOUARE MATRIX

SE = BOUNDARY SAGMENT SQUARE MATRIX

S§S = ‘SQUAFRE’ TRIX OF SYSTEM EQUATIONS

TIME = ARRAY SYORING CFU TIMES FOR VARIOUS SEGMENTS
TITLE = FROELEMN TITLE

X = SFATIAL COORDINATES OF ALL NODES IN THE SYSTEM
* XFT = SFATIAL COORDINATES OF A CONTOUR FOINT

R R UL R TR RO R S S SO R SRR R R R A U R S

Contents

Preface . :
Program Notation .

1

Finite Element Concepts

1.1 Introduction

1.2 Foundation of finite element procedures
1.3 General finite element analysis procedure
1.4 Analytic example

1.5: ‘Exercisesi

Control and Input Phase 3
2.1 Introduction

2.2 Control of major segments

2.3 Data input

2.4ruiExercises 11

Pre-element Calculations

3.1 Introduction

3.2 Property retrieval §
3.3 Effects of skyline storage .
3.4 Exercises . ‘

Calculation of Element Matrices
4.1 Introduction

4.2 Square and column matrix consxderatlons :

4.3 Auxiliary calculations

4.4 Condensation of element’s mterna] degrees of freedom
4.5 Economy consrderatlons in the generation of element

matrices

isoparametric Elements

5.1 Introduction

5.2 Fundamental theoretlcal eoncepts
5.3 Programming ispparametric elements

X1

00 W B =t

P

2

32
35

37
41
46
49

|
S
53
59

62

65

65
74

ks

Bl PR

10

5.4 Simplex elements, a special case
5.5 Isoparametric contours
5.6%=Exercises

Element Integration and Interpolation

6.1 Introduction

6.3 Gaussian quadratures :

6.4 Numerical integration over lrmn;:lu 3

6.5 Minimal, optimal, reduced and sclected mlcu.mon
6.6 Typical interpolation functions .

6.7 Interpolation enhancement for C" transition clgmcms
6.8 Special elements

6.9 Exercises

Assembly of Element Equations into System Equations
7.1 Introduction
7.2 Assembly pl()&,mms

7.3 Example :
7.4 Symbolic element assembly for quadranc forms

7.5 Frontal assembly and solution procedures
7.6 Exercises

Application of Nodal Parameter Boundary Constraints
8.1 Introduction .

8.2 Matrix manipulations

8.3 Constraints applied at the element Ievel

8.4 Penalty modifications for nodal constraints

8.5 'Exercises

Solution and Result Output
9.1 Economical solution techniques for the system equations .

9.2 Output of results
9.3 Post-solution calculations wnthm the elements

9.4 Exercises

One-dimensional Applications

10.1 Introduction

10.2 Conductive and convcctlvc hcax mmstcr
10.3 Plane truss structures

10.4 Slider bearing lubrication .

10.5 Ordinary differential equations .

10.6 Plane frame structures

6.2 Exact integrals for trmnz_uldr dl‘ld quadnlatcral s_eomcmu.

vii

77
84
90

91
91
94
101
105
107
115
022

187

129
130

137

144
148
152

153
154
160
160
164

165
175
180
181

183
183
193
205
212
228

i

11 Two-dimensional Applications
11.1 Introduction :
11.2 Plane stress analysis .
11.3 Heat conduction ;
11.4 Viscous flow in straight ducts
11.5 Potential fiow :
11.6 Electromagnetic waveguides
11.7 Axisymmetric plasma equilibria
11.8 Exercises .

12 Three-dimensional Applications g
12.1 Introduction 3 3
12.2 Heat conduction

13 Automatic Mesh Generation
13.1 Introduction
13.2 Mapping functions
13.3 Higher order elements

14 Initial Value Problems
14.1 Introduction :
14.2 Parabolic equations .
14.3 Hyperbolic equations
14.4 Exercises . :
References and Bibliography .

Appendix —A Summary of Input Formats and Supporting
Programs : . ; : :

Subject and Author Index

Subroutine Index

231
232
245
255
259
276
280

284

285

285

295
299
302

317
318
331
344

345

351

i 307

371

Finite element concepts

1.1 Introduction

The finite element method has become an important and practical
numerical analysis tool. It has found application in almost all areas of
engineering and applied mathematics. The literature on finite element
methods is extensive and rapidly increasing. Extensive bibliographies are
available [59, 76] but even these are incomplete and are rapidly. becoming
outdated. Numerous texts are available which present the theory of various
finite element procedures. Most of these relegate programming consider-
ations to a secondary, or lower, level. One exception is the text by Hinton
and Owen [42]. The present work takes a similar position in that it aims
to provide a complete overview of typical programming considerations
while covering only the minimum theoretical aspects. Of course, the theory
behind the illustrated implementation procedures and selected applications
is discussed.

This chapter begins the introduction of various building block programs
for typical use in finite element analysis. These modular programs may be
utilized in numerous fields of study. Specific examples of the application
of the finite element method will be covered in later chapters.

1.2 Foundation of finite element procedures

From the mathematical point of view the finite element method is based
on integral formulations. By way of comparison the older finite difference
methods are usually based on differential formulations. Finite element
models of various problems have been formulated from simple physical

1

2 1. Finite element concepts

intuition and from mathematical principles. Historically, the use of physical
intuition led to several early practical models. However, today there is
increased emphasis on the now well established mathematical foundations
of the procedure [10, 28, 61].

The mathematical rigor of the finite element method was lacking at
first, but it is now a very active area of research. Modern finite element
integral formulations are obtained by two different procedures: variational
formulations and weighted residual formulations. The following sections
will briefly review the common procedures for establishing finite element
models. It is indeed fortunate that all of these techniques use the same
bookkeeping operations to generate the final assembly of algebraic equa-
tions that must be solved for the unknown nodal parameters.

The earliest mathematical formulations for finite element models were
based on variational techniques. Variational techniques still are very
important in developing elements and in solving practical problems. This
is especially true in the areas of structural mechanics and stress analysis.
Modern analysis in these areas has come to rely on finite element techniques
almost exclusively. Variational models usually involve finding the nodal
parameters that yield a stationary (maximum or minimum) value of a
specific integral relation known as a functional. In most cases it is possible
to assign a physical meaning to the integral being extremized. For example,
in solid mechanics the integral may represent potential energy, whereas
in a fluid mechanics problem it may correspond to the rate of entropy
production. Many physical problems have variational formulations that
result in quadratic forms. These in turn yield algebraic equations for the
system which are symmetric and positive definite. Another important
practical advantage of variational formulations is that they often have error
bound theorems associated with them. Numerous examples of variational
formulations for finite element models can be found by examining the
many texts available on the theory of variational calculus. Several appli-
cations of this type will be illustrated in the later chapters.

It is well known that the solution that yields a stationary value of the
integral functional and satisfies the boundary conditions is equivalent to
the solution of an associated differential equation, known as the Euler
equation. If the functional is known, then it is relatively easy to find the
corresponding Euler equation. Most engineering and physical problems
are initially defined in terms of a differential equation. The finite element
method requires an integral formulation. Thus, one must search for the
functional whose Euler equation corresponds to the given differential
equation (and boundary conditions). Unfortunately, this is generally a
difficult, or impossible task. Therefore, there is increasing emphasis on the
various weighted residual techniques that can generate an integral for-

1.2 Foundation of finite element procedures

mulation directly from the original differential equations. Both the differ-
ential equation and integral form are defined in physical coordinates, say
(*x ¥ 2).

As a simple one-dimensional example of an integral statement, consider
the functional

I=1% f " [K(dtidx)? + He d,
’ .

which will be considered in later applications. Minimizing this functional
is equivalent to satisfying the differential equation

Kd*/dx* — Ht = 0.

In addition the functional satisfies the natural conditions of d#/dx = 0 at an
end where the essential boundary conditior., ¢ = 1), is not applied.

The generation of finite element models by the utilization of weighted
residual techniques is a relatively recent development. However, these
methods are increasingly important in the solution of differential equations
and other non-structural applications. The weighted residual method starts
with the governing differential equation

L(¢)=0Q

and avoids the often tedious search for a mathematically equivalent vari-
ational statement. Generally one assumes an approximate solution, say
¢*, and substitutes this solution into the differential equation. Since the
assumption is approximate, this operation defines a residual error term in
the differential equation

L(¢*) -Q =R

Although one cannot force the residual term to vanish, it is possible to
force a weighted integral, over the solution domain, of the residual to
vanish. That is, the integral over the solution domain, €, of the product
of the residual term and some weighting function is set equal to zero, so

that
I= J RWdQ = 0.
Q

Substituting interpolation functions for the approximate solution, ¢*,
and the weighting function, W, results in a set of algebraic equations that
can be solved for the unknown coefficients in the approximate solution.
The choice of weighsing function defines the type of weighted residual
technique being utilized. To obtain the Galerkin criterion one selects

W= ¢*,

4 1. Finite element concepts

while for a least squares criterion
W = aR/3¢*

gives the desired result. Similarly, selecting the Dirac delta function gives
a point collocation procedure; i.e.

W =4,

Obviously, other choices of W are available and lead to alternate weighted
residual procedures such as the subdomain procedure. The first two pro-
cedures seem to be most popular for finite element methods. Use of
integration by parts with the Galerkin procedure usually reduces the con-
tinuity requirements of the approximating functions. If a variational pro-
cedure exists, the Galerkin criterion will lead to the same algebraic approx-
imation. Thus it often offers optimal error estimates for the finite element
solution.

For both variational and weighted residual formulations the following
restrictions are now generally accepted as means for establishing conver-
gence of the finite element model as the mesh refinement increases [87]:

1. (A necessary criterion) The element interpolation functions must be

capable of modelling any constant values of the dependent variable or

its derivatives, to the order present in the defining integral statement,
in the limit as the element size decreases.

2. (A sufficient criterion) The element shape functions should be chosen

so that at element interfaces the dependent variable and its derivatives,

of one order less than those occurring in the defining integral statement,
are continuous.

-

1.3 General finite element analysis procedure

1.3.1 Introduction

In the finite element method, the boundary and interior of the continuum
(or more generally the solution domain) is subdivided (see Fig. 1.1—
illustrations are arranged together at the end of the section in which they
are mentioned) by imaginary lines (or surfaces) into a finite number of
discrete sized subregions or finite elements. A discrete number of nodal
points are established with the imaginary mesh that divides the region.
These nodal points can lie anywhere along, or inside, the subdividing mesh
lines, but they are usually located at intersecting mesh lines (or surfaces).
Usually, the elements have straight boundaries and thus some geometric |

1.3 General finite element analysis procedure 5

approximations will be introduced in the geometric idealization if the actual
region of interest has curvilinear boundaries.

The nodal points are assigned identifying integer numbers (node num-
bers) beginning with unity and ranging to some maximum value, say M.
Similarly, each element is assigned an identifying integer number. These
element numbers also begin with unity and extend to a maximum value,
say NE. As will be discussed later, the assignment of the nodal numbers
and element numbers can have a significant effect on the solution time and
storage requirements. The analyst assigns a number of (generalized)
degrees of freedom, (dof), say NG, to each and every node. These are the
(unknown) nodal parameters that have been chosen by the analyst to
govern the formulation of the problem of interest. Common nodal par-
ameters are pressure, velocity components, displacement components, dis-
placement gradients, etc. The nodal parameters do not have to have a
physical meaning, although they usually do. It will be assumed herein that
each node in the system has the same number (NG) of nodal parameters.
This is the usual case, but it is not necessary. A typical node, Fig. 1.1, will
usually be associated with more than one element. The domains of influence
of a typical node and typical element are also shown in Fig. 1.1. A typical
element will have a number, say N, of nodal points associated with it
located on or within its boundaries. It is assumed herein that every element
has the same number (N) of nodes per element. This is the usual situation,
but again it is not necessary in general.

This idealization procedure defines the total number of degrees of free-
dom associated with a typical node and a typical element. Obviously, the
number of degrees of freedom in the system, say NDFREE, is the product
of the number of nodes and the number of parameters per node, i.e.
NDFREE = M* NG. Similarly, the number of degrees of freedom per
element, say NELFRE, is defined by NELFRE = N* NG.

Recall that the total number of degrees of freedom of the system cor-
responds to the total number of nodal parameters. In general the system
degree of freedom number, say NDF, associated with parameter number
J at system node number I is defined (by induction) as:

NDF = NG*(I1 - 1) +J, (1.1)

where 1<I<M and 1<J=<NG so that 1<NDF <NDFREE. This
elementary equation forms the basis of the program “bookkeeping” method
and thus is very important and should be clearly understood. Equation
(1.1) is illustrated for a series of one-dimensional elements in Fig. 1.2:
where a system with four line elements, five nodes and six degrees of
freedom (dof) per node is illustrated (i.e. M =5, NE=4, NG =6, N =
2). There are a total of thirty dof in the system. We wish to determine the

6 1. Finite element concepts

dof number of the fifth parameter (J = 5) at system node number four
(I =4). Equation (1.1) shows that the required result is NDF = 6(4 —
1) + 5 = 23 for the system dof number. For element three this corresponds
to local dof number 11 while for element four it is local dof number 5.
Therefore we note that contributions to system equation number 23 comes
from parts of two different element equation sets.

In addition to the above constants it is necessary to define the dimension
of the space, say NSPACE, that is associated with the problem. As will
be pointed out as the discussion proceeds, these quantities can be used to
calculate the size of the storage requirements for the matrices to be
generated in the analysis. The actual programs that read the problem data
will be discussed in a later section.

Data must be supplied to define the spatial coordinates of each nodal
peint. This array of data, say X, will have the dimensions of M*NSPACE.
It is common to associate an integer with each nodal point. The purpose
.of the code is to indicate which, if any, of the nodal parameters at the
node have boundary constraints specified. This vector of data, say IBC,
contains M integer coefficients. To accomplish this nodal boundary con-
dition coding process recall that there are NG parameters per node. Thus,
one can define an integer code, IBC, (right justified) to consist of NG
digits. Let the ith digit be a single digit indicator corresponding to the ith
parameter at that node. If the indicator equals j where 0 < j <9 then this
is defined to mean that the ith parameter has a boundary constraint of
type j. If the single digit indicator is zero, this means that there is no
boundary constraint on that parameter. As will be discussed later, the
present program allow several common types of nodal parameter boundary
constraints. Figure 1.3 illustrates a set of boundary condition codes for a
typical set of nodes with six parameters per node (NG = 6). This code is
also considered in the example in Section 7.3 and all the applications.

An important concept is that of elernent connectivity, ie the list of global
node numbers that are attached to an element. The element connectivity
data defines the topology of the mesh. Thus for each element it is necessary
to input (in some consistent order) the N node numbers that are associated
with that particular element. This array of data, say NODES, has the
dimensions of NE*N. The list of node numbers connected to a particular
element is usually referred to as the efement incident list for that element.
The identification of these data is important to the use of Eqn. (1.1).

1.3.2 Approximation of element behaviour and equations

It is assumed that the variable(s) of interest, and perhaps its derivatives,
can be uniquely specified throughout the solution domain by the nodal

1.3 General finite element analysis procedure 7

parameters associated with the nodal points of the system. These nodal
parameters will be the unknown parameters of the problem. It is assumed
that the parameters at a particular node influence only the values of the
quantity of interest within the elements that are connected to that particular
node. Next, an interpolation function is assumed for the purpose of relating
the quantity of interest within the element in terms of the values of the
nodal parameters at the nodes that are connected to that particular element.
Figure 1.4 illustrates a common interpolation associated with that particular
element. Figure 1.4 illustrates a common interpolation function and its
constituent parts defined in terms of the nodal coordinates (xi,y:), the
element area A°, the spatial location (x, y) and the nodal parameters 7T},
T; and T;.

After the element behaviour has been assumed, the remaining funda-
mental problem is to establish the element matrices S° and C°. Generally,
they involve substituting the interpolation functions into the governing
integral form. Historically these matrices have been called the element
stiffness matrix and load vector, respectively. Although these matrices can
sometimes be developed from physical intuition, they are usually formu-
lated by the minimization of a functional or by the method of weighted
residuals. These procedures are described in several texts, and will be
illustrated in detail in later chapters. :

Almost all element matrix definitions involve some type of defining
properties, or coefficients. A few finite element problems require the
definition of properties at the nodal points. For example, in a stress analysis
one may wish to define variable thickness clements by specifying the
thickness of the material at each node pcint. The finite element method
is very well suited to the solution of non-homogeneous problems; therefore,
most finite element programs also require the analyst to assign certain
properties to each element. It is usually desirable to have any data that are
common to every element (or every node) stored as miscellaneous system
data. The analyst must decide which data are required and how best to
input and recover them.

1.3.3 Assembly and solution of equations

Once the element equations have been established the contribution of
each element is added to form the system equations. The programming
details of the assembly procedure will be discussed in Section 7.2. The
system equations resulting from a finite element analysis will usuaily be of
the form

SD=C, (1.2)

8 1. Finite giement concepts

where the square matrix S is NDFREE*NDFREE in size and the vectors
D and C contain NDFREE coefficients each. The vector D will contain the
unknown nodal parameters and the matrices $ and C are obtained by
assembling (as described later) the element matrices, $° and C°, respec-
tively. Matrices S° and C® are NELFRE*NELFRE and NELFRE*1 in size.
In the majority of problems S¢, and thus S, will be symmetric. Also, the
system, §, is usually banded about the diagonal. It will be assumed herein
that the system equations are banded and symmetric. Thus, the half-
bandwidth, including the diagonal, is an important quantity to be considered
in any finite element analysis. From consideration of the technique used
to approximate the element behaviour, it is known that the half-bandwidth,
say IBW, of the system equations due to a typical element “e” is defined
e
IBW = NG* (NDIFF + 1), (1.3)

where NDIFF is the absolute value of the maximum difference in node
numbers of the nodes connected to the element. Equation (1.3) will be
derived later. The maximum half-bandwidth, say MAXBAN, of the system
is the largest value of IBW that exists in the system. That is,

MAXBAN = TBWiosiisiiti: (1 4)

The quantity MAXBAN is one of the important quantities which govern
the storage requirements and solution time of the system equations. Thus,
although the assignment of node numbers is arbitrary, the analyst, in
practice, should try to minimize the maximum difference in node numbers
(and the bandwidth) associated with a typical element. The assembly
process is illustrated in Fig. 1.5 for a four element mesh consisting of
three-node triangles with one parameter per node. The top of the figure
shows an assembly of the system S and C matrices that is coded to denote
the sources of the contributing terms but not their values. A hatched area
in these indicates a term that was added in from an element that has the
hash code. For example, the load vector term C(6) is seen to be the sum
of contributions from elements 2 and 3 which are hatched with horizontal
(—) and oblique (/) lines, respectively. By way of comparison the term
C(1) has only a contribution from element 2.

In closing, it should be noted that several efficient finite element codes
do not utilize a banded matrix solution technique. Instead, they may
employ a frontal solution or a sparse matrix solution. These important
topics will be covered in some detail.]

After the system equations have been assembled, it is necessary to apply
the boundary constraints before solving for the unknown nodal parameters.
The most common types of nodal parameter boundary constraints are

