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1 Introduction

Surveying and mapping has recently undergone a transition from discipline
oriented technologies, such as geodesy, surveying, photogrammetry and
cartography into a methodology oriented integrated discipline of geoinfor-
mation based on GPS positioning, remote sensing, digital photography for
data acquisition and GIS for data manipulation and data output. This
book attempts to present the required basic background for remote
sensing, digital photogrammetry and geographic information systems in
the new geoinformation concept, in which the different methodologies
must be combined depending on efficiency and cost to provide spatial
information required for sustainable development. In some countries this
concept is referred to as ‘geomatics’.

For remote sensing the basic fundamentals are the properties of electro-
magnetic radiation and their interaction with matter. This radiation is
received by sensors on platforms in analogue or digital form to result in
images, which are subject to image processing. In photogrammetry the
stereo-concept is used for the location of the information in three dimen-
sions. With the advent of high resolution satellite systems in stereo, the
theory of analytical photogrammetry, restituting two-dimensional image
information into three dimensions, is of increasing importance merging the
remote sensing approach with that of photogrammetry.

The result of the restitution is a direct input into geographic informa-
tion systems in vector or in raster form. The application of these is possible
at the global, regional and local levels.

Data integration is made possible by geocoding, in which the GPS
satellite positioning system plays an increasing role. Cost considerations
allow a judgement on which of the alternate technologies can lead to an
efficient provision of the required data.

Surveying and mapping in transition to geoinformation

Geodesy

Geodesy, according to F.R. Helmert (1880), is the science of measurement



2 Introduction

and mapping of the earth’s surface. This involves, first, the determination
of a reference surface onto which details of mapping can be fixed.

In ancient Greece (Homer, 800BC) the earth’s surface was believed to be
a disk surrounded by the oceans. But, not long after, Pythagoras (5508C)
and Aristotle (3508BC) postulated that the earth was a sphere. The first
attempt to measure the dimensions of a spherical earth was made by
Erathosthenes, a Greek resident of Alexandria around 200BC. At Syene
{today’s Assuan) located at the Tropic of Cancer at a latitude of 23.5° the
sun reflected from a deep well on June 21, while it would not do so in
Alexandria at a latitude of 31.1°. Erathosthenes measured the distance
between the two cities along the meridian by cart-wheel computing the
earth’s spherical radius as 5909 km. Meridional arcs were later also meas-
ured in China (AD725) and in the caliphate of Baghdad (Ap 827).

Until the Renaissance, Christianity insisted on a geocentric concept, and
the determination of the earth’s shape was not considered important. In
the Netherlands Willebrord Snellius resumed the ancient ideas about mea-
suring the dimensions of a spherical earth using a meridional arc, which he
measured by the new concept of triangulation, in which long distances
were derived by trigonometry from angular measurements in triangles. The
scale was derived from one accurately surveyed small triangle side, which
was measured as a base by tape.

The astronomers of the Renaissance {Copernicus (1500), Kepler (1600)
and Galilei (1600)) along with the gravitational theories of Newton (1700)
postulated that the earth’s figure must be an ellipsoid, and that its flatten-
ing could be determined by two meridional arcs at high and low latitude.
While the first verification in France (1683-1718) failed due to measure-
ment errors, the measurement of meridional arcs in Lapland and Peru
(1736-1737) verified an ellipsoidal shape of the earth. Distances on the
ellipsoid could consequently be determined by the astronomical observa-
tions of latitude and longitude at the respective points on the earth’s
surface. .

Laplace (1802), C.F. Gauss (1828) and F.W. Bessel (1837), however,
recognized that astronomic observations were influenced by the local
gravity field due to mass irregularities of the earth’s crust. This was con-
firmed among others by G. Everest observing huge deflections of the verti-
cal in the Himalayas. This led to the establishment of local best-fitting
reference ellipsoids for positional surveys of individual countries.

In the simplest case latitude and longitude was astronomically observed
at a fundamental point, and an astronomical azimuth was measured to a
second point in the triangulation network spanning a country. Within the
triangulation network, at least one side was measured by distance measur-
ing devices on the ground. For the determination of a best-fitting ellipsoid,
several astronomic observation stations and several base lines were used.
The coordinates of all triangulated and monumented points were calcu-
lated and least squares adjusted on the reference ellipsoid with chosen
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dimensions, e.g. for half axis major a and for half axis major b or the
flattening

a—b_
P

f=

Clarke 1880 4=6378249m,b5=6356515m
Bessel a=6377879m, f=1/298.61
Hayford a=6378388m, f=1/297
Krassovski] a=6378295m,f=1/298.4

On the chosen reference ellipsoid, the ellipsoidal latitudes and longitudes
were obtained for all points of the first order triangulation network. This
network was subsequently densified to second, third and fourth order by
lower order triangulation.

The survey accuracy of these triangulation networks of first to fourth
order was relatively high, depending on the observational practices, but
discrepancies between best fitting ellipsoids of nelghbourmg countries were
in the order of tens of metres.

For the purpose of mapping, the ellipsoidal coordinates were projected
into projection coordinates. Due to the nature of mapping in which local
angular distortions cannot be tolerated, conformal projections are chosen:

e for circular countries (the Netherlands, the Province of New
Brunswick in Canada), the stereographic projection.

e for N-S elongated countries, the 3° Transverse Mercator projection
tangent to a meridian, every 3 degrees. Due to its first use by C.F.
Gauss and its practical introduction by Kriiger, the projection is called
the Gauss—Kriiger projection. It is applied for meridians 3° apart in
longitude in several strips. The projection found wide use for the
mapping of Germany, South Africa and many countries worldwide.

e for E-W elongated countries (France) the Lambert Conic Conformal
Projection was applied to several parallels.

e the Lambert conic conformal projection may also be obliquely
applied, e.g. in Switzerland.

e for worldwide mapping, mainly for military mapping requirements,
the UTM projection (a 6° Transverse Mercator Projection) is applied.
The formulation is the same as for the Gauss-Kriiger projection, with
the exception that the principal meridian (here every 6 degrees) has a
scale factor of 0.9996 rather than 1 used for the Gauss-Kriiger projec-
tion.

Since the earth’s gravity field influences the flow of water on the earth’s
surface, ellipsoidal coordinates without appropriate reductions cannot be
used for practical height determinations. Height reference systems are
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therefore separate from position reference systems based on reference ellip-
soids.

An ideal reference surface would be the equipotential surface of the
resting oceans, called ‘the geoid’. Due to earth tides influenced by the
moon and planets, due to ocean currents and winds influenced by climate
and meteorology, this surface is never resting. For this reason the various
countries engaged in mapping systems have created their own vertical refer-
ence systems by observing mean sea level tides at tidal benchmarks. Spirit
levelling extended the elevations in level loops of first order over the
mapping area of a country to monumented benchmarks. These level loop
observations, corrected by at least normal gravity, could be densified by
lower order levelling to second, third and fourth order. As is the case for
positions, differences of several metres in height values may be the result of
the different height reference systems of different countries.

The different reference systems for position and height still used for
mapping in the countries of the world are in transition, changing into a
new reference frame of three- or four-dimensional geodesy. This has
become possible through the introduction of the US Navy Navstar Global
Positioning Systems (GPS) in the 1980s. It now consists of twenty-four
orbiting satellites at an altitude of 20200km. These orbit at an inclination
of 55° for 12 hours, allowing a view, in a direct line of sight, of at least
four of these satellites from any observation point on the earth’s surface
for 24 hours of the day.

Each of the satellites transmits timed signals on two carrier waves with
19.05c¢m and 24.45cm wavelengths. The carrier waves are modulated
with codes containing the particular satellite’s ephemeris data with its
corrections. The US Defense Department has access to the precise P-code
suitable for real-time military operations. Civilian users can utilize the
less precise C/A code carried by the 19.05cm carrier wave.

When three satellites with known orbital positions transmit signals to a
ground receiver, the observed distances permit an intersection of 3D-
coordinates on the earth’s surface. Since the satellite clocks are not syn-
chronized, an additional space distance from a fourth satellite is required
for 3D positioning.

The calculations are based on an earth mass centred reference ellipsoid
determined by an observation network by the US Department of Defense,
the WGS 84 with the following dimensions:

a=6378137m
f=1/298.257223 563

Local reference ellipsoids used in the various countries differ in coordinate
positions by several 100 m with WGS 84 coordinates.

P-code observations may be used in real time to accuracies in the dm
range. C/A codes are capable of determining positions at the Sm level
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unless rhe satellite clock signals are artificially disturbed by the military
satellite system operators, as was the case during the 1990 to 2000 period.
This disturbance was called the ‘selective availability (SSAY. It deteriorated
the C/A code signals to 100m accuracies in position and to 150m in
height.

To overcome this lack of dependability, more elaborate receivers were
developed in the civilian market, which observed the phases of the carrier
waves, using the C/A codes only to obtain approximate spatial distances
and to eliminate ambiguities when using the phase measurements. The
principle of measurement at a mobile rover station thus became that of rela-
tive positioning with respect to a permanently operating master reference
station.

In static mode (observing over longer duration periods) positional accu-
racies in the range of several millimetres could be achieved for distances
closer than 10km. For long distances over several hundreds of kilometres,
accuracies in the 1¢m to 2cm range could be obtained by the simultaneous
observation of networks.

Relative observations in networks are able to minimize ionospheric and
tropospheric transmission effects. Satellite clock errors may be eliminated
using double differences.

Multiple effects may be eliminated by the careful choice of observation
points. This has encouraged the international civilian community to estab-
lish an International Terrestrial Reference Frame (ITRF) of over 500
permanently observing GPS stations worldwide. The absolute position of
ITRF is combined with the observation of an International Celestial Refer-
ence Frame (ICRF), in which the absolute orientation of ITRF is controlled
by stellar observations using radio astronomy (quasars, VLBI).

The existence of an ITRF gives the opportunity to monitor changes of
plate tectonic movements of the earth’s crust. Thus ITRF is determined at
a specified epoch (e.g. ITRF 1993, ITRF 1997, ITRF 2000, etc.), in which
local plate deformations can be observed which exceed centimetre accura-
cies.

The existence of ITRF has encouraged mapping agencies throughout the
world to establish new continental control networks and to densify them
into national reference systems.

In Europe, thirty-six ITRF stations were selected in 1989 to create the
European Reference Frame ETRF 89. This reference frame served to re-
observe national networks with differential GPS, such as the DREF 91 in
Germany, which permitted the setting up of a network of permanently
observing GPS reception stations SAPOS, with points about 50 km apart.

Networking solutions, such as those offered by the companies Geo+ +
or Terrasat permit the use of transmitted corrections to rover stations
observing GPS-phase signals in real time kinematic mode. These enable
positioning in ETRF to 1cm accuracy in latitude and longitude and to
2.cm accuracy in height at any point of the country, where the GPS signals



